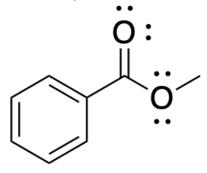
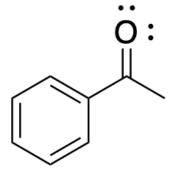

CHEM 202 EDG v. EWG

	Electron Donating Group (EDG) *by resonance	Electron Withdrawing Group (EWG) *by resonance
Properties	Lone Pair of electrons directly attached to the ring.	'Carbonyl like' group, or a positive charge directly attached to the ring.
Example	üH.	ö:
What effect does it have on the ring?	Activation	Deactivation
Directing	Ortho/Para director	Meta Director

- Two properties are considered when classifying a substituent as electron donating or withdrawing
 - **Resonance:** Can the functional group donate a pair of electrons into the ring? Or is it deficient in electrons, resulting in electrons being pulled out of the ring.
 - o **Inductive:** Is the functional group more or less electronegative than the ring?
 - Resonance has a greater effect than Inductive. Occasionally, the inductive effect
 that a functional group has on the ring is different than the resonance effect, but
 the resonance effect is stronger.
 - **Example:** R-NH₂ Nitrogen is more electronegative than the ring, so it is inductively withdrawing, however there is a lone pair of electrons that can be pushed into the ring via resonance. Overall NH₂ is an electron donating group.



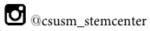


CHEM 202 EDG v. EWG

• To know the strength of the withdrawing or donating group look to see if the electrons are being "shared"

o **Example:** An ester vs. a ketone

While they are both withdrawing groups, a ketone is a stronger withdrawing group than an ester. A ketone can only pull electrons from the ring, where the carbonyl of the ester can pull the electrons from the ring and the oxygen next door.


- When do we care about the inductive effect? (Not resonance)
 - Halogens: The electronegativity of a halogen causes it to be an electron withdrawing group via inductive effect. Halogens are EWG's even though they have lone pairs present. *Halogens are an exception in that, even though they are electron withdrawing groups, they are ortho/para directors.
 - Alkyl groups: The electronegativity of the ring is greater than a carbon chain, making any alkyl group an electron donating group via inductive effect. Inductive effect is used in this case because alkyl groups do not have any resonance effect.

Applications

- A strong electron withdrawing group can deactivate the ring to the point where some reactions do not happen. For example, Friedal-Crafts alkylation will not occur on a ring if there is a strong electron withdrawing group, such as NO₂.
- When undergoing synthesis, it is important to know what directing groups are
 present. For example, if the two substituents are oriented para to each other, an
 ortho/para director needs to be put on the ring first.
- When undergoing Diels-Alder, the reaction will proceed faster if the diene has an EDG and/or if the dienophile has an EWG

