

Cybersecurity Concepts

CSUSM Cybersecurity Education Hub

Cybersecurity Fundamentals

- What is cybersecurity?
- What are we trying to protect?
- Risk threats, vulnerabilities, likelihood
- Confidentiality, integrity, and availability (C-I-A) concepts
- What kinds of harm are we trying to avoid?
- How can we avoid that harm?

What Is Computer Cyber Security?

The protection of the assets of a computer system

- Hardware
- Software
- Data

Assets Are...

Hardware

- Computers but also:
 - Medical devices
 - Automobiles
 - Industrial controllers
 - Security systems
 - Household appliances
 - Scientific equipment
 - Tracking/location
 devices
 - ...and more

Software/Network

- Operating systems, applications but also
 - Access control mechanisms
 - Physical Access
 - Location services
 - Network traffic
 - Actions
 - Device identity
 - ...and more

Data

- Files, photos, music, databases but also:
 - Location
 - Actions
 - Network identity
 - Access list
 - Payment info
 - Response/Status
 - Monitored activity
 - ...and more

- Vulnerability weakness in a system
- Threat circumstance with potential to cause harm
- Attack exploit of a vulnerability
- Countermeasure or control action or device that removes or reduces a vulnerability

C-I-A Triad

- Confidentiality Only persons authorized to access information or systems should get access to the information or system.
- Integrity Only those persons or applications authorized to alter the system or information may do so, and alterations are made under controlled circumstances.
- Availability The information or system, along with the applications, and other hosts used to access, store and manipulate it, is available when needed.
- Sometimes two other desirable characteristics:
 - Authentication Confirm identity of a sender/signer.
 - Nonrepudiation Confirm that asserted action can't be denied.

Confidentiality

- Both actual data and information about data
- Access to all of it or part of it?
- Unauthorized both persons and processes or systems
- Generally means viewing/obtaining but not modifying

Confidentiality

Personal Data and Information

Credit card account numbers and bank account numbers

Social security numbers and address information

Intellectual Property

Copyrights, patents, and secret formulas
Source code, customer databases, and technical specifications

National Security

• Military intelligence

• Homeland security and government-related information

9

Integrity

- Maintain valid, precise uncorrupted, and accurate information.
 - Word "not" macro
 - Pentium math error
 - Errors
- Purposeful changes to values (accounting, salary)
- Alterations are authorized and intentional

User names and passwords

Patents and copyrightsSource code

Diplomatic informationFinancial data

Availability

- Complex series of topics
- Moves far into operations
 - Backups and recovery?
 - Disk availability raid, mirroring, cloud services?
 - Personnel and training?
 - Business Continuity/Disaster Recovery?
 - Uptime and "normal" failures?

Harm

- Negative consequence of the attack
- Dependency on value of asset
 - Theft (identity/financial/intellectual property)
 - Loss of privacy
 - Loss (destruction) of asset
 - Organizational operations impact
 - Reputational harm

- Potential of harm (loss) From failure/attack of an information system
- Likely threats Fire? Earthquake? Theft? Social engineering? Malware?
- Countermeasures
- Risk transfer
- Value of asset, amount of harm, cost of countermeasure(s)
- Problem:
 - Difficult to assess value
 - Difficult to assess impact (amount of harm)
 - Difficult to identify threats
 - Difficult to assess "likelihood" of threat

Threat and Vulnerability

Vulnerability

- Vulnerability Weakness that can allow harm to occur
- Jargon: "Attack surface" the full set of a system's vulnerabilities
- Common vulnerabilities
 - Untrained users
 - Employee sabotage
 - Poor authentication implementation
 - Poor configuration
 - Lack of physical security
 - Failure to adequately isolate network traffic
 - ... etc

Threats

There are many ways to classify threats

- Nonhuman threats: natural disasters, hardware failures, etc.
- Human threats: spilling a soft drink, entering the wrong data by mistake, intentionally hacking a system
- Malicious vs. non-malicious
- Random vs. directed

Harm From Human Threats

- Interception Someone accessed something to which they had not been granted access
- Interruption Something became unavailable or unusable
- Modification Someone changed something they weren't supposed to
- Fabrication Someone created fake data or records

Risk and Likelihood

- What's the chance of being invaded by hostile aliens?
- Really, really small?
- Likelihood is the chance that a threat will happen
- Effect of being invaded by hostile aliens?
 - Death, destruction...
- Impact is the damage that could occur
- Humans overestimate the likelihood of rare and high-impact events, perhaps underestimate the likelihood of more common, potentially less impactful events. Ex: air travel vs auto travel

Affecting Likelihood: Method, Opportunity, Motive

As with traditional crime, a computer attacker must have three things:

Method	 Skills and tools to perform the attack
Opportunity	 Time and access to accomplish the attack
Motive	 A reason to perform the attack

Controls/Countermeasures

- Defn: "Means to counter a threat"
- Detective identify when a threat is/has acting(ed) on the vulnerability
 - System monitoring
 - Security alarm system
- Preventive keep the threat away from acting on the vulnerability
 - Actual prevention physical, environmental, firewall, encryption
 - Deterrence Policies/procedures, training, anti-malware
- Corrective lessen the impact of the threat
 - Backup/recovery
 - Disaster recovery systems

Controls

Prevent

Remove the vulnerability from the system

Deter

- Make the attack harder to execute
- Deflect
 - Make another target more attractive (perhaps a decoy)
- Detect
 - Discover that the attack happened, immediately or later
- Recover
 - Recover from the effects of the attack

Physical Controls

- Locks on doors
- Security guards
- Backup copies of data
- Planning for natural disasters and fires
- Simple controls are often the best
 - Attackers will always look for a weak point in your defenses

Technical Controls

- Software controls:
 - Passwords
- OS and application controls
 - Encryption, access control methods
- Independent control programs
 - Application programs that protect against specific vulnerabilities

are not introduced

•

•

Hardware controls

Development controls

- Smart cards on satellite or cable television set-top boxes
- Fingerprint or other biometric readers

Quality control for creating

software so that vulnerabilities

- Network
 - Firewalls,

Procedural Controls

- Humans...
 - Policies, procedures, standards
 - Most important: training and awareness
 - Policy examples:
 - Password composition
 - Prohibitions on sharing
 - Confidentiality agreements
 - Legal protections
 - State/Fed laws
 - Common law