

CHEM 160

BALANCING HALF REACTIONS

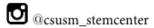
Balancing Redox Reactions in Steps (Acidic Solution)

- 1. The first step is determining if it is a redox reaction
 - a. There must be a component that is oxidized (increase in oxidation number)
 - b. There must be a component that is reduced (decrease in oxidation number)
- 2. Balance elements in the equation other than O and H
- 3. Balance the oxygen atoms by adding the appropriate number of water (H₂O) molecules to the opposite side of the equation
- 4. Balance the hydrogen atoms (including those added in step 3 to balance the oxygen atoms) by adding H⁺ ions to the opposite side of the equation
- 5. Add up the charges on each side. Make them equal by adding enough electrons (e⁻) to the more positive side
- 6. The e⁻ on each side of the half reactions must be equal; if they are not equal, they must be multiplied by appropriate integers (the lowest common multiple) to be made the same.
- 7. The half reactions are added together, canceling out the electrons to form one balanced equation. Common terms should also be canceled out.
- 8. If in basic conditions, add enough OH ions to balance any H ions present. Add the same amount of OH ions to each side.
- 9. Combine the OH⁻ ions and the H⁺ ions to make H₂O.
- 10. Cancel any common terms.

Worked Example

$$Cr_2O_7^{-2}(aq) + HNO_2(aq) \rightarrow Cr^{3+}(aq) + NO_3^{-1}(aq)$$

- 1. Separate the half reactions
 - a. Oxidation: $HNO_2(aq) \rightarrow NO_3(aq)$
 - b. Reduction: $Cr_2O_7^{2-}(aq) \rightarrow Cr^{3+}(aq)$
- 2. Balance atoms other than O and H


In this case, only Cr needs to be balanced:

$$Cr_2O_7^{2-}(aq) \rightarrow 2 Cr^{3+}(aq)$$

- 3. Balance the O atoms by adding water
 - a. $HNO_2(aq) + H_2O(1) \rightarrow NO_3(aq)$
 - b. $Cr_2O_7^{2-}(aq) \rightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$
- 4. Balance the H atoms by adding H⁺
 - a. $HNO_2(aq) + H_2O(1) \rightarrow NO_3(aq) + 3H^+(aq)$
 - b. $Cr_2O_7^{2-}(aq) + 14 H^+(aq) \rightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$
- 5. Balance the charge by adding e
 - a. $HNO_2(aq) + H_2O(1) \rightarrow NO_3(aq) + 3H^+(aq) + 2e^-$
 - b. $\operatorname{Cr}_{2O_7}^{2^-}(\operatorname{aq}) + 14 \operatorname{H}_{14+}^+(\operatorname{aq}) + 6 \operatorname{e}^- \rightarrow 2 \operatorname{Cr}_{6+}^{3+}(\operatorname{aq}) + 7 \operatorname{H}_2O(1)$

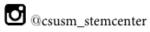
CHEM 160

BALANCING HALF REACTIONS

- 6. Make the electrons equal by multiplying by the least common multiple
 - a. $(HNO_2(aq) + H_2O(1) \rightarrow NO_3(aq) + 3H^+(aq) + 2e^-) *3$
 - i. $3 \text{ HNO}_2(aq) + 3 \text{ H}_2O(1) \rightarrow 3 \text{ NO}_3(aq) + 9 \text{ H}^+(aq) + 6 \text{ e}^-$
 - b. $(Cr_2O_7^2-(aq) + 14 H^+(aq) + 6 e^- \rightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)) *1$
 - i. $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \rightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$
- 7. Combine the half reactions and cancel out the common terms
 - a. $3 \text{ HNO}_2(aq) + \frac{3 \text{ H}_2O(1)}{2} + \text{Cr}_2O_7^2(aq) + \frac{14 \text{ H}^+(aq)}{2} + \frac{6 \text{ e}^-}{2} + 3 \text{ NO}_3(aq) + \frac{9 \text{ H}^+(aq)}{2} + \frac{6 \text{ e}^-}{2} + 2 \text{ Cr}_3(aq) + \frac{7 \text{ H}_2O(1)}{2}$
 - i. $3 \text{ HNO}_2(aq) + \text{Cr}_2\text{O}_7^{2-}(aq) + 5 \text{ H}^+(aq) \rightarrow 3 \text{ NO}_3^-(aq) + 2 \text{ Cr}^{3+}(aq) + 4 \text{ H}_2\text{O}(1)$

Final Balanced equation (Acidic):

$$HNO_2(aq) + Cr_2O_7^{2-}(aq) + 5 H^+(aq) \rightarrow 3 NO_3^-(aq) + 2 Cr^{3+}(aq) + 4 H_2O(1)$$


- 8. (Basic) Add OH ions to balance out any H ions present
 - a. $^{'}3 \text{ HNO}_2(aq) + \text{Cr}_2\text{O}_7^{2^-}(aq) + 5 \text{ H}^+(aq) + 5 \text{ OH}^-(aq) \rightarrow 3 \text{ NO}_3^-(aq) + 2 \text{ Cr}^{3^+}(aq) + 4 \text{ H}_2\text{O}(1) + 5 \text{ OH}^-(aq)$
- 9. Combine any H⁺ and OH⁻ ions to make H₂O
 - a. $3 \text{ HNO}_2(\text{aq}) + \text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 5 \text{ H}_2\text{O}(1) \rightarrow 3 \text{ NO}_3^{-}(\text{aq}) + 2 \text{ Cr}^{3+}(\text{aq}) + 4 \text{ H}_2\text{O}(1) + 5 \text{ OH}^{-}(\text{aq})$
- 10. Cancel out the common terms
 - a. $3 \text{ HNO}_2(aq) + \text{Cr}_2\text{O}_7^{2-}(aq) + 5 \text{ H}_2\text{O}(1) \rightarrow 3 \text{ NO}_3^{-}(aq) + 2 \text{ Cr}^{3+}(aq) + 4 \text{ H}_2\text{O}(1) + 5 \text{ OH}^{-}(aq)$
 - i. 3 HNO₂(aq) + Cr₂O₇²-(aq) + H₂O(1) \rightarrow 3 NO₃-(aq) + 2 Cr³⁺(aq) + 5 OH-(aq)

Final Balanced Equation (Basic):

 $3 \text{ HNO}_2(aq) + \text{Cr}_2\text{O}_7^{2-}(aq) + \text{H}_2\text{O}(l) \rightarrow 3 \text{ NO}_3^{-}(aq) + 2 \text{ Cr}^{3+}(aq) + 5 \text{ OH}^{-}(aq)$

