CHEM 150

ACIDS AND BASES

Definitions:

- Bronsted-Lowry
 - Acid Donate H⁺
 - Base Accept H⁺
- Lewis
 - Acid Accept a lone pair
 - o Base Donate a lone pair
- Arrhenius
 - Acid Cause H⁺ to form
 - Base Cause OH to form
 - \circ Ex. CO₂ + H₂O -> HCO₃⁻ + H⁺ A B
- Solvent system
 - Acid Cause cation to form
 - Base Cause anion to form
- Lux-Flood
 - Acid Oxide acceptor
 - Base Oxide donor
- o Note:
 - Neutral metals tend to be neutral or basic (by Arrhenius def)
 - Metal ions tend to act as acids in the sense that they help increase H⁺ concentration
 - o Hard: more ionic character
 - Soft : more covalent character

Trends in strength:

- The stability of the Conj. Base will determine the strength of the acid
 - Bond dissociation energy is a bigger deciding factor
- o Conj. Base
 - Increase size, increase stability
 - Better distribution of charge
 - Increase # of lone pairs, increase stability
 - Better distribution of charge
 - Increase EWG, increase stability
 - Electronegative elements pull e⁻ toward themselves, making H⁺ easier to pull off
- In general, increase # of oxygens in acid, increase in acidity
 - \circ Ex. H₂SO₄ > H₂SO₃
- Pauling's Rule: pKa ~ 9-7n where
 n=# unprotanated oxygen in neutral
 - o Ex. HClO₄ (3 unprotanated O)
 - \circ pKa $\sim 9-(7)(3) = -12$
- Lower pKa is the stronger acid

