Note: [_] brackets designates a key

Clear List: Arrow to top of list, press: [CLEAR], [ENTER] or arrow to top of list, press [CLEAR] and arrow down.

CATALOG: If you forget where a function is located, you can use the CATALOG ([2^nd], [0]) for a complete list of functions.

Contents of lists L1, L2, L3, L4, L5, L6 can be viewed in three ways

- Press: [STAT], [ENTER] to see all lists
- From the main screen: Press: [2^nd], [1] and [ENTER] for L1,
- [2^nd], [STAT] NAMES: 1, 2, 3, etc

Store data in List:

- Press: [STAT], [ENTER] to select Edit
- Enter data and press [ENTER] for each value
- Press: [2^nd]/[QUIT] to exit list

Calculate Statistics on Data in a List:

- You may want to “Clear” the list first, see Clear List above
- Enter data in list(s)
- Press: [2^nd]/[QUIT]
- 1-VAR Stats:
 - Select [STAT], [CALC], then choose 1-VAR, and press [ENTER]
 - “1-VAR Stats” will appear on main screen
 - select L# - to perform calculation on that list, and press [ENTER]
 - (L1 is the default list)
- 2-VAR Stats
 - Select [STAT], CALC, 2-VAR, and press [ENTER]
 - “2-VAR Stats” will appear on main screen
 - (L1/L2 are default) and so just press [ENTER]
 - For other lists select “L#, L#”

NOTE: when doing multiple list stats the lists MUST contain same number of data elements or you will get a “ERR: DIM MISMATCH”
List Operations: Sort, SUM, Fill

Sort: \([2_{\text{nd}}], [\text{STAT}], \text{ then OPS: 1/2 ascending/decending, then enter L# for desired list.}\)

SUM (\(\Sigma\)): \([2_{\text{nd}}], [\text{STAT}] \text{ then MATH: 5}\)

Fill: \([2_{\text{nd}}], [\text{STAT}], \text{ OPS: 4}\)

- Function: Fill(value, listname)

Semi-automatic Calculations:

Finding \(\sum(x_i - \bar{X})^2\) using list function

- Enter data in L1
- Calculate Stats on L1
- Use the calculated \(\bar{X}\) from Stats analysis to create \(\sum(x_i - \bar{X})^2\) for each value of L1 in L2
 - Press \([\text{STAT}],[\text{ENTER}]\)
 - Arrow to top of L2 and enter: \((L1 - [\bar{X}-\text{value}])^2\) and press \([\text{ENTER}]\)
 - This will create a list of these values in L2
 - Then you can SUM L2 to get \(\sum(x_i - \bar{X})^2\)

- The calculator will increment through L1 and perform the calculation on each element and store that calculation in L2

You can do this in partial steps:

- Enter data in L1
- Go to top of L2 and enter formula: \(L1 - [\bar{X}\text{-value}]\) and press \([\text{ENTER}]\)
 - This generates list of \((x_i - \bar{X})\) values in L2
- Then go to top of L3 and enter formula: \((L2)^2\)
 - This generates the list of \((x_i - \bar{X})^2\) values
 - Then you can SUM L3 to get \(\sum(x_i - \bar{X})^2\)
<table>
<thead>
<tr>
<th>Argument</th>
<th>Result</th>
<th>Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>normalcdf(lowerbound, upperbound, μ, σ)</code></td>
<td>Computes the normal distribution probability between <code>lowerbound</code> and <code>upperbound</code> for the specified <code>μ</code> and <code>σ</code></td>
<td><code>[2^{nd}] [VARS] (“DISTR”) 2: normalcdf</code></td>
</tr>
<tr>
<td><code>normalpdf(x, μ, σ)</code></td>
<td>Computes the probability density function for the normal distribution at a specified <code>x</code> value for the specified <code>μ</code> and <code>σ</code>.</td>
<td><code>[2^{nd}] [VARS] (“DISTR”) 1: normalpdf</code></td>
</tr>
<tr>
<td><code>binompdf(numtrials, p, x)</code></td>
<td>Computes a probability at <code>x</code> for the discrete binomial distribution with the specified <code>numtrials</code> and probability <code>p</code> of success on each trial</td>
<td><code>[2^{nd}] [VARS] (“DISTR”) 0: binompdf</code></td>
</tr>
</tbody>
</table>

Graph NormalCDF: You can make a graph of `normalcdf` with the DISTR: DRAW: SHADE(NORM(function.

- Set X-min and X-max on window setting to either side of the lower/upper bound,
- Y-min to -.05,
- Y-max to .2

To CLEAR THE DRAWING FUNCTION: Select DRAW ([2^{nd}], [PRGM]: 1 ClrDraw