1. **Rectangular form to polar form**

Change \(x^2 + y^2 - 2y = 0 \) to polar form

Solution:

Use: \(r^2 = x^2 + y^2 \)
and \(y = r \sin(\theta) \)

\[
x^2 + y^2 - 2y = 0 \quad \text{[Replace \(x^2 + y^2 \) with \(r^2 \)]}
\]

\[
r^2 - 2y = 0
\]

\[
r^2 - 2(\ r \sin(\theta)) \quad \text{[replace \(y \) with \(r \sin(\theta) \)]}
\]

\[
r \ (r - 2\sin(\theta)) = 0 \quad \text{[factor out \(r \)]}
\]

We get \(r = 0 \), or \(r - 2\sin (\theta) = 0 \)

The graph of \(r = 0 \) is the pole. (It represents one point only)

The pole is included in the graph of \(r - 2\sin (\theta) = 0 \)

We can discard \(r = 0 \) and just keep

\[
r - 2\sin (\theta) = 0
\]

\[
r = 2\sin (\theta) \quad \text{[The polar form of \(x^2 + y^2 - 2y = 0 \)]}
\]

2. **Polar to Rectangular**

Change \(r = -3 \cos (\theta) \) to rectangular form

Solution:

Use: \(r^2 = x^2 + y^2 \)
and \(x = r \cos (\theta) \)

\[
r = -3 \cos (\theta) \quad \text{[Multiply by \(r \) to get \(r^2 \)]}
\]

\[
r^2 = -3r \cos (\theta) \quad \text{[Use \(r^2 = x^2 + y^2 \)]}
\]

\[
x^2 + y^2 = -3r \cos (\theta) \quad \text{[Use \(x = r \cos (\theta) \)]}
\]
\[x^2 + y^2 + 3x = 0 \] [Rectangular form]

\[(x^2 + 3x) + y^2 = 0 \] reorganize in \(x^2 + y^2 = r^2 \)

\[(x^2 + 3x + \frac{9}{4}) + y^2 = 0 + \frac{9}{4} \] [complete the square]

\[(x + \frac{3}{2})^2 + y^2 = \frac{9}{4} \] [rectangular form]

Ex: given point = 4 at 30 degree.

Convert to rectangular:

\[y = r \sin(\theta), \quad x = r \cos(\theta) \] so \([x, y] = [4\cos(30), 4\sin(30)] = [2\sqrt{3}, 2]\]

In general:

Use: \(r^2 = x^2 + y^2 \)

and either \(y = r \sin(\theta) \) (when \(y \) is the term used in the original equation)

or \(x = r \cos(\theta) \) (when \(x \) is the term used in the original equation)

Sometimes it is helpful to multiply the whole equation times \(r \) as a first step, as seen above.

If you end up with \(r = \text{“some value”} \), the plot of this is just a circle with \(r \) radius.