

California State University SAN MARCOS

CHEM 160

THERMODYNAMICS

Key Terms: ΔG – Gibbs free energy

 ΔH – Enthalpy [KJ/mol] ΔS – Entropy [J/K] **Key Equations:**

$$\begin{split} \Delta G &= \Delta H\text{-}T\Delta S\\ S &= K \text{In} W \qquad (\text{K= Boltzmann} = 1.38 \text{ x } 10^{-23})\\ W &= B^{\text{N}} \qquad (\text{B=\#boxes}, \text{N=\#molecules})\\ \Delta G^{\circ}_{\text{rxn}} &= [\Sigma \Delta G^{\circ}_{\text{Products}}]\text{-}[\Sigma \Delta G^{\circ}_{\text{Reactants}}]\\ (\text{Same table for } \Delta H^{\circ} \text{ and } \Delta S^{\circ}) \quad (\Sigma\text{=}\text{Sum of}) \end{split}$$

Key Concepts:

 $\Delta G > 0 \Rightarrow$ non-spontaneous $\Delta G < 0 \Rightarrow$ spontaneous

 $\Delta H > 0 => Endothermic$ $\Delta H < 0 => Exothermic$

 ΔG° , ΔH° , ΔS° => Standard conditions : 1 atm, 1M, 25°C *These numbers can be read from a table

 Δ S (entropy) is defined as the disorder (or randomness) of a system. The second law of thermodynamics states that in a spontaneous process, the total entropy increases (Δ S > 0).

Entropy and Pressure are inversely related; as pressure increases, entropy decreases.

Entropy and Temperature are directly related; as temperature increases, entropy increases.

ΔН	۵S	ΔG
(-)	(+)	(-)
(+)	(-)	(+)
(+)	(+)	(+)
(-)	(-)	(-)

*How to read the table: If Δ H (-) and Δ S (+), then Δ G is (-)

California State University SAN MARCOS

CHEM 160

THERMODYNAMICS

Note: First two rows are true at all temperatures; Last two rows are true at low temps, the opposite is true for high temps

