Step 1: Algebraically, arrange the given equation into the general simplified form:

\[y = a \sin b(x - h) + k \]

Or Complex form:

\[y = a \sin b(x - h) + k \]

Step 2: By inspection, identify the amplitude \(a\), phase shifts \(h\pi\), period \(b\), and vertical shift \(k\).

Step 3: Plot the following five points:

Point 1: \((h, k)\)
Point 2: \((h + \frac{\pi}{2b}, a + k)\)
Point 3: \((h + \frac{\pi}{b}, k)\)
Point 4: \((h + \frac{3\pi}{2b}, -a + k)\)
Point 5: \((h + \frac{2\pi}{b}, k)\)

EXAMPLE: Given \(y = 3 \sin(2x - \frac{2\pi}{4})\), graph the sine function.

Step 1: By factoring out a 2 within the \(\sin(___)\), we get an equation in the general form: \(y = 3 \sin 2(x - \frac{\pi}{4})\)

Step 2: By inspection: \(a = 3; b = 2; h = \frac{\pi}{4}; k = 0;\)

\[\text{Period} = \frac{2\pi}{b} = \frac{2\pi}{2} = \pi \]

Step 3: Plot \(P1: \left(\frac{\pi}{4}, 0\right)\) \(P2: \left(\frac{\pi}{2}, 3\right)\) \(P3: \left(\frac{3\pi}{4}, 0\right)\) \(P4: (\pi, -3)\) \(P5: \left(\frac{5\pi}{4}, 0\right)\)