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A Reversible Nearest Particle System on the
Homogeneous Tree1
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We introduce a modified contact process on the homogeneous tree. The
modification is to the death rate: an occupied site becomes vacant at rate one
if the number of occupied id neighbors is at most one. This modification leads
to a growth model which is reversible, off the empty set, provided the initial set
of occupied sites is connected. Reversibility admits tools for studying the sur-
vival properties of the system not available in a nonreversible situation. Four
potential phases are considered: extinction, weak survival, strong survival, and
complete convergence. The main result of this paper is that there is exactly one
phase transition on the binary tree. Furthermore, the value of the birth
parameter at which the phase transition occurs is explicitly computed In par-
ticulars survival and complete convergence hold if the birth parameter exceeds
1/4. Otherwise, the expected extinction time is finite.

1. INTRODUCTION

The (single parameter) uniform model Ct is a continuous time Markov pro-
cess taking values in X= {0, 1}Td, where Td denotes the homogeneous tree
in which each vertex has degree d + 1. An element 77 of X is referred to as
a configuration and the value of 77 at the site x denoted by C ( x ) is the spin
at x. If the spin at x is 1, we say that the site x is occupied. Otherwise,
x is vacant. The evolution of the process is that a vacant site becomes
occupied at a rate which is proportional to the number of occupied
neighbors, while an occupied site becomes vacant at rate one if at most one
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of its neighbors is occupied. More formally, the flip rate c(x, C) at site
x E Td in configuration 77 is given by

where B > 0 and \\x — y\\ denotes the length of the shortest path connecting
x and y. See Liggett(5) [Ch. I, Sect. 3] for a complete construction of the
process.

Some may recognize these dynamics as a modification of the contact
process where the rate at which an occupied site becomes vacant is one
regardless of the spin values in the neighborhood. The effect of the modifi-
cation is that connected components remain connected until absorption in
the empty set. Furthermore, the configuration with all sites occupied is
absorbing so that D1 is the upper invariant measure for the process, where
1 is the configuration in which all sites are occupied. Another distinction is
that the finite system is reversible with respect to the measure P ( A ) =B|A|

for all finite, connected A S Td, where we have identified a configuration C
in X with the subset A of the vertices of Td which are occupied. The con-
tact process properties of additivity and self-duality fail for the uniform
model, while attractiveness is preserved.

Liggett(6) first introduced the two parameter version of this process in
1985. It has both an interior birth rate L and an exterior birth rate G < 1/d.
Given a configuration C, let g(C) be the minimal connected subgraph of Td

containing C. The rate at which a vacant site becomes occupied in con-
figuration C decays exponentially with the distance to g(C), while occupied
sites become vacant at rate one. The flip rates are given by

where ||x — g(C)|| = min{ ||x — y|| : y E g ( C ) } . The two parameter model is
reversible with respect to the measure u ( A ) = G|g(A)|L|A| for finite A S Td.
Liggett studied the survival properties of the finite system and gave bounds
on the critical value of the interior birth parameter in terms of the exterior
birth parameter. The connection between the single and double parameter
models is that the single parameter uniform model can be regarded as a
limit of the double parameter version. To see this, set the double parameter
nearest neighbor birth rate LG constantly equal to B while letting the



exterior birth rate G tend to zero. In particular, the rate at which vacant
sites at a distance strictly greater than one from g(C) become occupied
tends to zero. Since the interior birth rate A = B/G, the interior birth rate
tends to infinity. Thus, any occupied site in the interior of g(C) which
becomes vacant is instantaneously reoccupied.

In the study of reversible interacting particle systems, new tools
become available which, in some cases, allow more complete analysis.
Attractive Reversible Nearest Particle Systems (RNPS) on Z provide a suc-
cessful example. In a Nearest Particle System (NPS), an occupied site
becomes vacant at rate one and a vacant site becomes occupied at a rate
which depends on the distances to the nearest occupied sites. The contact
process provides a (nonreversible) example of a NPS in which the rate at
which a vacant site becomes occupied is proportional to the number of
occupied sites within distance one. On Z, reversibility is equivalent to the
assumption that the rate at which a vacant site becomes occupied takes the
form
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for some function B: N -> R+ such that Zl=1 B(l) < I where l x(C) (resp.
r x(C)) denotes the distance to the nearest occupied site to the left (resp.
right) of x in configuration C. In contrast to the contact process on Z, criti-
cal values for both the finite and infinite RNPS can be computed exactly
and the upper invariant measure is the well understood stationary renewal
measure whose increments are determined by the function B( . ) . See
Liggett(5) [Ch. VII] for a full discussion of NPS.

The theory of RNPS on graphs other than Z is not well developed.
Two important obstacles prevent generalization. Firstly, on what quantity
should the rate of occupancy depend; that is, how should one generalize
the notion of the nearest particle to the left and right? Secondly, there is
no generalization of a renewal measure even to Zd for d > 2. Liggett intro-
duced the two parameter uniform model in order to extend the theory of
RNPS to Td. Some other attempts to study RNPS on graphs besides Z
include Chen(1,2) and Liggett.(8)

Our goal in this paper is to introduce the single parameter uniform
model and to exploit reversibility to provide a complete analysis like that
available for RNPS. Motivated by the contact process on Td, we consider
the following critical values of the birth parameter. Let T denote the time
of absorption into the empty set. Let 0 be a distinguished vertex referred
to as the origin, or the root.
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It is immediate that B 1 ( d ) < B 2 ( d ) < B 3 ( d ) < B 4 ( d ) . If the process is not
absorbed into the empty set in finite time we say that the process survives
globally. Thus, B 2 (d) denotes the global survival threshold. If the process
occupies the origin at an unbounded sequence of times, then we say that
the process survives locally so that B 3 ( d ) denotes the local survival
threshold. Global survival without local survival is weak survival. In par-
ticular, weak survival occurs with positive probability if B E ( B 2 ( d ) , B 3 ( d ) ) .
If PA(C t E .) -> PA(Ct = P V t ) D 1 ( . ) + PA(Ct = P some t) D 0 ( . ) for all finite,
connected A, we say that complete convergence holds. It is immediate that
complete convergence holds for B<B 2 (d ) . In the local survival phase, it is
not obvious that complete convergence is a monotone increasing property
of the birth parameter and therefore that the definition of B 4 ( d ) is useful.
The fact that Td is a homogeneous graph implies the desired monotonicity
as will be shown in Section 2.

Theorem 1 summarizes the main results proved in this paper regarding
critical values for the (single parameter) uniform model. On the binary
tree, all critical values are computed exactly paralleling the analysis of
RNPS on Z.

Furthermore, at B 1 ( d ) the expected extinction time is finite.

Similar results for the contact process on Td include B 1 ( d ) < B 2 ( d ) <
B 3 ( d ) = B 4 ( d ) for all d>2 [see Liggett;(7) Pemantle;(10) Stacey;(14) and

Theorem 1. (a) For d>2, B 2 ( d ) = B 3 ( d ) .
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Zhang(15)]. Theorem la states that in contrast to the contact process on Td

the uniform model has no intermediate phase characterized by weak sur-
vival for all d > 2 . This is proved in Section 2. By (b), B 1 ( d ) is asymptoti-
cally 1/ed and the bound given in (c) is asymptotically 1/2d. Parts (b) and
(c) are proved in Sections 4 and 6.2 respectively. In Section 5, we show that
B4(d) < 1/d, which is better than (c) only when d< 3. The point here is that
the 1/d bound is the analog of the upper bound that Liggett obtained for
the double parameter model and that it is easily obtained. Part (d) states
that in fact there is no intermediate phase in d=2 and identifies the exact
location of the phase transition. This is proved in Section 6.3.

The technique used to push the upper bound on B4(2) down to B1(2)
may work for general d. The remaining obstacle is to show that a certain
set of equations has a solution which is absolutely bounded by one.
A limiting version of these equations yields a partial differential equation.
This PDE does in fact have a solution which is absolutely bounded by one.

Theorem 2. For d>3 , let A*: Rd
+ -> R be defined by

Then A*(x1,..., xd) is symmetric in the variables x2,..., xd, absolutely bounded
by one, and a solution to

The analysis of the PDE which is presented in Section 7 may be of
independent interest. Firstly, the PDE relates values of the function and its
derivatives at distinct (not necessarily close) points in the positive quadrant.
Furthermore, simple inspection of the PDE does not suggest a particular
form for a candidate solution. Therefore, some strategy must be implemented
in order to find the solution exhibited in Theorem 2.

Theorem 2 suggests that the next conjecture holds. The conjecture
implies that the uniform model undergoes exactly one phase transition on
all homogeneous trees.

Conjecture 1. For d> 3, B 4 ( d ) = ( 1 / d ) ( ( d - 1 ) / d ) d ~ 1 .



2. THE SURVIVAL PHASE

In this section, we study the model when B > B 2 ( d ) . As a consequence
of connectedness and attractiveness, it turns out that B 2 ( d ) = B 3 ( d ) . Hence,
there is no intermediate phase which is characterized by weak survival. As
a consequence of attractiveness and homogeneity of the tree, weak survival
does not occur above the local survival threshold. Combining these two
statements, if the process survives, then it survives locally. Since the upper
invariant measure is simply D1; homogeneity of the graph and attractiveness
also imply that survival together with complete convergence is a monotone
increasing property of the birth parameter.

First, Theorem 1a is proved. Then, techniques used by Salzano and
Schonmann(12) for the contact process are applied to show that weak sur-
vival does not occur above the local survival threshold for the uniform
model. Finally, survival together with complete convergence is equated to
a property which is immediately recognizable as monotone increasing in B.

Proof of Theorem 1a. It suffices to show that P(C t =PVt)>0
implies that P(0 E Ct for unbounded t )>0. Let Bd={x E Td: ||x-xi||<
||0 — x||} u 0 where x1,..., xd+1 denote the d+ 1 nearest neighbors of the
root O. By rotational symmetry,
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Using the fact that the uniform model is an attractive spin system and that
D0 is positively correlated [see Liggett,(5) Ch. II, Thm. 2.14],

Since Ct is connected, P(0 E C0 t)>P(Bd i I C0 =P, Bdj I C0t = P). There-
fore, the assumption that P(C0s = PVs) > 0 implies that P(0 E C0t) is bounded
away from 0. Hence, P(0 E C0s for unbounded s)>0). T

Remark 1. A slight modification of this proof works for the double
parameter model. There connectedness of the single parameter model is
replaced by connectedness of g(C).

Salzano and Schonmann(12) proved that weak survival does not occur
for the contact process on homogeneous graphs in the local survival phase.
The properties of the contact process which their proof uses are that it is
translation invariant, strong Markov, and attractive. Therefore, the prob-
ability of weak survival is zero above the local survival threshold for any



A Reversible Nearest Particle System on the Homogeneous Tree 223

translation invariant, attractive strong Markov process on a homogeneous
graph G taking values in {0, 1}G. In particular, when (B > B 3 ( d )

for any finite initial configuration A.
Here is the main idea behind their proof. Let Xt be an attractive,

strong Markov process taking values in {0, 1}G. They make the observa-
tion that local survival is almost surely equivalent to the event that for
every n E N there exists a finite time Tn such that the process contains a
(fully occupied) ball of radius n centered at the origin. Using this fact, they
prove that P(0 E XA

t for unbounded t )>0, implies that

where B ( 0 , n ) denotes the ball of radius n centered at the origin. On the
event that the process survives, a ball of size n must become occupied
somewhere. By the strong Markov property, the process can be restarted
at this random time. Homogeneity of the graph and (2.2) imply that the
probability of weak survival tends to zero as n tends to infinity. For a com-
plete proof, see Salzano and Schonmann,(12) Thm. 2(i). These ideas also
lead to a proof of Lemma 1.

Lemma 1. For B > B 2 (d ) , complete convergence holds if and only if

In particular, if P(C0
t=P Vt) >0 and complete convergence holds at B*,

then the same is true for all B>B*.

Proof. First assume that P(C0
t = P Vt) > 0 and that complete con-

vergence holds. Since the upper invariant measure is D1, limt->I P(0 E Ct
B(0,n))

= P(CB(0 ,n )
t=PVt). This together with (2.1) and (2.2), gives the if direc-

tion of the implication.
Assuming that limn->I lim inft->I P(0 E CB(0,n)

t) = 1, it is immediate
that P(C0

t = PVt )>0 . Given finite A S Td, let Tn = i n f { t : B ( 0 , n) S CA
t }.

For s < t,
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where the final inequality follows from the strong Markov property and
attractiveness. Therefore, for all s E R+ and n E N,

Recall the Salzano and Schonmann(12) observation that limn->I lims->I

P ( T n < s ) = P(0 E CA
t for unbounded t). This together with (2.1) implies

that

Since P(O E C A
t ) < P ( C A

s = P Vs<t ) , it follows that lim supt->I P(O E CA
t)

< P(CA
t = P Vt). Thus,

It follows that for all finite B S Td, limt->I P(B S CA
t | CA

t=P Vt) = 1
which completes the proof. T

3. REDUCTION TO A SINGLE BRANCH

It will be convenient to analyze the behavior of the uniform model on a
single branch Bd of Td. Recall that Bd={x E Td: | | x - x i | |< ||O-x||} u O
where x1,...,xd+1 denote the d+ 1 nearest neighbors of the root O. Take
Bd = Bd

1 and consider the initial configuration C0 = (T d \B d ) u O. By con-
nectedness, Ct S C0 for all t>0. Therefore, it suffices to keep track of the
intersection with Bd, namely At = Ct I Bd. The Markov chain At is
irreducible with state space Cd= {finite, connected A S Bd containing O}
and rates q(A,B). For A E cd, say that x E A is a leaf if x=O and
|{y E A : | | x — y|| = 1}| = 1. Denote the set of all vertices in A which are
leaves by DA. Make the convention that the cardinality of A is the number
of vertices in A\O, i.e., |A| = |{x : x E A\O}|. Since

for all x E Bd such that ||x — A|| = 1, A, is reversible with respect to the
measure P(A) = B|A|. The connection between the behavior of the finite
interacting particle system and the Markov chain At is outlined in
Theorem 3.
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Theorem 3. (a) If ( A t ) t > 0 is positive recurrent, then E 0 ( T ) < I.

(b) If ( A t ) t > 0 is transient, then B > B 4 ( d ) .

Proof. Let Et denote the product of d +1 independent copies of At

with initial state { O } . Paste together the d+1 roots, one on top of the
other, and locate the roots at the origin of Td. By this correspondence,
the product chain is equal in distribution to a uniform model on Td with
death at O suppressed. Let CO

t denote the uniform model on Td with initial
state O. By attractiveness, we can couple CO

t and Et such that

Furthermore, for any initial configuration A containing O we can couple
CA

t and Et such that

where R = i n f { t : O E CA
t} (see Liggett,(5) Ch. III, Sect. 1).

The positive recurrence of At is equivalent to positive recurrence of Et.
Let T0 = 0. For i> 1, set T'i_1 = inf{t > Ti_1 : Et = { O } } and Ti = inf {t>
T'i_1 : Et= { O } } . Thus Ti denotes the time at which the product chain
makes its ith visit to {O}. Let N = min{n:CO = P}. By the strong
Markov property and (3.1), N is geometric with parameter p = P(CO = P).
Therefore,

where the final equality is an application of Wald's Lemma, establishing (a).
Assume At is transient. As before, xl i=1,...,d+1 denote the d+1

nearest neighbors of the origin. Let S = inf{s: Et S {O,x1,..., xd + 1} for all
t > s } . Since At is transient, P ( S < I ) = 1. By (3.2),

for any initial configuration A containing O and u > 0 such that
P ( S < u } > 0 . Since {O E CA

t for all t < u } and {S<u} are increasing events,
Ct is an attractive spin system, and DA is positively correlated,
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(see Liggett,(5) Ch. II, Cor. 2.21). Thus,

By bound (3.3) and Lemma 1, it suffices to show that

If the origin becomes vacant at some time t < u, then there exists a time
s<u such that CB(O,n)

s I B
d

i = {O} for at least d indices. Since ( d n -1 ) /
( d - 1 ) is the number of vertices in B(O, n) I Bd\{O},

It follows that P(Bs< u N CB(O,n)
s I B

d
i = {O} for at least d indices) ->0 as n

tends to infinity. Therefore,

Letting « tend to infinity completes the proof. T

Remark 2. The positive recurrence of At is in fact equivalent to finite
expected extinction time of the uniform models. In order to prove this, one
would construct the shape chain, a Markov chain on the finite subsets of
Td where isomorphic sets are identified and which has a transition from the
empty set to the singleton at rate ft. See Liggett(6) for the construction of
the shape chain for the double parameter uniform models. The following
string of equivalences proves the assertion: positive recurrence of At is
equivalent to positive recurrence of Et, which is equivalent to positive
recurrence of the shape chain, which is equivalent to finite expected extinc-
tion time. The only statement which needs proof is the equivalence of
positive recurrence of Et and the shape chain. Given the construction of the
shape chain, verifying that the reversible measure of the shape chain
is summable if and only if the reversible measure of the product chain is
summable proves the assertion.

4. THE FINITE EXPECTED EXTINCTION TIME THRESHOLD

By Theorem 3 and the remark following ifs proof, the positive
recurrence threshold for the Markov chain At defined in Section 3 agrees
with B 1 ( d ) . In this section, we compute the positive recurrence threshold
for At and thereby compute B 1 ( d ) .
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Proof of Theorem 1b. It suffices to show that A, is positive recurrent
if and only if B < ( 1 / d ) ( ( d — 1 ) / d ) ( d - 1 ) . Since At is reversible with respect to
the measure P ( . ) , positive recurrence is equivalent to the summability of
the series

where cn is the number of A E cd such that |A| =n. The unique set of car-
dinality zero is {O} so that c0 = 1. For n > 1, the following recursion holds:

where the sum is taken over all d-tuples in Nd such that k1+ ... +kd =
n-1.To see this, note that n>1 implies that x1, the nearest neighbor of
the root O, is in the set; otherwise, the set would be disconnected from O.
Given that both O and x1 are in the set, there are n-1 additional vertices
in the set. Regarding x1 as the root of d distinct copies of Bd, choose
(k 1 , . . . ,k d ) in Nd such that Zdi=1Ki = n-1 and place ki+1 vertices
(including X1) on the ith copy of Bd. The number of distinct arrangements
of ki+ 1 vertices on Bd is cki, which proves (4.2).

Multiplying (4.2) by Bn-1 and taking the sum from n= 1 to I gives

Let p ( y , B ) = B y d - y + 1 . If C ( B ) < I , then p(C(B), B) = 0. For each B>0,
p(., B) is a strictly convex function on R+ with unique minimum at
( B d ) ( 1 - d ) There exists a y E R+ such that p ( y , B ) = 0 if and only if
p ( ( B d ) ( 1 - d ) , B ) < 0 . Furthermore, p ( ( B d ) ( 1 - d ) , B ) < 0 if and only if B<
( 1 / d ) ( ( d - 1 ) / d ) ( d - 1 ) , establishing the only if part.

Multiplying (4.2) by Bn-1 and summing from n = 1 to N gives

where CN(B) denotes the partial sum to the Nth term. Assume B <
( 1 / d ) ( ( d - 1 ) / d ) ( d - 1 ) and let y1(B) <y2(B) denote the two positive roots of
p ( . , B ) . By inequality (4.4), p ( C N ( B ) , B ) >0. Therefore, CN(B) E (0, y 1 ( B ) )
U ( y 2 ( B ) , I). At B = ( 1 / d ) ( ( d - 1 ) / d ) ( d - 1 ) , y2(B)>1. As B decreases to 0,



y2(/?) increases to infinity, while CN((3) tends to 1. Hence, the statement
that CN(p)e(y2(P), oo) for some ft^(l/d)((d- l)/d)(d~l} contradicts the
continuity of CN(ft}. Therefore, CN(p)e(0, y^/J)) for all p ^ ( 1 / d ) x
( ( d - \ ) / d ) ( d ~ 1 ) and for all NeN. Let N tend to infinity to obtain

We choose the root with the negative sign since lim^_,0 C(y9) = 1. Computing
the power series for C(fi) centered at 0 shows that cn is in fact the nth
Catalan number. By Stirling's formula,

which gives an alternate proof of summability up to and including 1/4 in
case d = 2.

The technique used to compute cn in case d = 2 becomes complicated
and eventually breaks down. At d = 5, the Galois group is the entire sym-
metric group and therefore the roots are no longer computable by radicals
However, a simple combinatorial argument can be used to compute cn for
all d < 2 . Consider the correspondence

C(/?<y 1 ( /0<ox n

It is well known in the Combinatorics literature that in case d = 2, the
unique solution to the recursion (4.2) is the Catalan numbers, i.e.,

which is given by mapping a set A of size n to the set B of size dn + 1
obtained by adding all vertices within distance one of A. The number of
Ae^dn+i with ( d - 1 ) n + 1 leaves is known to be ( ^ ) l ( ( d — 1 ) n + 1) (see
Puha(11) for a proof). Therefore,

Again, an application of Stirling provides the desired summability.

Solving (4.3) for C(/J), gives
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5. THE COMPLETE CONVERGENCE THRESHOLD:
AN EASY BOUND

If the total birth rate at a leaf is greater than the death rate, the
boundary of the occupied set should have a net drift outward. Further-
more, it seems reasonable to expect this drift out at the boundary to force
the occupied set to expand in all directions resulting in total occupation of
the tree. We formalize this intuition and obtain an easy bound on B 4 ( d ) .

Theorem 4. For d > 2 , B 4 ( d ) <1/d.

Proof, By Theorem 3, it suffices to show that At is transient for
B> 1/d. Modify the rates q(A, B) by suppressing all births at neighbors of
nonleaves. To be precise, let Ld = {A E cd : A has exactly one leaf} u {O}
and for A, B E cd define

Let L, denote the Markov chain with state space Ld and rates {q(A, B)}.
If A1 E Ld, A2 E cd, A1S A2, x E A1, and y N A2, then

Therefore, we can couple Lt and At such that Lt S At for all t>0. Conse-
quently, if Lt is transient, then so is At. Since |Lt| is a birth and death
chain with birth rate dB and death rate one, Lt is transient for B > 1/d. T

The positive recurrence and easy transience bounds of Theorem la
and Theorem 4 are the analogs of the lower and upper bounds

given by Liggett(6) for the two parameter uniform model. To see this, mul-
tiply by G and let G decrease to 0. The technique used here to compute the
positive recurrence threshold is almost the same as that used by Liggett to
compute the lower bound for the double parameter uniform model.
However, Liggett used a more sophisticated technique to obtain the upper
bound which involved the Dirichlet principle and a notion that he called
monotonicity. Essentially, he used these tools to restrict attention to the
evolution of an embedded line process. Unfortunately, the simple coupling
argument given here does not extend to the double parameter model.
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6. THE COMPLETE CONVERGENCE THRESHOLD:
IMPROVED BOUNDS

For reversible Markov chains, there is a very nice characterization of
transience in terms of flows. A flow is a collection of real numbers corre-
sponding to ordered pairs of states of the chain. Lyons(9) showed that the
existence of a flow with certain properties is equivalent to transience. We
exploit his result in order to prove that the chain A, is transient for certain
values of B.

In Section 6.1, a method of constructing flows with certain properties
for the Markov chain At is described. In sections 6.2 and 6.3, particular
examples of this construction are investigated. The first example leads to a
nontrivial bound on B 4 ( d ) and proof of Theorem 1c. The second leads to
a proof that B4(2) < 1/4 and thereby a proof of Theorem 1d.

6.1. A General Strategy for Proving Transience

The purpose of this section is to outline a method for constructing
flows which have special properties. We begin with the definition of a flow
and the statement of the Lyons criterion. Then, we construct a class of
flows which are guaranteed to satisfy all except the final condition of the
Lyons criterion. Thus the problem of transience is reduced to exploring
particular instances of the construction and determining for which values B
the final condition holds.

Definition 1. Given a Markov chain with state space S, a flow on S
is a collection of real numbers, or weights, {w(x, y)} indexed by S x S.

Theorem 5 (Lyons Criterion). Given a continuous time irreducible
reversible Markov chain Xt with state space S, transition rates q(x, y), and
reversible measure P, transience of Xt is equivalent to the existence of a
flow {w(x, y)} on S which satisfies the following three conditions:

(i) Anti-Symmetry: For all x, y E S, w(x, y) = —w(y, x).

(ii) Incompressibility: There exists a x0ES such that



A Reversible Nearest Particle System on the Homogeneous Tree 231

(iii) Finite Kinetic Energy:

where, by convention, 0/0 = 0 and a/0 = I when a > 0.

Returning to the Markov chain At, a method for constructing flows
on cd which satisfy (i) and (ii) of the Lyons' criterion is outlined. Given
a collection of weights {w(A, B ) } , let

be the net flow into A (from below). Given A E cd, denote the neighbors of
A which contain A by N d ( A ) . For A E cd, say that r ( A , . ) is a routing vector
if the support of r ( A , . ) is contained in N d ( A ) and Z{B:B E Nd(A)} r(A, B ) = 1 .
Note that r ( A , . ) is not required to be nonnegative. Given a collection of
routing vectors, construct the flow recursively:

(1) Set f ({O}) = l.

(2) If f ( A ) is defined for all |A| <n, for each B such that |B| =n set

for all A such that |A|<n, where it is understood that
f(A)r(A,B)=0 when |A| = |B|=n. Using (6.4), f(B) is now
defined by (6.3) for each B such that |B| =n.

(3) For A, B E cd such that |A| > |B|, set w(A, B) = -w(B, A).

Denote the collection {w(A, B)} by F. Property (3) guarantees that F
satisfies the anti-symmetry condition of the Lyons criterion. By construc-
tion, Z A w ( { O } , A ) = w ( { O } , { O , X 1 } ) = 1. Take B = { O } and combine
(6.3) and (6.4) to obtain
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Since w(B,A) = 0 for all A such that A E N d ( B } and B E N d ( A ) , (6.5)
proves incompressibility. This proves Proposition 1.

Proposition 1. Specifying a collection of routing vectors determines
an anti-symmetric, incompressible flow.

6.2. The Uniformly Routed Flow

With this general method of constructing flows on cd, we attempt to
a construct a flow which proves the transience of A, for B> (d— 1 ) d - 1 / d d .
Using the fact that P ( A ) q(A, B) =Bmax(|A|,|B|), the kinetic energy series is

where cd
n= {A E cd : |A |=n} . Since B appears in the denominator, it is

natural to try to maximize the radius of convergence by minimizing the
coefficients. As a first attempt, fix A E cd

n and

The solution to this minimization problem is to set

In this case, the routing vectors are nonnegative. Let h(n) = ZAE cd
n f

2(A).
If r(A, B) is defined by (6.6), then

By Theorems 5 and 3,



Theorem 1c will be a consequence of obtaining bounds on the limiting
behavior of the sequence h(n) 1 / n .

The first thing to note is that f can be computed exactly (see the next
lemma). However, we will not be able to compute h explicitly. Instead,
using the expression for f, h is expressed as a ratio. The goal is to prove
that the sequence h(n) is bounded above and below by sequences for which
the associated power series have the same radius of convergence. Therefore,
determining the radius of convergence of k ( F ) will be equivalent to deter-
mining the radius of convergence for a power series with coefficients equal
to either the upper or lower bound. The bounds are chosen so that the
numerators agree with the numerators of h(n) . The reason for choosing the
bounds this way is to exploit the fact that the numerators of h(n) satisfy
a nice recursion. By choosing the denominator of the lower bound
appropriately, the numerator recursion will guarantee that the lower bound
satisfies a related recursion. The fact that the lower bound satisfies this
related recursion allows one to obtain bounds on the radius of convergence
of the power series with coefficients which agree with the lower bound.

We begin by finding an explicit expression for f. Then a combinatorial
lemma is stated. As a consequence of this lemma, the numerator recursion
for the sequence h(n) is obtained. Next, the sequences which bound h(n)
are introduced. Finally, bounds on the radius of convergence of the power
series with coefficients which agree with the lower bound are obtained for
d > 2 . This bound is an improvement over the easy transience bound of 1/d
if and only if d>4.

Definition 2. An increasing path from {O} to A in cd is a collection
{B i }

| A |
i = 0 of sets in cd such that B0 = { O } , B|A| = A, and Bi+1 E N d ( B i ) for

i = 0,..., |A | - 1. Let N(A) be the number of paths which increase from {O}
to A.

Lemma 2. If r(A, B) is defined by (6.6), then for A such that
|A |=n>1 ,

A Reversible Nearest Particle System on the Homogeneous Tree 233

Proof. If |A| = 1, then A = { O , x 1 } . Since r({O}, { O , x 1 } ) = 1, (6.3)
gives f({O, X 1 } ) = 1 as desired. Assume that the assertion holds for |A| <n.
If |A|=n, then, by (6.3) and (6.4),
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Lemma 3. For n > l , there exists a one-to-one correspondence
between cd

n and the disjoint union U(j1, ,jd) cd
j1x ... x cd

jd, where the union
runs over all d-tuples in Nd with j1+ ... + jd = n — 1, such that under this
correspondence

Proof, Let {y1,..., yd} denote the nearest neighbors of x1 in Bd. Set
Bd

1i= {y: ||yi- y||<||X1- y||} u x1 and Ai= A I Bd
1i. Since Bd

1l=Bd for
1<i<d, A <-> (A1 , . . . , Ad). Equation (6.9) is an immediate consequence of
this correspondence. T

Squaring (6.9),

for A E cd such that |A|>1. For n E N, let Nn = ZAEc d
n N 2 (A) . Summing

(6.9) over all ordered d-tuples (A 1 , . . . ,A d ) E cd x...x cd such that
|A1| + ...+|Ad| =n -1 gives

where the sums runs over all d-tuples in Nd with j1+ ... + jd = n-1. By
definition of h (n ) , Lemma 2, and definition of Nn,
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If we could solve recursion (6.10), then we would be able to compute h(n)
exactly. We pursue an alternate strategy and use (6.10) to obtain informa-
tion about the asymptotic behavior of h(n). For n>1,

Set l(0) = 1 and u(0) = 1. For n > 1, set

Then

Furthermore, for n>1, u(n) = ( d - 1 ) 2 n 2 l ( n ) so that

Combining (6.11) and (6.12) proves the next proposition.

Proposition 2. lim supn->I h (n ) 1 / n = lim supn->I l ( n ) 1 / n .

Proposition 3. For n > 1,

where the sum runs over all d-tuples in Nd with j1 + ... +jd = n-1.

Proof. Divide (6.10) by (d- 1)2n n!2. T

Finally, solving (6.13) is equivalent to solving a modified recursion.
Suppose that l(0) = 1 and for n > 1, l(n) satisfies

where the sum runs over all d-tuples in Nd with j1 + ... +jd = n-1. Then
l ( n ) = l ( n ) / ( d - 1)2n satisfies (6.13). Therefore, obtaining bounds on the
solution of (6.14) gives bounds on the solution of (6.13).

Proof, Divide (6.10) by (d- 1)2nn!2. n
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Theorem 6. For n>1,

Proof of Theorem 1c. By Theorem 6, the relationship between solu-
tions of (6.13) and (6.14), Proposition 2, and inequality (6.7), B 4 ( d ) <
d / ( 2 ( d - 1 ) 2 ) . T

Theorem 6 is proved by induction. In order to execute the induction
step, the following lemma is needed. This lemma is a special case of a well
known expansion of the binomial coefficient ( k + n - 1

n ) with k = 2.

Lemma 4. For any positive integer n,

where T (n , j) is the set of all ordered partitions of n of into j parts and yi

is the ith element in the partition G.

Proof. Writing — log(1 — x) as a power series centered at 0 gives

Let k E N. For |x| < 1,

Taking k = 2 completes the proof. n
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Proof of Theorem 6. By (6.14), l(1) = 1 which verifies the assertion
for n = 1. Assume that the assertion holds for m<n. We have

since l(m i) = 1 when mi = 0. By assumption,

By Lemma 4,

A simple computation provides evidence that for large d the bound
given in Theorem 1c is close to the best that this flow achieves. Thus, not
so much is lost in the inequality in Theorem 6. Let An be the Markov chain
on cd with transition probabilities defined by (6.6) and let ln be the num-
ber of leaves in the set An. By conditioning on ln-1, one gets a recursion
which leads to

In other words, the typical set that the uniform flow visits has a death rate
which is roughly the birth rate divided by ( 2 d - 1 ) B . In d = 2, these sets
are not only typical, but rather uniform flow visits them with very high
probability:
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and therefore,

For small d the bound given in Theorem 1c is much worse than 1 / ( 2 d - 1 ) .
However, by handling the cases d = 2 and d = 3 separately, the bound
induced on l(n) by Theorem 6 can be improved to 14(n + l)(1/3)n+2 and
(1 /5 ) n - 1 respectively. We conjecture that 1 / ( 2 d - 1 ) is the optimal bound
for this flow. Numerical evidence suggests that one cannot hope for much
better.

6.3. The Uniformly Distributed Flow

In the previous section, the main goal became to determine the
asymptotic behavior of h(n) . This resulted from the fact that
ZB E Nd(A) r2(A, B) = 1 / ( ( d - 1 ) n + 1), and therefore, the presence of this
factor did not affect the radius of convergence of k(F). If we require the
routing vectors to be absolutely bounded by b, then

Thus, under the assumption that routing vector are bounded, the
asymptotic behavior of h(n) governs the radius of convergence of k ( F ) .

As a consequence of the construction, ZA E cd
n f(A) = 1. Hence, we seek

to minimize a quadratic function subject to a linear constraint. If this linear
constraint were the only constraint, then the solution would be to partition
1 into equal parts, i.e., distribute the fluid uniformly over sets of size n.
However, we require the the flow to be incompressible which introduces
many additional constraints. Notice that if a flow exists with bounded
routing vectors such that f(A) = l/c |A|, then by (6.16),

This series is summable for B > ( 1 / d } ( ( d - 1 ) / d ) ( d - 1 ) since, except for the
factor of ( d - 1 ) n + 1, each term is the exact reciprocal of the terms
appearing in (4.1). Due the these observations, we attempt to construct a
uniformly distributed flow with bounded routing vectors.

Suppose that one has constructed routing vectors bounded by b such
that f ( A ) = 1/c|A|, for all A E cd such that |A|<n. Exploit the fact that |A|<n
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is in one-to-one correspondence with U(k1,...,kd) cd
k1 x ... x cd

kd where the
union runs over all d-tuples in Nd such that k1 + ... + kd = n-1 and use
the routing vectors { r ( A , . ) } | A | < n to construct the routing vectors for cd

n.
More specifically, associate to each set a preliminary routing vector A(A , i)
which determines the amount of fluid routed to branch i in set A. In par-
ticular, let A ( A , .) be such that Zd

i=1 A(A, i)= 1. If A corresponds to
(A1,..., Ad), B corresponds to (B1,..., Bd), B E N d ( A ) and A i = B i , then let

Since

it follows that r ( A , . ) is a routing vector. Furthermore, if | A ( A , i ) | < 1, then
r(A, B) is bounded by b. Therefore, in order to specify a collection of bounded
routing vectors, it suffices to specify a collection A ( A , i ) of preliminary routing
vectors which are absolutely bounded by one.

A priori, one might expect A ( A , . ) to depend on the entire structure of A.
However, it is reasonable to expect dependence only on the cardinalities
of Aj for 1< j< d. One explanation for this is that the distribution which
we are trying to achieve depends only on cardinality. A more practical
reason for making this assumption is that it simplifies the set of equations
that A ( A , . ) must satisfy by allowing a second application of the induction
hypothesis. For k E Nd such that k1+ ... +kd = n-1, let A i ( n ; k ) be a
preliminary routing vector in a set A when |A|=n and |A j |=k j for
1<j<d. Thus, the function Ai(n; k) must satisfy

for all n> 1 and k E Nd such that k1+ ... +kd = n -1. Also, require that
for all permutations a of d objects Az(i)(n; z (k) ) = Ai(n; k) where a acts on
a d-vector in the usual manner by permuting the indices. This condition
simply states that the preliminary routing vectors are invariant under
automorphisms of Bd. For all A E cd

n and B E N d ( A ) , set
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where |A|=n and |Aj| =kj for all 1 < j < d . The goal is to choose Ai(n; .)
such that the flow is distributed uniformly over sets of size n + 1.

For B E cd
n+1, set ki =|B i|. Make the convention that c-1 = 0. The net

flow into B is given by

where ei is the d-vector with all entries equal 0 except the ith which is 1.

Lemma 5. If, for each n > 1 , there exists A i (n ; . ) satisfying (6.19) and

for all k E Nd such that k1 + ... + kd = n, then B1(d) = B 4 (d ) .

Proof. Set r ( { O } , {O, x 1 } ) = 1. For |A|>1, define r(A, .) recursively
by (6,20). By induction, | r (A , . ) | < 1. By (6.18), r ( A , . ) makes up a collec-
tion of routing vectors. By (6.21) and (6.22), f ( A ) = 1/c |A| for all A E cd.
Therefore, (6.17) implies finite kinetic energy for B > ( 1 / d ) ( ( d - 1 ) / d ) d - 1 .
By Theorems 3 and 5, B 4 ( d ) < ( 1 / d ) ( ( d - 1 ) / d ) d - 1 . Combining this with
Theorem 1b and the fact that B1(d) <B4(d) completes the proof. T

Restrict attention to the case d = 2. Set R ( j ) = C j / c j + 1 . By the assump-
tion that A i(n;.) is invariant under automorphisms of Bd, it suffices to
define A1(n; k) for all n>1 and for all k E N2 such that k1 + k2 = n - 1 . If,
for all n>1, A i ( n ; . ) is a solution of
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where 0 < j <n - 1, then Lemma 5 implies that B1(2 )= B4( 2). By substituting
1 — A1(n; (j, n - 1 - j ) ) for A2(n; (j, n - j - 1 ) ) in the final equation, solving
(6.23) equivalent to solving

for 1 < j < n - 1 and n > 1.

Theorem 7. The unique solution of (6.24) is

In particular, B 1 ( 2 ) = B 4 (2) .

Proof. Using the fact that c j + 1 = ( 4 j + 2 ) c j / ( j + 2 ) , it follows that
R ( j ) = (j + 2)/(4j + 2) and therefore

Take j = n-1 in the righthand side of (6.25) to verify the base case.
Assume that (6.25) holds for all m such that j < m < n - 1 . Then

which proves the result. n



Lemma 5 reduces proving Conjecture 1 to proving that a solution to
(6.19) and (6.22) exists for all d> 3. The main obstacle in proving a solution
exists for d > 3 is that, disregarding the absolute bound of one requirement,
the solution to (6.19) and (6.22) is not unique (see Puha(11)). Therefore,
verifying that a suitably bounded solution exists for all n E N becomes more
challenging. The next section is devoted to providing heuristic support for
the existence of a solution to (6.19) and (6.22) for all d>3.

7. THE LIMITING VERSION

Equations (6.19) and (6.22) make up a collection of linear algebra
problems indexed by N. Each problem has a distinct set of variables.
Therefore, a solution to the n = 5 problem need not relate to a solution of
the n = 6 problem. However, given the similarity of the equations it seems
reasonable to conclude that there exists a collection of solutions which are
consistent in some sense. Any reasonable consistency condition will imply
that the limit as n tends to infinity of Ai(n; .) exists,

We investigate the limiting version of the equations (6.19) and (6.22).
Under the limiting operation, Eq. (6.22) becomes a first order partial dif-
ferential equation. It turns out that for all d > 2 , the limiting version of
(6.19) and (6.22) has a solution which is absolutely bounded by one. The
existence of such a solution provides evidence that solutions to (6.19) and
(6.22) exist which are absolutely bounded by one. Proving that such solu-
tions exists, in turn proves Conjecture 1.

Here, a study of the limiting version of (6.19) and (6.22) is presented
as support for the conjecture. In Section 7.1, the continuous problem is
derived. In Section 7.2, the method used to find the solution is explained.
The main idea is to assume that the solution can be expressed as a series
and to devise a method for computing the coefficients. As one might expect,
this approach becomes excessively complicated in general. However, the
approach does provide an answer for small d and an educated guess for
the general problem. An independent proof of Theorem 2 presented in
Section 7.3.

7.1. The Derivation of the Continuous Problem

Assume that {A(n, . )}n E N is a set of solutions to the discrete problem
such that
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exists where A*n(x1,..., xd) = A1(Lnx1 L + ... +Lnxd L+ 1; Lnx1 L,..., Lnxd L).
By definition, A*(x1,..., xd) is symmetric in the variables (x2,...,xd).
Furthermore, A*(x1,..., xd) = A*(ax1,..., axd) for all a > 0. Therefore,

for some symmetric function v defined on the d-1 dimensional simplex
Sd-1. The limit of (31) is given by

Letting si = x i / (x 1 + ... + xd) for 1<i<d and expressing (7.3) in terms of N,

If one simply takes the limit of Eq. (6.22), it collapses into (7.3).
Therefore, first order information must be considered. By computing the
first two coefficients of the power series centered at infinity,

Expressing (6.22) in terms of a* gives,

Asymptotically, (7.5) is given by

As previously mentioned, first order information must be retained. There-
fore, (7.6) will be multiplied by n. In order to prevent both sides from
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tending to infinity, (6.19) is subtracted from (7.6) before multiplication
by n. This gives

Therefore, in the limit, (6.22) becomes

On the d-1 dimensional simplex, let

Multiplying (7.7) by 2 (x 1 + ... +xd)/3 and expressing (7.7) in terms
of TdN,

For w: Sd-1 -> R, let Ldw: DSd -> R be defined by

Equations (7.4) and (7.8) can be expressed in terms of Ld as

respectively. The next proposition which summarizes the statement of the
continuous problem has been proved.

Proposition 4. If A*: Rd
+ -> R is symmetric in the variables x2,...,xd

and satisfies (7.3) and (7.7), then N: Sd-1 -> R defined by (7.2) is a sym-
metric solution of (7.10). Conversely, if N : S d - 1 ->R is symmetric and
satisfies (7.10), then A*: Rd

+ -> R defined by (7.2) is symmetric in the
variables x2,..., xd and satisfies (7.3) and (7.7).
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7.2. The Method for Finding a Solution

The method used to actually find the solution is presented in this
section. The strategy is to express a candidate solution as a series with
unknown coefficients and to use the PDE to determine the coefficients. The
approach is demonstrated in d=3 and only the main ideas are presented
here. For a more detailed account, see Puna. (1 ) In section 7.3, a complete
proof of Theorem 2 is given which is independent of the approach taken
here.

The goal is to find N (s , t) such that

For any such N (s , t), N(s, t) = u(s, t) + 1/3 for some u(s, t) which satisfies

A collection of symmetric polynomials which satisfy (7.11) is given by

where m, n E N. Consider u(s, t) = ZI
n=0 ZI

m=0 Wn,mun,m(s,t) where
Wn,m E R. The goal is to choose Wn,m such that T3(u+ l /3)(s , t ) - 1/3
satisfies (7.11).

Since T 3 u n , m ( s , t ) is not expressible in terms of the collection
{ u n , m ( s , t } n , m E N, some symmetric polynomials are added to the collection.
Let

The collection {u n , m (s , t), p n , m ( s , t ) } n , m E N spans the set of all symmetric
polynomials in two variables. It turns out that
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Also,

Recall that the objective is to choose Tn,m such that T3(u +1 /3 )
(s,t) - 1/3 satisfies (7.11). In other words, the coefficient of pn ,m(s, t) in
T3(u + 1 / 3 ) ( s , t ) - 1 / 3 should be zero. If K m , n denotes the coefficient of
p n , m (s , t ) in T3(u+ 1/3) - 1/3, it follows that

Setting K(n, m) = 0 implies that

By summing the series which defines u(s, t),
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If one generalizes this approach and repeats the procedure for d = 4,
the solution is given by

Comparing the d =3 and d = 4 solutions suggests a pattern. Since com-
puting the coefficients is complicated in general, it is more convenient to
verify that the candidate solution satisfies (7.10).

7.3. The Solution to the Continuous Problem

In this section, the pattern suggested by (7.12) and (7.13) is shown to
satisfy (7.10). The proof itself heavily exploits the structure of the solution
and thus reveals the properties of the solution which enable it to satisfy
(7.10).

Definition 3. For u : S d - 1 -> R, u is homogeneous with respect to
Ld if Ldu = 0. Denote the set of all symmetric functions which are
homogeneous with respect to Ld by :Hd.

Proposition 5 is an immediate consequence of Definition 3.

Proposition 5. If u E Hd and Td(u + 1 / d ) - 1/d E Hd, then N = u + 1/d
is a symmetric solution of (7.10).

Let C be the projection of Sd-1 onto S2 defined by
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Given a function f: S2-> R, let Sdf be the symmetrized extension of f to
Sd-1 defined by

It is immediate that Sd is a linear operator and that Sdf is symmetric. The
class of functions that will be considered here are all symmetrized exten-
sions. In particular, we consider u E Hd such that u = Sdf some f: S2-> R.
By restricting attention to this class, we can view our solution as a sum of
functions of two variables. There is a simple criterion for functions
f: S2-> R which implies that Sdf E Hd.

Definition 4. Given f: S2 ->R, we say that f is cancelative if
f ( s , t ) + f(1 -s-t,t) = 0 for all (s, t) E S2.

Proposition 6. If f: S2-> R is cancelative, then Sdf E Hd.

Proof. By definition, S1 + ... +sd=1. Thus, for 1 < i<j <d,

where Ci denotes the ith coordinate of S. Combining (7.15) with the fact
that f is cancelative implies that

By definition,
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By switching the order of the second pair of summations, (7.16) implies
that

completing the proof. T

Two examples of cancelative functions are

These two examples will be the main building blocks for the solution to
(7.10). Note that if either example is multiplied by a function which
depends only on the variable t, then the resulting function is also can-
celative. In particular, if

then Sdf and Sdg are elements of Hd. Furthermore, Sd(adf + bdg) is an
element of Hd for any real constants ad and bd. Our goal is to choose ad

and bd such that Td(adf + bdg+ 1 / d ) - 1/d E Hd.

Proposition 7. For all f : S 2 - > R , T d ( f o S ( s 1 , . . . , s d - 1 ) ) = ( T 3 f ) o
(S(s 1 , . . . , s d - 1 ) . In particular, TdSdf = SdT3f.

Proof. By the chain rule,
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Therefore,

completing the proof. T

As a consequence of Proposition 7 and linearity of both Sd and Td,

Therefore, it is enough to compute T3f and T3g. In light of Proposition 6,
the next objective is to collect all cancelative parts of T3f and T3g.

Proposition 8. If f and g are defined by (7.17), then

Proof, We have

The first term in (7.21) is f ( s , t). By combining the second term in (7.21)
with (7.21) and adding and subtracting t /(1- t), another copy of f(s, t) can
be obtained. The final term in (7.21) is simply f(s, t) scaled by a function
which depends only on the variable t. Thus,
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Observing that

gives

establishing (7.18).
For g(s, t),

In a similar manner as with f(s, t), combine the second and third terms in
(7.22) with the first and second terms in (7.23) respectively to obtain

Since

(7.19) holds. T

Proposition 8 decomposes T3f and T3g into cancelative and noncan-
celative components. Denote the noncancelative terms by
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Recall our ultimate goal, to choose ad and bd such that TdSd(adf + b d g )
+ T d ( 1 / d ) - 1/d is an element of Hd. Since

and

it s natural to choose ad such that SdadE2 cancels T d ( 1 / d ) — 1/d. In par-
ticular, ad = 1 / ( ( d - 2 ) d). With only E1 and E3 remaining, bd is chosen such
that adE1 + bdE3 is cancelative. Setting bd = 8ad gives

which is cancelative.

Theorem 8. Let h(s, t) = f ( s , t) + 8g(s , t) where f and g are defined
by (7.17). Then Sdadh + 1/d is a symmetric solution to (7.10).

Proof. Since h(s, t) is cancelative, Proposition 6 implies that
Sdadh E Hd. By Proposition 8 and equation (7.25),

Since h(s, t) is cancelative, Propositions 6, 7, and (7.24) imply that
Td(Sdadh + 1 / d ) - 1/d is an element of Hd. By Proposition 5, the assertion
holds. T

Theorem 9. Sdadh + 1/d is absolutely bounded by one.

Proof. We have

Therefore, the maximum and minimum occur at
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respectively. Since

and

It follows that

Since Sdh has d-1 terms of the form h0 S,

which is bounded by one provided d> 4. Since S3h(s, t) = h(s, t) + h(t, s), it
is possible to use the better bound of

Thus,

as desired. T

Theorem 2 follows from Theorems 8, 9, and Proposition 8.
Presumably, a suitably bounded solution to the discrete problem exists
which has a structure analogous to the structure of the solution to the par-
tial differential equation. Our attempts to exploit this structure have failed.
Nevertheless, we believe that (6.19) and (6.22) has a solution for all n E N.
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