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THE FLUID LIMIT OF A HEAVILY LOADED PROCESSOR
SHARING QUEUE

BY H. CHRISTIAN GROMOLL, AMBER L. PUHA1 AND RUTH J. WILLIAMS2
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Consider a single server queue with renewal arrivals and i.i.d. service
times in which the server operates under a processor sharing service
discipline. To describe the evolution of this system, we use a measure valued
process that keeps track of the residual service times of all jobs in the system
at any given time. From this measure valued process, one can recover the
traditional performance processes, including queue length and workload. We
propose and study a critical fluid model (or formal law of large numbers
approximation) for a heavily loaded processor sharing queue. The fluid model
state descriptor is a measure valued function whose dynamics are governed
by a nonlinear integral equation. Under mild assumptions, we prove existence
and uniqueness of fluid model solutions. Furthermore, we justify the critical
fluid model as a first order approximation of a heavily loaded processor
sharing queue by showing that, when appropriately rescaled, the measure
valued processes corresponding to a sequence of heavily loaded processor
sharing queues converge in distribution to a limit that is almost surely a fluid
model solution.

1. Introduction. Consider a single server with an infinite capacity buffer to
which jobs arrive according to a delayed renewal process. The ith such arrival
requires an amount of processing time that is the ith member of a sequence of
independent and identically distributed strictly positive random variables. The
server, rather than providing service to just one job at a time, operates under
a processor sharing discipline; that is, it works simultaneously on all jobs currently
in the system, providing an equal fraction of its attention to each. Thus, at any
given time that the system is nonempty, each job in the system is being processed
at a rate that is the reciprocal of the number of jobs in the system. When the server
has fulfilled a given job’s service requirement, the job exits the system. This system
is known as a processor sharing queue.

The processor sharing service discipline can be viewed as an idealization of
a round-robin or time-sharing protocol used in computer and communication
systems. Although there is a considerable literature on processor sharing queues
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(see [21] for a survey up through 1987), much of that work assumes either Poisson
arrivals or exponential service times. Indeed, there are few papers on the GI/GI/1
processor sharing queue. The most general results known to us are those of Jean-
Marie and Robert [15] for transient (overloaded) queues, Baccelli and Towsley [1]
who establish a positive correlation type of property for the delays incurred
by customers, Grishechkin [12] who obtains asymptotics of the steady state
distribution as the traffic intensity approaches one, and Chen, Kella and Weiss [6]
who consider a fluid approximation for the queue length process. However, there is
no heavy traffic diffusion approximation for the queue length process of a GI/GI/1
processor sharing queue, in this literature. (Note that since the workload process
in a GI/GI/1 queue is the same for all nonidling service disciplines, the heavy
traffic approximation for the workload process under a processor sharing service
discipline is the same as the well-known approximation under a FIFO (first-in–
first-out) service discipline [14]. However, this simple relationship does not hold
for the queue length process.)

In this paper, we study the fluid (or law of large numbers) approximation for
a measure valued process that keeps track of all of the residual service times of the
jobs in a heavily loaded processor sharing queue. Our main motivation for studying
this so-called critical fluid model is the role that it plays in establishing a heavy
traffic diffusion approximation for the queue length process in a processor sharing
queue. Indeed, building on the results of this paper, and the asymptotic behavior of
critical fluid model solutions studied in Puha and Williams [19], Gromoll [13]
has established a heavy traffic diffusion approximation for the aforementioned
measure valued process, which implies a diffusion approximation for the queue
length process. This work for processor sharing queues represents an extrapolation
of the well understood relationship between fluid and diffusion limits for open
multiclass queueing networks with a HL (head-of-the-line) service discipline,
which we briefly summarize here. In [5], Bramson showed that if the critical fluid
model for an open multiclass HL-network has a certain asymptotic property, then
state space collapse holds. Roughly speaking, state space collapse implies that
in the heavy traffic diffusion limit, the queue length process can be recovered
from the workload process by an appropriate lifting map. In a companion work
to [5], Williams [20] showed that state space collapse, plus an algebraic condition
on the queueing model data, is sufficient to imply a heavy traffic diffusion
approximation for an open multiclass network with a HL service discipline. To
illustrate this modular approach, Bramson [5] and Williams [20] applied their
results, together with prior results of Bramson [3, 4] on the asymptotic behavior
of associated critical fluid models, to obtain new heavy traffic diffusion limit
theorems for FIFO networks of Kelly type and for networks with a HLPPS (head-
of-the-line proportional processor sharing) service discipline. Processor sharing,
as considered in this paper, is not a HL service discipline. However, an analogue
of the modular approach of [5, 20] is developed for a processor sharing queue in
Gromoll [13]. In order to apply this approach to establish a heavy traffic diffusion
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approximation for a processor sharing queue, one must first study a suitable critical
fluid model, as we do in this paper and in Puha and Williams [19]. In this paper,
we focus on the existence, uniqueness and approximation properties of the critical
fluid model, and in [19] we study the asymptotics of critical fluid model solutions
as time goes to infinity.

The work presented in [5] indicates that it is important to use a sufficiently
detailed state descriptor in formulating a fluid model. For example, in FIFO
networks, one needs to keep track of the order in which customers arrive to
each queue. In a processor sharing queue, each job in the system at time t has
an associated residual service time. This is given by the total amount of service
originally requested by the job minus the total amount of service it has received
up to time t . It is necessary to keep track of all of the residual service times in
order to adequately describe the state of the system at any given time. In fact, it is
natural to use a measure valued process {µ(t) : t ≥ 0} such that the measure µ(t)
at time t is a finite, nonnegative Borel measure on R+ = [0,∞) that puts a unit of
mass at the residual service time of each job in the system at time t . From such
a measure valued process, one can recover information about the performance of
the system. For example, the number of jobs in the system, or queue length, at
time t is obtained by integrating µ(t) against the function that is identically one.
This measure valued process will be the object of central interest in this paper,
and we refer to it as the state descriptor. This terminology is slightly disingenuous
since the measure is not necessarily a Markovian state descriptor. In particular, it
does not include the residual interarrival time—the time remaining until the next
job arrives to the system. Since the residual interarrival time will play no role
in our analysis, we choose not to include it in the state descriptor. Section 2.3
contains a precise description of the state descriptor µ(·). The process µ(·) was
previously used by Grishechkin [12], along with other measure valued descriptors,
in his heavy traffic analysis of the steady state distribution of a processor sharing
queue. More recently, Doytchinov, Lehoczky and Shreve [8] used a measure valued
descriptor in the context of a queueing system with deadlines.

Our critical fluid model has two parameters, α ∈ (0,∞) and a Borel probability
measure ν on R+ that has a finite first moment and that does not charge the
origin. These parameters are limits of parameters in the queueing system, where
α corresponds to the rate at which jobs arrive to the system and the probability
measure ν corresponds to the distribution of the i.i.d. service times for those jobs.
The qualifier critical refers to the fact that we are interested in the limiting regime
where the service and arrival rates are equal, that is,

α =
(∫

R+
xν(dx)

)−1

.

The model is defined by considering a formal limit µ̄(·) of the measure valued
state descriptor under law of large numbers scaling. This limit takes values in MF ,
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the set of finite, nonnegative Borel measures on R+, which is endowed with
the topology of weak convergence. For ζ ∈ MF , the real valued projection of
ζ associated with a bounded, real valued, Borel measurable function g defined
on R+ is denoted by 〈g, ζ 〉 = ∫

R+ g(x)ζ(dx). The fluid model equations describe
the dynamics of the real valued projections of µ̄(·) over the class of functions

C = {g ∈C1
b(R+) :g(0)= 0, g′(0)= 0

}
.

Here, C1
b(R+) denotes the space of once continuously differentiable real valued

functions defined on R+ that, together with their first derivatives, are bounded
on R+. The requirement that g and g′ vanish at the origin is imposed to avoid
singular behavior of 〈g, µ̄(·)〉 associated with mass in the fluid model abruptly
disappearing as it reaches the origin. The latter corresponds to jobs in the
queueing system abruptly departing when residual service times reach zero. A fluid
model solution associated with the critical data (α, ν) is a continuous function
µ̄ : [0,∞)→MF such that µ̄(t) does not charge the origin for all t ≥ 0, and which
for each g ∈ C satisfies

〈g, µ̄(t)〉 = 〈g, µ̄(0)〉 −
∫ t

0

〈g′, µ̄(s)〉
〈1, µ̄(s)〉 ds + αt〈g, ν〉

for all t prior to the time that µ̄(·) first reaches the zero measure. Once µ̄(·) reaches
the zero measure, it is identically equal to the zero measure thereafter. We will in
fact show that under mild assumptions, a fluid model solution with µ̄(0) �= 0 does
not reach the zero measure in finite time. However, in formulating the notion of
a fluid model solution, we have not assumed this a priori. (For a more detailed
account, see Section 3.1.)

A different fluid approximation for a processor sharing queue, which focussed
on approximating the queue length process, was proposed in [6]. The idea there
was to fluid scale the busy time equation (see equation (4) in [6]), and to pass to a
limit to obtain equation (31) in [6]. However, passage to the limit in the proof of
Theorem 16 in [6] seems to implicitly assume that all limit points are deterministic,
or in other words, that all possible limit points are the same. Our approach in fact
provides a proof that this assumption is valid under the mild conditions identified
here (cf. Theorem 3.2).

This paper contains two main results, Theorems 3.1 and 3.2. Theorem 3.1
states that under mild assumptions on the initial condition, a fluid model solution
exists and is unique (see Section 3 for the definition of a fluid model solution).
Theorem 3.2 says that, again under mild conditions, the measure valued state
descriptors for a sequence of heavily loaded processor sharing queues under law of
large numbers scaling converge in distribution to a measure valued process, which
we refer to as the fluid limit. Moreover, sample paths of the fluid limit are almost
surely fluid model solutions. Hence it is appropriate to regard the critical fluid
model as a first order approximation of a heavily loaded processor sharing queue.
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The paper is organized as follows. Section 2 is devoted to a precise description
of the dynamics of a processor sharing queue. Two important quantities are
introduced there, namely, the cumulative service process and the measure valued
state descriptor. In addition, an equation that the state descriptor satisfies is
presented in Section 2.3. This is used to motivate the definition of the critical fluid
model, which is contained in Section 3. That section also contains the precise
statements of the two main theorems, Theorems 3.1 and 3.2. Section 4 contains
the proof of Theorem 3.1 and Section 5 contains the proof of Theorem 3.2. The
proof of uniqueness for Theorem 3.1 and the proof of tightness, which is used to
prove Theorem 3.2, benefited from some ideas in Chen, Kella and Weiss [6] (cf.
Lemmas 4.4 and 5.4 below). The proof of tightness also benefited from some ideas
of Grishechkin [12] (cf. the proof of Lemma 5.3 below).

The following notation will be used throughout the paper. Let R denote the set
of real numbers. For a, b ∈R, we write a ∨ b for the maximum of a and b, a ∧ b
for the minimum of a and b, a+ and a− for the positive and negative parts of a,
respectively, �a� for the largest integer less than or equal to a, and �a� for the
smallest integer greater than or equal to a. The nonnegative real numbers [0,∞)
will be denoted by R+. For a function g : R+ → R, let ‖g‖∞ = supx∈R+ |g(x)|
and ‖g‖K = supx∈[0,K] |g(x)| for eachK ≥ 0. We define the positive and negative
parts of such a function g by g+(x)= g(x) ∨ 0 and g−(x)= (−g)(x) ∨ 0 for all
x ∈R+.

Recall that MF is the set of finite, nonnegative Borel measures on R+. Consider
ζ ∈ MF and a Borel measurable function g : R+ → R which is integrable with
respect to ζ . We define 〈g, ζ 〉 = ∫

R+ g(x)ζ(dx). Our equations will involve
expressions of the form

∫
[a,∞) g(x − a)ζ(dx), for a > 0. To ease notation

throughout, we write this as 〈g(· − a), ζ 〉, making the convention that such a g
is always extended to be identically zero on (−∞,0). As previously noted, MF

is endowed with the topology of weak convergence of measures; that is, for
ζn, ζ ∈ MF , n = 1,2, . . . , we have ζn

w→ ζ if and only if 〈g, ζn〉 → 〈g, ζ 〉 as
n→∞, for all g : R+ → R that are bounded and continuous. With this topology,
MF is a Polish space (cf. [17]). We denote the zero measure in MF by 0 and the
measure in MF that puts one unit of mass at the point x ∈R+ by δx .

For a set B ⊂ R+, we denote the indicator of the set B by 1B . We also define
the following real valued functions on R+: χ(x)= x for x ∈R+, and ϕ(x)= 1/x
for x ∈ (0,∞) with ϕ(0) = 0. For a topological space A, denote by Cb(A) the
set of continuous, bounded, real valued functions defined on A. In addition, for an
interval I ⊂ R, C1

b(I ) is the set of once continuously differentiable, real valued
functions defined on I that together with their first derivatives are bounded on I .
For g ∈C1

b(I ) we write g′(x)= d
dx
g(x), x ∈ I .

We will use “⇒” to denote convergence in distribution of random elements of
a metric space. Following Billingsley [2], we will use P and E, respectively, to
denote the probability measure and expectation operator associated with whatever
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space the relevant random element is defined on. All stochastic processes used in
this paper will be assumed to have paths that are right continuous with finite left
limits (r.c.l.l.). For a Polish space S, we denote byD([0,∞),S) the space of r.c.l.l.
functions from [0,∞) into S, and we endow this space with the usual Skorohod
J1-topology (cf. [10]).

2. The processor sharing queue. Here we describe the processor sharing
queueing system more precisely. The primitive stochastic processes and initial
condition for our model are introduced in Section 2.1. The system dynamics and
performance processes are described in Section 2.2. Here an important quantity
for the processor sharing queue is introduced, namely the cumulative service
process. In Section 2.3, we introduce the measure valued state descriptor and a
dynamic equation associated with its evolution in time. The state descriptor and the
associated dynamic equation play a fundamental role in motivating the definition
of the critical fluid model and in justifying it as a first order approximation of the
heavily loaded processor sharing queue.

2.1. Primitive processes and initial condition. The exogenous arrival process
E(·) is a rate α delayed renewal process. The arrival rate α is assumed to be strictly
positive and finite. Jump times of this process correspond to times at which jobs
enter the system. This renewal process is defined from a sequence of interarrival
times {ui}∞i=1, where u1 denotes the time at which the first job to arrive after time
zero enters the system and ui , i ≥ 2, denotes the time between the arrival of the
(i − 1)st and the ith jobs to enter the system after time zero. Frequently, we will
simply refer to the ith job to enter the system after time zero as the ith arrival.
Thus, Ui =∑i

j=1 uj is the time at which the ith arrival enters the system, which
is interpreted as zero if i = 0, and E(t) = sup{i ≥ 0 :Ui ≤ t} is the number of
exogenous arrivals by time t . We assume that the sequence {ui}∞i=2 is an i.i.d.
sequence of nonnegative random variables with E[u2] = 1/α <∞. The random
variable u1 is associated with an initial delay preceding the first arrival and is
assumed to be strictly positive with finite mean and to be independent of {ui}∞i=2,
but otherwise can have an arbitrary distribution. We refer to u1 as the initial
residual interarrival time. A typical situation in which this relaxed assumption
on u1 comes into play is when one would like to apply the results of this paper
to a processor sharing queue that has been operating for some time in the past.
Although the interarrival times of such a queue may be governed by an i.i.d.
sequence, the time at which one begins to observe the system (t = 0) is arbitrary,
and so in general does not coincide with the arrival of a job to the system. As a
result, the residual interarrival time u1 will in general have a different distribution
from the subsequent interarrival times {ui}∞i=2 and, in particular, may depend on
the initial state of the system.

The service process, {V (i), i = 1,2, . . .}, is such that V (i) records the
total amount of service required from the server by the first i arrivals. More
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precisely, {vi}∞i=1 denotes an i.i.d. sequence of strictly positive random variables
with common distribution given by a Borel probability measure ν on R+. We
interpret vi as the amount of processing time that the ith arrival requires from
the server. The vi ’s are known as the service times and ν is known as the service
time distribution. Then, V (i) =∑i

j=1 vj , which is taken to be zero if i = 0. It
is assumed that v1 > 0 a.s. and E[v1] <∞. In terms of ν, these assumptions are
expressed by saying that ν does not charge the origin (ν({0})= 0) and 〈χ, ν〉<∞.
Recall that χ(x)= x for all x ∈R+.

The two processes E(·) and V (·) are called the primitive processes since they
provide the primitive stochastic inputs for the model. Note that E(·) and V (·) are
not assumed to be independent of one another. An independence assumption is not
necessary since our interest is in asymptotic behavior under fluid scaling where
only laws of large numbers come into play.

The initial condition specifies Z(0), the number of jobs present in the system at
time zero, and the service requirement for each of these jobs. HereZ(0) is assumed
to be a nonnegative, integer valued random variable with finite mean. The service
times for these jobs are taken to be the first Z(0) elements of a sequence {ṽj }∞j=1
of strictly positive random variables. The job present in the system at time zero
requiring ṽj units of service time will be referred to as the j th initial job. It is

assumed that the initial workload has a finite mean; that is, that E[∑Z(0)
j=1 ṽj ]<∞.

The random variables Z(0) and {ṽj }∞j=1 are not assumed to be independent of one
another, nor are they assumed to be independent of the primitive processes.

2.2. Performance processes and descriptive equations. As a processor sharing
queue evolves in time, certain r.c.l.l. stochastic processes are used to track
important measures of performance for the system such as queue length, workload
and idle time. Let Z(t) denote the queue length at time t , which is the total number
of jobs in the system at time t . Also, let W(t) denote the (immediate) workload
at time t , which is the total amount of time that the server must work in order
to satisfy the remaining service requirement of each job present in the system at
time t , ignoring future arrivals. Finally, let Y (t) denote the cumulative amount
of time that the server has been idle up to time t . The processes W(·), Y (·), and
Z(·) are called performance processes. These processes satisfy a set of descriptive
equations, which we now present.

We begin with the familiar equations for the workload W(·) and idle time Y (·)
processes, which are valid for any nonidling service discipline, including processor
sharing. For t ≥ 0, we have

W(0)=
Z(0)∑
j=1

ṽj ,(2.1)

W(t)=W(0)+ V (E(t))− t + Y (t),(2.2)

Y (t)= sup
{(
W(0)+ V (E(s))− s)− : 0≤ s ≤ t}.(2.3)
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Recall that E(t) is the total number of arrivals up to time t . Thus,W(0)+V (E(t))
is the total service time required by the initial jobs plus that required by the jobs
arriving in (0, t]. Since the server completes t − Y (t) units of work in [0, t],
(2.2) represents the remaining work in the system at time t .

A set of equations that describes the queue length processZ(·) under a processor
sharing service discipline is the following. For t ≥ 0,

Z(t)= Z(0)+E(t)−D(t),(2.4)

D(t)=
Z(0)∑
j=1

1{ṽj≤S(t)} +
E(t)∑
i=1

1{vi≤S(t)−S(Ui )},(2.5)

S(t)=
∫ t

0
ϕ
(
Z(s)

)
ds.(2.6)

Recall that ϕ(x)= 1/x if x > 0, and ϕ(0)= 0. The process D(·) is the departure
process, where D(t) represents the total number of jobs that have departed from
the system by time t . The process S(·) is known as the cumulative service process,
and S(t) represents the cumulative amount of service time allocated per job up to
time t .

The cumulative service process S(·) will play a particularly important role in
our analysis. We will find it convenient to have notation for the increments of this
process. For t, h≥ 0, define the cumulative service per job in [t, t + h] by

St,t+h = S(t + h)− S(t)=
∫ t+h
t

ϕ
(
Z(s)

)
ds.(2.7)

Then the ith arrival receives an amount of service equal to vi ∧ SUi,t by time t ,
for t ≥ Ui . Define the residual service times at time t ≥ 0 of the ith arrival,
i ∈ {1, . . . ,E(t)}, and of the j th initial job, j ∈ {1, . . . ,Z(0)}, by

Ri(t)= (vi − SUi,t )+ and R̃j (t)= (ṽj − S(t))+,(2.8)

respectively. The quantity Ri(t) [resp. R̃j (t)] represents the remaining amount of
service time required by the ith arrival (resp. j th initial job) at time t . When a
residual service time reaches zero, the associated job departs the system. Notice
that Ri(t) does not generally correspond to the amount of time that the ith arrival
will stay in the system beyond time t , since this job will receive service at less than
full rate whenever there are other jobs in the system. The quantity Ri(t) should
rather be thought of as the amount of work for the system, measured in units of
remaining required service time, embodied in the ith arrival at time t . A similar
interpretation holds for R̃j (t) as well. In fact, it can be shown that the workload at
time t ≥ 0 can be rewritten as

W(t)=
Z(0)∑
j=1

R̃j (t)+
E(t)∑
i=1

Ri(t).(2.9)
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2.3. Measure valued state descriptor. A major difficulty in analyzing the
performance of a processor sharing queue lies in the fact that it could experience
large drops in its queue length process during an interval [t, t + h], which cannot
be predicted if the only information known about the state of the system at time t is
the queue length Z(t) and the workload W(t). For instance, consider a processor
sharing queue which, at a particular time t , has a large number of “low time” jobs
in its buffer, all having very small residual service times, and a small number of
“high time” jobs, all having very large residual service times. The workload W(t)
in this example could be made arbitrarily large, by increasing the residual service
times of the high time jobs. The queue length Z(t) is almost entirely embodied in
the low time jobs, all of which will depart in the near future (say, by time t+h) due
to the simultaneous processing of jobs. In this situation, the imminent drop in the
queue length during [t, t+h]would not be evident from Z(t) andW(t), since both
could be arbitrarily large. Thus, while these two processes are very useful measures
of the overall performance of the system, they do not encode enough information
about the state of the system to facilitate a proper analysis of its dynamics. We
will require a richer description of the state of the system. As the above example
illustrates, this description should include information about the residual service
times of all jobs in the system at any given time. The use of such a state descriptor
will be essential to our analysis.

An effective way to keep track of the residual service times, as well as the
aforementioned performance processes and the initial condition, is to use a certain
measure valued process which we call the state descriptor. For each t ≥ 0, let µ(t)
be the random, finite, Borel measure on R+ = [0,∞) given by

µ(t)=
Z(0)∑
j=1

1(0,∞)
(
R̃j (t)

)
δ
R̃j (t)

+
E(t)∑
i=1

1(0,∞)
(
Ri(t)

)
δRi(t).(2.10)

Recall that δx is the measure that puts a single unit of mass at x for x ∈R+. Thus,
the random measure µ(t) has a unit of mass at the residual service time of each
job that is in the system at time t , or in other words, for each 0< a < b <∞, the
measure that µ(t) assigns to the interval (a, b) is the number of residual service
times that lie in (a, b) at time t . The indicator functions in the above definition
serve to eliminate jobs with zero residual service times from the description of
the system state, since such jobs have departed the system. The queue length and
workload at time t can be obtained from µ(t) by integrating against an appropriate
function. In particular, for t ≥ 0,

Z(t)= 〈1,µ(t)〉 and W(t)= 〈χ,µ(t)〉.(2.11)

Recall that χ(x) = x for all x ∈ R+. Furthermore, given the primitive processes
and the initial condition, one can recover D(·) and S(·) from Z(·), and Y (·) from
W(·). Notice that the information given by the initial condition is described by the
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random initial measureµ(0). In particular, our assumptions on the initial condition
imply that

E[Z(0)] = E[〈1,µ(0)〉]<∞ and E[W(0)] = E[〈χ,µ(0)〉]<∞.(2.12)

The assumptions on the initial condition together with the processor sharing
dynamics imply that the random measure µ(t) takes values in the space MF of
finite, nonnegative Borel measures on R+. It is straightforward to see that µ(·)
is a measure valued stochastic process with sample paths in the Polish space
D([0,∞),MF ) of functions from [0,∞) into MF that are right continuous with
finite left limits. The space D([0,∞),MF ) is endowed with the Skorohod J1-
topology (cf. [10]).

An equivalent formulation of (2.10) uses the real valued processes 〈g,µ(·)〉,
for a suitable class of functions g : R+ → R. In fact, (2.10) holds for all t ≥ 0
if and only if the following holds for each bounded, Borel measurable function
g : R+→R,

〈g,µ(t)〉 =
Z(0)∑
j=1

(1(0,∞)g)
(
R̃j (t)

)+ E(t)∑
i=1

(1(0,∞)g)
(
Ri(t)

)
, t ≥ 0.(2.13)

This set of equations (one for each g), or equivalently, equation (2.10), will be the
starting point for our analysis of processor sharing queues.

3. The critical fluid model. The purpose of this section is twofold, to
introduce the critical fluid model and to state our results. We begin with a precise
description of a fluid model solution for critical data (α, ν) in Section 3.1. This is
followed in Section 3.2 by the statement of Theorem 3.1, which gives existence
and uniqueness of fluid model solutions under mild conditions. Next our attention
turns to justifying the critical fluid model as a first order approximation of a
processor sharing queue operating in heavy traffic. In order to do that, we describe,
in Section 3.3, a sequence of heavily loaded processor sharing queues under fluid
scaling. This prepares us to state our fluid limit result, Theorem 3.2, in Section 3.4.

3.1. Definition of fluid model solutions. The critical fluid model is formulated
by considering a formal limit µ̄(·) of the measure valued state descriptors under
law of large numbers scaling. The dynamics of µ̄(·) are prescribed through a
set of equations satisfied by the real valued projections 〈g, µ̄(t)〉, t ≥ 0, for a
suitable class of functions g. To avoid singular behavior associated with the abrupt
departure of mass at the origin, this class is chosen so that the functions together
with their first derivatives vanish at the origin. Specifically, we work with the class

C = {g ∈C1
b(R+) :g(0)= 0, g′(0)= 0

}
.(3.1)

Motivated by the fact that the measure valued state descriptors do not charge the
origin, we require the same of any fluid model solution [see (2) below]. Using this
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condition, we are able to prove existence and uniqueness of fluid model solutions
under mild assumptions, despite the restriction to functions that vanish at the
origin.

The critical fluid model depends on two parameters. The first is α ∈ (0,∞),
which corresponds to the renewal arrival rate to the queue. The second is a Borel
probability measure ν on R+ satisfying ν({0}) = 0, which corresponds to the
distribution of the service times of arrivals to the queue. It is assumed that

α〈χ, ν〉 = 1,(3.2)

which simply means that the arrival and service rates coincide, or equivalently that
the model is critical. The pair (α, ν) is referred to as the data of the critical fluid
model, or simply the critical data.

A fluid model solution for the critical data (α, ν) is a function µ̄ : [0,∞)→MF

such that the following four conditions hold:

(1) µ̄(·) is continuous.
(2) 〈1{0}, µ̄(t)〉 = 0 for all t ≥ 0.
(3) For all g ∈ C, µ̄(·) satisfies

〈g, µ̄(t)〉 = 〈g, µ̄(0)〉 −
∫ t

0

〈g′, µ̄(s)〉
〈1, µ̄(s)〉 ds + αt〈g, ν〉,(3.3)

for all t < t∗ = inf{s ≥ 0 : µ̄(s)= 0}.
(4) For all t ≥ t∗, µ̄(t)= 0.

The equations in (3.3) (one for each g ∈ C) are called the fluid model equations.
Condition (1) is natural in light of Theorem 3.2 below, which implies that,

under mild assumptions on the limiting initial condition, fluid limit points are a.s.
continuous. Note that continuity of µ̄(·) is equivalent to continuity of 〈g, µ̄(·)〉
for all g ∈ Cb(R+). The fact that the measures are precluded from charging the
origin in condition (2) stems from the fact that, at the level of the queueing
system, zero residual service times correspond to jobs that have departed the
system. The fluid model equations in condition (3) will be derived from (2.13)
by passing to the fluid limit. As we will see in Section 5.3, this requires some
work. However, it is possible to provide an informal explanation of (3.3). We
interpret the second and third terms on the right side of (3.3) as accounting for
changes to the measure valued function µ̄(·) due to the fluid dynamics. On fluid
scale, mass is being added to the system at a constant rate of α and is being
distributed according to the service time probability measure ν. Thus, the third
term describes changes resulting purely from arrivals. The second term describes
changes resulting from the service dynamics. Recall that the server works at rate
one at any given time that the system is nonempty. Since the server provides an
equal fraction of its attention to each unit of mass in the system, the service rate
per unit of mass in the system equals the reciprocal of the total mass in the system.
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Thus, the server shifts the mass towards the origin at rate 1/〈1, µ̄(s)〉 at time s.
Consequently, 〈g(·−h/〈1, µ̄(s)〉), µ̄(s)〉 approximates the portion of 〈g, µ̄(s+h)〉
resulting from the service dynamics over the time interval [s, s + h]. In particular,
(〈g(· − h/〈1, µ̄(s)〉), µ̄(s)〉 − 〈g(·), µ̄(s)〉)/h approximates the average rate of
change due to the service dynamics. Since, as h tends to zero, this difference
quotient approaches the integrand of the second term on the right side of (3.3),
this explains the form of that term. Condition (4) simply reflects the fact that the
data is critical; that is, the arrival and service rates are balanced, and therefore mass
shouldn’t build up when starting from a zero initial measure.

We will find it convenient to refer to a fluid model solution for the critical data
(α, ν) as simply a fluid model solution with the understanding that the data under
consideration always satisfies (3.2). Given a fluid model solution µ̄(·), the fluid
analogue of the queue length is defined by

Z̄(t)= 〈1, µ̄(t)〉 for all t ≥ 0.(3.4)

For obvious reasons, Z̄(t) is referred to as the total mass at time t . Due to the
assumed continuity of fluid model solutions, Z̄(·) is continuous. Also, the fluid
analogue of the cumulative service per job is defined by

S̄(t)=
∫ t

0
ϕ
(
Z̄(s)

)
ds for all t ≥ 0.(3.5)

Since Z̄(·) is strictly positive and continuous for t ∈ [0, t∗), S̄(·) ∈C1([0, t∗)) with

S̄′(t)= d

dt
S̄(t)= 1

Z̄(t)
for all t ∈ [0, t∗).(3.6)

Finally, the fluid analogue of the workload process is given by

W̄ (t)= 〈χ, µ̄(t)〉 for all t ≥ 0.(3.7)

Since χ is not bounded, W̄ (t) cannot be assumed to be continuous (or even finite)
for an arbitrary fluid model solution. However, we will show that, under a mild
assumption on the initial condition, W̄ (·) is in fact constant, although this constant
equals infinity if 〈χ, µ̄(0)〉 =∞ (cf. Theorem 3.1).

3.2. Existence and uniqueness result.

THEOREM 3.1. Let ξ ∈ MF be such that ξ({x}) = 0 for all x ∈ R+. A fluid
model solution µ̄(·) for the critical data (α, ν) with µ̄(0) = ξ exists, is unique
and satisfies W̄ (t) = 〈χ, ξ 〉 for all t ≥ 0. In particular, if ξ �= 0, then the
associated fluid model solution never reaches the zero measure (t∗ =∞) and thus
satisfies (3.3) for all time.
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Notice that Theorem 3.1 asserts that the fluid analogue of the workload process
is constant and equals its initial value. This holds even if the initial measure ξ
has an infinite first moment, in which case W̄ (t) = ∞ for all t ≥ 0. The “no
atoms” condition on ξ is readily explained by the assumed continuity of fluid
model solutions. Indeed, if ξ were to have an atom at x ∈R+, then since all of the
mass initially at x departs the system simultaneously, the total mass would have a
downward jump (i.e., a discontinuity) at that departure time. Section 4.1 contains
the proof that there is at most one fluid model solution µ̄(·) such that µ̄(0) = ξ ,
that the workload is constant and that t∗ = ∞ if ξ �= 0. Section 4.2 contains the
proof of existence.

REMARK. Theorem 3.1 and its proof can be extended in a straightforward
manner to situations in which the fluid model data is either strictly subcritical
(α〈χ, ν〉< 1), or strictly supercritical (α〈χ, ν〉> 1) and the initial measure ξ �= 0.
In particular, for strictly subcritical data (α〈χ, ν〉 < 1) and ξ ∈ MF that has no
atoms, there is a unique µ̄ : [0,∞)→MF satisfying µ̄(0)= ξ and conditions (1)–
(4) of the definition of a fluid model solution. Moreover, t∗ = 〈χ, ξ 〉/(1−α〈χ, ν〉)
and

W̄ (t)= W̄ (0)+ (α〈χ, ν〉 − 1)t for t ∈ [0, t∗), W̄ (t)= 0 for t ∈ [t∗,∞).
In the strictly supercritical case (α〈χ, ν〉 > 1), condition (4) is inappropriate
since mass should build up from the zero initial measure. Indeed, in this case,
for ξ ∈ MF that has no atoms and satisfies ξ �= 0, there is a unique solution
µ̄ : [0,∞)→ MF satisfying conditions (1)–(3) of the definition of a fluid model
solution and t∗ = ∞ there. The case α〈χ, ν〉 > 1 and ξ = 0 is the only one for
which the result and proof of Theorem 3.1 do not immediately generalize. In a
separate paper, Puha, Stolyar and Williams [18] formulate and analyze a strictly
supercritical measure valued fluid model that characterizes the build up from the
zero initial measure.

3.3. A sequence of heavily loaded processor sharing queues. In this section,
we specify the assumptions under which the fluid limit result will be proved.
Consider a sequence of processor sharing queueing models indexed by r , where r
increases to ∞ through a sequence in (0,∞). Each model in the sequence may be
defined on a separate probability space; however we use P and E, respectively, for
the probability and expectation operator on each of these spaces. The r th model
is defined as in Section 2, except that all accompanying parameters and processes
have a superscript r appended to them. In particular, the performance processes
associated with the r th system are Wr(·), Y r(·) and Zr(·), and the state descriptor
is µr(·). Recall that [cf. (2.12)] for each r > 0 the initial condition µr(0) satisfies

E[〈1,µr(0)〉]<∞ and E[〈χ,µr(0)〉]<∞.(3.8)
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The fluid limit result concerns the behavior of processor sharing queues on
law of large numbers scale, or fluid scale. Accordingly, we define the fluid scaled
processes

Z̄r(t)= 1

r
Zr(rt),(3.9)

W̄ r(t)= 1

r
Wr(rt),(3.10)

µ̄r(t)= 1

r
µr(rt),(3.11)

Ēr(t)= 1

r
Er(rt),(3.12)

S̄rt,t+h = Srrt,r(t+h) =
∫ r(t+h)
rt

ϕ
(〈1,µr(s)〉)ds = ∫ t+h

t
ϕ
(〈1, µ̄r(s)〉)ds,(3.13)

for all t ∈ [0,∞), h≥ 0.
Let (α, ν) be critical data as in Section 3.1. In order to obtain convergence

in distribution of the fluid scaled state descriptors µ̄r(·) to a process that is
a.s. a fluid model solution for the critical data (α, ν), we impose the following
asymptotic assumptions on the sequence of processor sharing queues. For the
primitive processes, assume that as r→∞,

αr → α,(3.14)

νr
w→ ν,(3.15)

〈χ, νr〉→ 〈χ, ν〉,(3.16)

E[ur1]/r→ 0,(3.17)

E[ur2;ur2 > r]→ 0.(3.18)

Recall that by (3.2), α〈χ, ν〉 = 1. Thus, assumptions (3.14) and (3.16) guarantee
that as r → ∞, the systems become heavily loaded. Indeed if we define the
traffic intensity parameter ρr =αr〈χ, νr〉, then the assumptions imply that ρr→1
as r →∞. Assumption (3.17) implies that the initial residual interarrival time
vanishes on fluid scale. We assume (3.18) in order to provide uniform control
over the tail of the distribution of ur2, which is used to obtain a weak law
of large numbers for a triangular array (cf. Lemma A.2). In applications,
one often has a stronger condition than (3.18). For example, (3.18) holds if
lim supr→∞E[(ur2)1+ε]<∞ for some ε > 0.

For the fluid scaled initial measures, we assume that for some random
measure / taking values in MF , we have(

µ̄r (0), 〈χ, µ̄r(0)〉)⇒ (/, 〈χ,/〉) as r→∞,(3.19)
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and that / satisfies

E[〈1,/〉]<∞,(3.20)

E[〈χ,/〉]<∞,(3.21)

〈1{x},/〉 = 0 for allx ∈R+, a.s.(3.22)

In (3.19), we are assuming that the fluid scaled initial measures and their first
moments converge jointly in distribution to some limit. Since, for any g ∈Cb(R+),
0g :MF → R defined by 0g(ζ ) = 〈g, ζ 〉 is continuous, by the continuous
mapping theorem (cf. [2], Theorem 5.1), 〈g, µ̄r(0)〉 ⇒ 〈g,/〉 as r →∞. The
second component of (3.19) implies that the fluid scaled initial workload converges
in distribution, i.e., W̄ r(0)⇒ 〈χ,/〉 as r →∞. Assumptions (3.20) and (3.21)
require the total mass and first moment of / to have finite expected values.
Assumption (3.22) states that a.s./ has no atoms, which is used to prove tightness
of {µ̄r(·)}r>0 and to show that fluid limit points are continuous paths a.s. The “no
atoms” assumption will be used in the equivalent form

lim
κ↓0

P
(

sup
x∈R+

〈1[x,x+κ],/〉< ε

4

)
= 1 for all ε > 0.(3.23)

The equivalence of (3.22) and (3.23) is proved in the Appendix (cf. Lemma A.1).

3.4. Fluid limit result.

THEOREM 3.2. Consider a sequence of processor sharing queueing models
as defined in Section 3.3, satisfying assumptions (3.14)–(3.22). Then the sequence
of fluid scaled state descriptors {µ̄r(·)} converges in distribution as r →∞ to
a measure valued process µ̄2(·) that lives in MF such that µ̄2(0) is equal in
distribution to / and almost surely µ̄2(·) is a fluid model solution for the critical
data (α, ν).

We refer to the limiting process µ̄2(·) as the fluid limit of the sequence {µ̄r(·)}
of fluid scaled state descriptors. Notice that, by Theorem 3.1, once an initial
measure ξ ∈MF is specified, a fluid model solution for the critical data (α, ν) is a
deterministic path taking values in MF . Thus we see by Theorem 3.2 that although
the initial measure µ̄2(0) of the limiting process may be random [cf. (3.19)], for
each ω in some set of probability one, µ̄2(t)(ω) is determined for all t > 0 by the
initial measure µ̄2(0)(ω). Theorem 3.2 is proved in Section 5.

4. Existence and uniqueness of fluid model solutions. This section contains
the proof of Theorem 3.1 and a related result, Lemma 4.9. Before proceeding with
the proofs, it will be convenient to introduce some notation. Recall that the critical
data (α, ν) satisfies α ∈ (0,∞), ν({0}) = 0 and α〈χ, ν〉 = 1. Let F denote the



812 H. C. GROMOLL, A. L. PUHA AND R. J. WILLIAMS

cumulative distribution function associated with the probability measure ν. Since
ν does not charge the origin, F(0)= 0. The cumulative distribution function F has
associated with it an excess lifetime cumulative distribution function Fe, which is
given by Fe(x) = α

∫ x
0 (1 − F(y)) dy, x ∈ R+. In particular, Fe has probability

density function fe(x)= α(1−F(x)), x ∈R+. Here the fact that α〈χ, ν〉 = 1 was
used to simplify the form of the normalizing constant.

In Theorem 3.1, the initial measure ξ ∈ MF is assumed to have no atoms.
Denote the set of all such measures by

Mc
F =

{
ξ ∈MF : ξ({x})= 0 for all x ∈R+

}
.

Here c stands for “continuous,” which reflects the relationship between the “no
atoms” condition and the continuity of fluid model solutions. If the initial measure
ξ = 0, then clearly µ̄(·)≡ 0 is the unique fluid model solution such that µ̄(0)= ξ .
Thus, the main interest is in proving existence and uniqueness for nonzero initial
measures. For this, let

M
c,p
F = {ξ ∈Mc

F : ξ �= 0
}
.

Here p stands for positive. Given ξ ∈M
c,p
F , let

Hξ(x)=
∫ x

0
〈1(y,∞), ξ 〉dy, x ∈R+.(4.1)

As we will see in Sections 4.1 and 4.2, Hξ plays an important role in the proof
of Theorem 3.1 for ξ ∈ M

c,p
F . Since ξ has no atoms, the integrand in (4.1) is

continuous. Thus, Hξ(·) is continuously differentiable with

H ′
ξ (x)= 〈1(x,∞), ξ 〉, x ∈R+.(4.2)

The proof of Theorem 3.1 for ξ ∈ M
c,p
F takes advantage of the behavior of

solutions to certain convolution equations. In order to prepare the reader, the facts
that will be needed are briefly reviewed here. For a more detailed account, the
reader is referred to [11], Section XI.1. Given a locally bounded Borel measurable
function g : R+ → R+ and a nondecreasing, right continuous function U : R+ →
R+, let

(g ∗U)(u)=
∫
[0,u]

g(u− s) dU(s), u≥ 0.

Note that by convention the contribution to the above integral is g(u)U(0) at s = 0
whenever U(0) �= 0. For ξ ∈M

c,p
F , consider the convolution equations

M(u)=Hξ(u)+ (M ∗ Fe)(u), u≥ 0,(4.3)

N(u)=H ′
ξ (u)+ (N ∗ Fe)(u), u≥ 0.(4.4)
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Since Hξ(·) and H ′
ξ (·) are locally bounded on R+, each equation has a unique

bounded, Borel measurable solution on [0, b] for each b ∈ R+. In fact, there is an
explicit representation for these solutions in terms of the renewal function

Ue(u)=
∞∑
i=0

(F ∗i
e )(u), u≥ 0,(4.5)

where F ∗0
e (·)≡ 1 and F ∗i

e (·)= (F ∗(i−1)
e ∗ Fe)(·), i ≥ 1. Indeed,

M(u)= (Hξ ∗Ue)(u), u≥ 0,(4.6)

is the unique locally bounded solution of (4.3), and

N(u)= (H ′
ξ ∗Ue)(u), u≥ 0,(4.7)

is the unique locally bounded solution of (4.4). Observe that Ue ∈ C(R+) since
Fe ∈ C(R+). Also note that (Hξ ∗ Ue)(0) = 0. Since ξ �= 0, it is easily verified
thatHξ ∗Ue is strictly increasing and limu→∞(Hξ ∗Ue)(u)=∞. Moreover, since
Ue ∈ C(R+), Hξ ∈ C1(R+), and Hξ(0) = 0, it follows that Hξ ∗ Ue ∈ C1(R+)
with (Hξ ∗Ue)′(u)= (H ′

ξ ∗Ue)(u), u≥ 0.
We are now ready to proceed with the proofs. This section is organized in the

following manner. Section 4.1 contains a proof that for ξ ∈M
c,p
F there is at most

one fluid model solution µ̄(·) such that µ̄(0) = ξ , and that the fluid analogue of
the workload is constant for such a solution. Section 4.2 contains the proof that
for ξ ∈M

c,p
F , there exists a fluid model solution µ̄(·) such that µ̄(0)= ξ . Finally,

in Section 4.3, it is proved that the mapping from the initial measure to the fluid
model solution that it determines is measurable. (This fact is used in the proof of
convergence, to a well-defined stochastic process, in Theorem 3.2.) In fact, it will
be shown that this map restricted to M

c,p
F is continuous. For a fluid model solution

µ̄(·), the reader is reminded that the functions Z̄(·), S̄(·) and W̄ (·) are defined
by (3.4), (3.5) and (3.7), respectively.

4.1. Proof of uniqueness of fluid model solutions. Fix ξ ∈M
c,p
F . Here, we will

prove that there is at most one fluid model solution µ̄(·) with µ̄(0) = ξ and that
for such a solution the workload is constant. In order to do that, we will derive,
for t < t∗, an expression for 〈1(0,w), µ̄(t)〉, w ∈ (0,∞], in terms of S̄(·) and ξ
[see (4.14) below]. This is used to reduce the problem of proving uniqueness of
fluid model solutions to proving that t∗ =∞ and that S̄(·) is uniquely determined
by ξ . Then, we will utilize (4.14) below with w = ∞ and the assumption that
µ̄(t)({0})= 0 for all t ≥ 0 to obtain an equation for the total mass Z̄(t)= 〈1, µ̄(t)〉
of µ̄(t) for t < t∗. A key aspect of the uniqueness proof will be to perform a time
change in this equation, thereby reducing it to the convolution equation in (4.4) and
relating the time change of Z̄(·) to the solution of (4.4). Indeed, we will see that
this relationship between the time-changed Z̄(·) and the unique solution of (4.4)
forces t∗ =∞ and results in uniqueness of S̄(·), given ξ .
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Despite the intuitive nature of equation (4.14), it is not completely straightfor-
ward to derive it from (3.3). This is because in (3.3) one can only consider con-
tinuously differentiable functions that together with their first derivatives vanish
at the origin. In particular, the function g = 1(0,w) cannot be directly substituted
into (3.3) and consequently must be approximated. If one were to simply substi-
tute into (3.3) a sequence of functions in C that approximate 1(0,w), one would be
faced with the problem of controlling errors involving the first derivative, which
can be large near the origin. In order to circumvent this difficultly, we will derive a
version of (3.3) for functions that depend on both time and space [see (4.8) below].
This yields a larger set of equations satisfied by any fluid model solution. In order
to prove (4.14), we take g ∈ C and compose with a time-dependent spatial shift to
create a time-dependent function for which the integrals in (4.8) involving the first
partial derivatives cancel one another [see (4.15) and (4.16)]. The resulting equa-
tion (4.18) does not involve g′. Therefore, g ∈ C can increase to 1(0,w) in (4.18)
irrespective of the behavior of g′ near the origin, and this yields (4.14).

We begin by deriving the version of (3.3) that holds for a class of functions of
both time (denoted by [0,∞)) and space (denoted by R+). The class will be a
subset of C1

b([0,∞)× R+), the set of once continuously differentiable functions
defined on [0,∞)×R+ that together with their first partial derivatives, denoted by
fs(s, x)= ∂

∂s
f (s, x) and fx(s, x)= ∂

∂x
f (s, x), are bounded. Notice that, if µ̄(·) is

a fluid model solution such that µ̄(0)= ξ , then since ξ �= 0 and µ̄(·) is continuous,
t∗ > 0.

LEMMA 4.1. If µ̄(·) is a fluid model solution such that µ̄(0)= ξ , then for all
f ∈C1

b([0,∞)×R+) such that f (·,0)≡ 0 and fx(·,0)≡ 0, µ̄(·) satisfies

〈f (t, ·), µ̄(t)〉 = 〈f (0, ·), ξ 〉 +
∫ t

0
〈fs(s, ·), µ̄(s)〉ds

−
∫ t

0

〈fx(s, ·), µ̄(s)〉
〈1, µ̄(s)〉 ds + α

∫ t

0
〈f (s, ·), ν〉ds,

(4.8)

for all t < t∗ = inf{s : µ̄(s)= 0}.

The next proposition will be used in the proof of Lemma 4.1.

PROPOSITION 4.2. Let µ̄ : [0,∞) → MF be continuous. For each f ∈
Cb([0,∞)×R+),

t→〈f (t, ·), µ̄(t)〉
is a continuous function of t ∈ [0,∞).
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PROOF. Let f ∈ Cb([0,∞) × R+). For fixed t ∈ [0,∞) and h ∈ (−∞,∞)
such that t + h≥ 0,

|〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t)〉|
≤ |〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t + h)〉|
+ |〈f (t, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t)〉|.

(4.9)

The last term on the right side of the above converges to zero as h tends to zero
since µ̄(·) is continuous. Furthermore, by this same continuity and the fact that
µ̄(t) ∈MF , given ε > 0, there exists an M <∞, and h1 > 0 such that

〈1(M,∞), µ̄(t + h)〉< ε, h ∈ [−min(t, h1), h1].
Since f (·, ·) is uniformly continuous on [(t − h1)

+, t + h1] × [0,M], there exists
h2 ∈ (0, h1) such that |f (t +h,x)−f (t, x)| ≤ ε for all h ∈ [−min(t, h2), h2] and
x ∈ [0,M]. Therefore, for h ∈ [−min(t, h2), h2],
|〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t + h)〉| ≤ ε〈1[0,M], µ̄(t + h)〉 + 2‖f ‖∞ε

≤ ε〈1, µ̄(t + h)〉 + 2‖f ‖∞ε.
Letting h and then ε tend to zero in (4.9) and using the above estimates, we see
that the left side of (4.9) tends to zero as h tends to zero. �

PROOF OF LEMMA 4.1. Let f ∈ C1
b([0,∞) × R+) be such that f (·,0)≡ 0

and fx(·,0)≡ 0. Fix 0≤ t < t∗ and consider h∈ (−∞,∞) such that 0≤ t+h<t∗.
Then

〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t)〉
= 〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t + h)〉
+ 〈f (t, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t)〉.

(4.10)

Rewrite the first two terms on the right side of (4.10) as

〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t + h)〉 =
〈∫ t+h
t

fs(s, ·) ds, µ̄(t + h)
〉

=
〈∫ 1

0
fs(t + hv, ·) hdv, µ̄(t + h)

〉

= h
∫ 1

0
〈fs(t + hv, ·), µ̄(t + h)〉dv.

For each v ∈ [0,1], define a function f v : [0,∞) × R+ → R by f v(u, x) =
fs(t + (u − t)v, x). Then f v ∈ Cb([0,∞) × R+), and so, by Proposition 4.2,



816 H. C. GROMOLL, A. L. PUHA AND R. J. WILLIAMS

u→ 〈f v(u, ·), µ̄(u)〉 is a continuous function of u ∈ [0,∞). Moreover, f v(t +
h, ·)= fs(t + hv, ·). Therefore, for each v ∈ [0,1],

lim
h→0

〈fs(t + hv, ·), µ̄(t + h)〉 = lim
h→0

〈f v(t + h, ·), µ̄(t + h)〉 = 〈f v(t, ·), µ̄(t)〉
= 〈fs(t, ·), µ̄(t)〉.

This together with bounded convergence implies that

lim
h→0

〈f (t + h, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t + h)〉
h

=
∫ 1

0
〈fs(t, ·), µ̄(t)〉dv

= 〈fs(t, ·), µ̄(t)〉.
(4.11)

Now consider the last two terms on the right side of (4.10). Since t ∈ [0, t∗) and
h ∈ (−∞,∞) is such that t + h ∈ [0, t∗), and since f (t, ·) ∈ C, we can use (3.3)
with g(·)= f (t, ·) to obtain

〈f (t, ·), µ̄(t + h)〉 − 〈f (t, ·), µ̄(t)〉

= −
∫ t+h
t

〈fx(t, ·), µ̄(s)〉
〈1, µ̄(s)〉 ds + αh〈f (t, ·), ν〉.

(4.12)

Since µ̄(·) is assumed to be continuous and 〈1, µ̄(s)〉> 0 for s ∈ [0, t∗),

s→ 〈fx(t, ·), µ̄(s)〉
〈1, µ̄(s)〉 ,

is a continuous function of s ∈ [0, t∗). It follows that

lim
h→0

1

h

∫ t+h
t

〈fx(t, ·), µ̄(s)〉
〈1, µ̄(s)〉 ds = 〈fx(t, ·), µ̄(t)〉

〈1, µ̄(t)〉 .(4.13)

Combining (4.10), (4.11), (4.12) and (4.13), we obtain

d

dt
〈f (t, ·), µ̄(t)〉 = 〈fs(t, ·), µ̄(t)〉 − 〈fx(t, ·), µ̄(t)〉

〈1, µ̄(t)〉 + α〈f (t, ·), ν〉, t < t∗.

Since f , fs and fx are continuous and bounded, and since 1/Z̄(·) is continuous
on [0, t∗), by Proposition 4.2, each term on the right side of the above equation is
continuous for t ∈ [0, t∗). Thus, (4.8) follows. �

Next the fluid model equations for time-dependent functions, that is, (4.8), are
used to derive (4.14) below. Recall that this serves two purposes. Firstly, it reduces
proving uniqueness of µ̄(·) to proving that t∗ = ∞ and that S̄(·) is uniquely
determined by ξ . Secondly, in the proof of Lemma 4.4, (4.14) with w =∞ will be
used to show that a time change of Z̄(·) is related to the unique solution of (4.4).
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LEMMA 4.3. Suppose that µ̄(·) is a fluid model solution such that µ̄(0)= ξ .
Then for all w ∈ (0,∞],

〈1(0,w), µ̄(t)〉 = 〈1(0,w)(· − S̄(t)), ξ 〉
+ α

∫ t

0

〈
1(0,w)

(· − (S̄(t)− S̄(s))), ν〉ds,(4.14)

for all t < t∗ = inf{s : µ̄(s)= 0}.
PROOF. For t = 0, (4.14) holds trivially. Fix t such that 0< t < t∗. Consider

g ∈C1
b(R) with g(x)= 0 for all x ≤ 0. Note that g′(x)= 0 for all x ≤ 0. Let

f (s, x)= g(x − S̄(t)+ S̄(s)), s ∈ [0, t], x ∈R+.(4.15)

Since S̄(·) ∈ C1([0, t∗)) with S̄′(s) = 1/Z̄(s) for s ∈ [0, t∗), it follows that f ∈
C1
b([0, t] ×R+) and

fs(s, x)= g′(x − S̄(t)+ S̄(s))
Z̄(s)

and fx(s, x) = g′(x − S̄(t) + S̄(s)), s ∈ [0, t], x ∈ R+. Also, for s ∈ [0, t],
f (s,0)= 0 and fx(s,0)= 0 because g(x)= 0 and g′(x)= 0 for all x ≤ 0.

Fix 0 < ε < t . We wish to construct a function f ε that satisfies the conditions
in Lemma 4.1 and that closely approximates f on [0, t] ×R+. For this, choose a
cutoff function hε ∈C1

b([0,∞)) such that

hε(s)=
{

1, s ∈ [0, t − ε],
0, s ∈ [t − ε/2,∞).

Extend f to be identically equal to zero on (t,∞)×R+ and define

f ε(s, x)= f (s, x)hε(s), s ∈ [0,∞), x ∈R+.
Thus, f ε ∈ C1

b([0,∞) × R+) with f ε(·,0) ≡ 0, f εx (·,0) ≡ 0, and f ε = f on
[0, t − ε] ×R+.

Now substitute f ε into (4.8), and use the fact that f ε(s, ·)≡ f (s, ·) for 0≤ s ≤
t − ε to obtain

〈f (s, ·), µ̄(s)〉 = 〈f (0, ·), ξ 〉 +
∫ s

0

〈
g′
(· − S̄(t)+ S̄(v)), µ̄(v)〉Z̄(v)−1 dv

−
∫ s

0

〈
g′
(· − S̄(t)+ S̄(v)), µ̄(v)〉Z̄(v)−1 dv

+ α
∫ s

0

〈
g
(· − S̄(t)+ S̄(v)), ν〉dv,

(4.16)

for all s ∈ [0, t − ε], for each ε ∈ (0, t). In the expression above, the first integral
cancels the second. Since ε ∈ (0, t) was arbitrary, it follows that for all s ∈ [0, t),

〈f (s, ·), µ̄(s)〉 = 〈g(· − S̄(t)), ξ 〉+ α ∫ s

0

〈
g
(· − S̄(t)+ S̄(v)), ν〉dv.(4.17)
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We wish to let s ↑ t in (4.17). It is clear what effect that has on the right side. To
see that the left side tends to 〈g, µ̄(t)〉, note that by a minor modification of the
proof of Proposition 4.2, 〈f (s, ·), µ̄(s)〉 converges to 〈f (t, ·), µ̄(t)〉 as s increases
to t . Moreover, by the definition of f , 〈f (t, ·), µ̄(t)〉 = 〈g, µ̄(t)〉. So letting s ↑ t
in (4.17) gives, for all g ∈C1

b(R) such that g(x)= 0 for all x ≤ 0,

〈g, µ̄(t)〉 = 〈g(· − S̄(t)), ξ 〉+ α ∫ t

0

〈
g
(· − S̄(t)+ S̄(v)), ν〉dv(4.18)

for all t ∈ (0, t∗). To obtain (4.14) from (4.18), consider a sequence of nonnegative
functions {gn} ⊂ C1

b(R) that increases to 1(0,w) pointwise on R and apply
monotone convergence. �

As a consequence of Lemma 4.3 and the assumption that µ̄(t) does not charge
the origin for all t ≥ 0, in order to prove uniqueness, it suffices to show that t∗ =∞
and that S̄(·) is uniquely determined by ξ . Observe that S̄(·) is continuous and
strictly increasing prior to the time t∗ at which µ̄(·) reaches the zero measure.
Thus, the continuous inverse of S̄(·) on [0, t∗) is given by

T̄ (u)= S̄−1(u)= inf{t ≥ 0 : S̄(t) > u}, u < u∗ = lim
t↑t∗ S̄(t).(4.19)

In (4.19), the superscript −1 denotes the functional inverse. Recall that, since
µ̄(·) is continuous, S̄(·) ∈C1([0, t∗)) with S̄′(·)= 1/Z̄(·). This means that T̄ (·) ∈
C1([0, u∗)) with

T̄ ′(u)= 1

S̄′(T̄ (u))
, u ∈ [0, u∗).(4.20)

Our strategy is to use (4.14) with w =∞ to show that M(·)= T̄ (·) is the unique
locally bounded solution of (4.3). Notice that assumption (3.2) has not yet been
used, but it is needed for the statement of the following lemma.

LEMMA 4.4. Suppose that µ̄(·) is a fluid model solution for the critical
data (α, ν) with µ̄(0) = ξ . Then u∗ = ∞ and t∗ = ∞. Moreover, for T̄ (·)
defined by (4.19), M(·) = T̄ (·) is the unique locally bounded solution of (4.3).
In particular, T̄ (·) = (Hξ ∗ Ue)(·) with Hξ(·) defined by (4.1) and Ue(·) defined
by (4.5).

The statement of Lemma 4.4 is much like the statement of Theorem 17 in [6].
In fact, reading Theorem 17 in [6] suggested to us that proving something like
Lemma 4.4 for our fluid model might be useful. In the remark following the proof
of Lemma 4.4, we explain the connection between our work and that in [6] more
precisely. Before proceeding with the proof of Lemma 4.4, we will need to verify
the following proposition, which is a consequence of Lemma 4.3.
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PROPOSITION 4.5. Suppose that µ̄(·) is a fluid model solution with µ̄(0)= ξ .
Then u∗ <∞ implies t∗ =∞.

PROOF. Suppose that u∗ <∞. Substituting w =∞ into (4.14) and using the
fact that µ̄(t)({0})= 0 for all t ≥ 0 gives, for t < t∗,

Z̄(t)= 〈1(0,∞)(· − S̄(t)), ξ 〉+ α
∫ t

0

〈
1(0,∞)

(· − S̄(t)+ S̄(s)), ν〉ds
≥ α

∫ t

0

〈
1(0,∞)

(· − S̄(t)+ S̄(s)), ν〉ds
≥ α

∫ t

0

〈
1(0,∞)

(· − u∗ + S̄(s)), ν〉ds.
Fix 0< ε < 1 and choose δ > 0 such that 〈1(δ,∞), ν〉 ≥ ε. Choose t̃ < t∗ such that
for all s ∈ [t̃ , t∗), u∗− S̄(s)≤ δ. Then, for s ∈ [t̃ , t∗), 〈1(0,∞)(·−u∗+ S̄(s)), ν〉 ≥ ε.
In particular, for t ∈ [t̃ , t∗),

Z̄(t)≥ αε(t − t̃ ).
Therefore, u∗ <∞ implies that Z̄(t) is bounded away from zero as t increases
to t∗. If in addition t∗ <∞, then Z̄(·) is discontinuous at t∗ because, by definition
of t∗, Z̄(t)= 0 for all t > t∗. But Z̄(·) is continuous since µ̄(·) is continuous, and
therefore it must be the case that t∗ =∞ whenever u∗ <∞. �

PROOF OF LEMMA 4.4. Observe that, since µ̄(t)({0}) = 0 for all t ≥ 0,
(4.14) with w=∞ becomes

Z̄(t)=H ′
ξ

(
S̄(t)

)+ α ∫ t

0

[
1− F (S̄(t)− S̄(s))]ds, t < t∗,(4.21)

where H ′
ξ (·) is defined by (4.2). In (4.21), let u= S̄(t) and perform the change of

variables v = S̄(s) to obtain

Z̄
(
T̄ (u)

)=H ′
ξ (u)+ α

∫ u

0
[1− F(u− v)]dT̄ (v), u < u∗.

Since S̄′(s) = 1/Z̄(s) for s < t∗ and T̄ (u) < t∗ for u < u∗, the left side is in fact
1/S̄′(T̄ (u)) for u < u∗. This together with (4.20) gives

T̄ ′(u)=H ′
ξ (u)+ α

∫ u

0
[1− F(u− v)]dT̄ (v), u < u∗.

Using a change of variables and the definition of fe(·), we have

T̄ ′(u)=H ′
ξ (u)+

∫ u

0
T̄ ′(u− v)fe(v) dv

=H ′
ξ (u)+ (T̄ ′ ∗ Fe)(u), u < u∗.

(4.22)
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Thus,N(·)= T̄ ′(·) is a locally bounded solution of (4.4) on [0, u∗). It follows from
the uniqueness of locally bounded solutions of (4.4) on [0, u∗) that T̄ ′(u) is given
by the right side of (4.7) for u ∈ [0, u∗), that is,

T̄ ′(u)= (H ′
ξ ∗Ue)(u), u < u∗.(4.23)

Since T̄ ∈ C1([0, u∗)) and T̄ (0)= 0, and since Hξ ∗Ue ∈ C1(R+), (Hξ ∗Ue)(0)
= 0, and (Hξ ∗Ue)′(·)= (H ′

ξ ∗Ue)(·), integrating (4.23) yields

T̄ (u)= (Hξ ∗Ue)(u), u < u∗.(4.24)

The final task is to show that t∗ =∞ and u∗ =∞. By (4.24) and the properties
of (Hξ ∗Ue)(·), limu↑u∗ T̄ (u) <∞ if and only if u∗ <∞. By definition (4.19), we
have t∗ = limu↑u∗ T̄ (u). Thus, t∗ <∞ if and only if u∗ <∞. But this can only be
consistent with the statement of Proposition 4.5 if both u∗ =∞ and t∗ =∞. �

REMARK. A result like Lemma 4.4 holds for the fluid approximation studied
in [6] as well (cf. Theorem 17 in [6]). This follows almost as an immediate
consequence of one of their fluid approximation equations. In particular, they
consider a fluid approximation of the so-called busy time equation given by

t = 〈S̄(t)∧ χ, ξ 〉 + α
∫ t

0

〈(
S̄(t)− S̄(s))∧ χ, ν〉ds, t < t∗,(4.25)

(cf. (31) in [6]). The right side of (4.25) can be interpreted as the total amount of
work performed in the fluid limit by the server by time t , for t < t∗. It is easily
verified that Hξ(x)= 〈x ∧ χ, ξ 〉 and Fe(x)= α〈x ∧ χ, ν〉, x ∈R+. This, together
with a time change, shows that (4.25) is equivalent to (4.3) with M(·) = T̄ (·).
Since our state descriptor tracks more information than just S̄(·), it is perhaps not
surprising that we are able to derive (4.25) from (3.3). However, as the proofs
of Lemmas 4.1, 4.3 and 4.4 demonstrate, some work is required for this. While
reading [6], we realized that deriving a version of (4.25) for our fluid model could
provide an important component of our uniqueness proof.

Lemma 4.4 will now be used in conjunction with Lemma 4.3 to prove both
uniqueness of fluid model solutions and the constant workload property.

PROOF OF UNIQUENESS FOR THEOREM 3.1 WITH ξ ∈M
c,p
F . Suppose that

µ̄(·) is a fluid model solution for the critical data (α, ν) with µ̄(0) = ξ . By
Lemma 4.3 and the fact that µ̄(t)({0})= 0 for all t ≥ 0, 〈1[0,w), µ̄(t)〉 is uniquely
determined by S̄(·), ξ , and (α, ν) for each w ∈ (0,∞] and for each t ∈ [0, t∗).
Since intervals of the form [0,w), w ∈ (0,∞], generate the Borel σ -algebra
on R+, this uniquely determines µ̄(t) for each t ∈ [0, t∗). By Lemma 4.4, t∗ =∞,
so µ̄(·) is uniquely determined by S̄(·), ξ , and (α, ν). By (4.19) and Lemma 4.4,
S̄(·) is the inverse of (Hξ ∗ Ue)(·). Since (Hξ ∗ Ue)(·), is determined by ξ and
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(α, ν), the function S̄(·), and therefore the fluid model solution µ̄(·) is uniquely
determined by ξ and (α, ν). �

PROOF THAT W̄ (·) IS CONSTANT FOR THEOREM 3.1 WITH ξ ∈ M
c,p
F .

Suppose that µ̄(·) is a fluid model solution for the critical data (α, ν) with
µ̄(0)= ξ . Fix t ≥ 0. By definition,

W̄ (t)= 〈χ, µ̄(t)〉 =
∫

R+
xµ̄(t)(dx)=

∫
R+

∫
[0,x]

dy µ̄(t)(dx).

By Fubini’s theorem, the order of integration can be interchanged and this gives

W̄ (t)=
∫

R+

∫
[y,∞)

µ̄(t)(dx) dy =
∫

R+
〈1[y,∞), µ̄(t)〉dy.

This together with (4.14) and the fact that t∗ =∞ (cf. Lemma 4.4) gives

W̄ (t)=
∫

R+

(〈
1[y,∞)

(· − S̄(t)), ξ 〉

+ α
∫ t

0

〈
1[y,∞)

(· − S̄(t)+ S̄(s)), ν〉ds)dy.
(4.26)

We begin by simplifying the first term on the right side of (4.26). Since ξ has no
atoms, from (4.2) it follows that∫

R+

〈
1[y,∞)

(· − S̄(t)), ξ 〉dy = ∫
R+
H ′
ξ

(
y + S̄(t))dy = ∫

[S̄(t),∞)
H ′
ξ (y) dy.

Notice that
∫
[0,S̄(t)) H ′

ξ (y) dy <∞. Therefore, we may add and subtract this term
on the right side of the above equality. Also notice that

∫
[0,∞) H ′

ξ (y) dy = 〈χ, ξ 〉.
Thus, we have∫

R+

〈
1[y,∞)

(· − S̄(t)), ξ 〉dy = W̄ (0)− ∫
[0,S̄(t))

H ′
ξ (y) dy

= W̄ (0)−Hξ (S̄(t)).
(4.27)

Next we simplify the second term on the right side of (4.26). By interchanging the
order of integration, we obtain∫

R+
α

∫ t

0

〈
1[y,∞)

(· − S̄(t)+ S̄(s)), ν〉ds dy
=
∫

R+
α

∫ t

0
ν
([
y + S̄(t)− S̄(s),∞))ds dy

=
∫ t

0

∫
R+
αν
([
y + S̄(t)− S̄(s),∞))dy ds.

For fixed 0 ≤ s ≤ t , ν([y + S̄(t) − S̄(s),∞)) = ν((y + S̄(t) − S̄(s),∞)) for all
y ∈R+ such that y+ S̄(t)− S̄(s) is not an atom for ν. Since ν has at most countably



822 H. C. GROMOLL, A. L. PUHA AND R. J. WILLIAMS

many atoms, there are at most countably many exceptional y ∈ R+ (where the
exceptional set may depend on s and t). This, together with the definition of F ,
a change of variables, and the definition of Fe gives∫

R+
α

∫ t

0

〈
1[y,∞)

(· − S̄(t)+ S̄(s)), ν〉ds dy
=
∫ t

0

∫ ∞
S̄(t)−S̄(s)

α
(
1− F(z))dzds

=
∫ t

0

(
1− Fe(S̄(t)− S̄(s)))ds = t −

∫ t

0
Fe
(
S̄(t)− S̄(s))ds.

Recall that T̄ (·) defined in (4.19) is the functional inverse of S̄(·) and that t∗ =
u∗ =∞ (cf. Lemma 4.4). Using the change of variables v = S̄(s) gives∫

R+
α

∫ t

0

〈
1[y,∞)

(· − S̄(t)+ S̄(s)), ν〉ds dy
= t −

∫ S̄(t)

0
Fe
(
S̄(t)− v)dT̄ (v)

= t − (Fe ∗ T̄ )(S̄(t))= t − (T̄ ∗ Fe)(S̄(t)).
(4.28)

Combining (4.26), (4.27) and (4.28), we have

W̄ (t)= W̄ (0)+ t − (Hξ (S̄(t))+ (T̄ ∗ Fe)(S̄(t))).
Observe that the third term on the right side is simply the right side of (4.3) for
M(·) = T̄ (·) evaluated at u = S̄(t). By Lemma 4.4, M(·) = T̄ (·) is the unique
locally bounded solution of (4.3). Thus,

W̄ (t)= W̄ (0)+ t − T̄ (S̄(t))= W̄ (0)+ t − t = W̄ (0),
which holds even if W̄ (0)=∞. �

4.2. Proof of existence of fluid model solutions. Fix ξ ∈ M
c,p
F . We wish to

prove that a fluid model solution µ̄(·) with µ̄(0)= ξ exists. The uniqueness proof
suggests that (4.14) might be used to define a suitable candidate fluid model
solution. However, for that one needs to find a suitable candidate for S̄(·). The
uniqueness proof is also helpful here, since it suggests that S̄(·) should be the
inverse of the unique locally bounded solution of (4.3): see (4.19) and Lemma 4.4.
Our assumptions on ξ imply that such a solution exists, so let T̄ (·) be the unique
locally bounded solution of (4.3), that is, T̄ (·) = (Hξ ∗ Ue)(·) where Hξ(·) is
defined by (4.1). Then, T̄ (·) ∈ C1(R+) and satisfies T̄ (0) = 0, T̄ (·) is strictly
increasing, and limu→∞ T̄ (u)=∞. It follows that S̄(t)= T̄ −1(t) for t ≥ 0 exists,
is strictly increasing, S̄(·) ∈C1(R+) and

S̄′(t)= 1

T̄ ′(S̄(t))
, t ≥ 0.(4.29)
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For each t ≥ 0, let µ̄(t) be the unique element of MF such that 〈1{0}, µ̄(t)〉 = 0
and

〈1(0,w), µ̄(t)〉 = 〈1(0,w)(· − S̄(t)), ξ 〉
+ α

∫ t

0

〈
1(0,w)

(· − (S̄(t)− S̄(s))), ν〉ds,(4.30)

for all w ∈ (0,∞]. Note that µ̄(0) = ξ and 〈1(0,∞), µ̄(t)〉 ≤ 〈1, ξ 〉 + αt for all
t ≥ 0.

PROPOSITION 4.6. Let µ̄ : [0,∞)→ MF be defined via (4.30) and let t∗ =
inf{t ≥ 0 : µ̄(t)= 0}. Then t∗ =∞, µ̄(t) has no atoms for each t ≥ 0, and for each
w ∈ (0,∞], t → 〈1(0,w), µ̄(t)〉 is a function in C([0,∞)). In particular, µ̄(·) is
continuous.

PROOF. In order to prove that t∗ =∞, it suffices to show that Z̄(t)= 〈1, µ̄(t)〉
is strictly positive for all t ≥ 0. Note that 〈1{0}, µ̄(t)〉 = 0 and so (4.30) withw =∞
becomes

Z̄(t)=H ′
ξ

(
S̄(t)

)+ α ∫ t

0

(
1− F (S̄(t)− S̄(s)))ds, t ≥ 0,(4.31)

where H ′
ξ (·) is given by (4.2). Since ξ �= 0, Z̄(0) > 0. Equation (4.31) can be

used to show that Z̄(t) > 0 for t > 0. To see this, note that given ε ∈ (0,1), since
F(0)= 0 and F is right continuous, there existsM > 0 such that 1−F(x) > ε for
all x <M . Since S̄(·) is continuous, for each fixed t > 0, there exists δt > 0 such
that s ≥ 0 and |t − s|< δt imply that |S̄(t)− S̄(s)|<M . These two facts together
with (4.31) yield

Z̄(t)≥ α
∫ t

(t−δt )+
ε ds > 0, t > 0.

So t∗ =∞.
Next we show that µ̄(t) has no atoms for each t ≥ 0. Since µ̄(0)= ξ , this holds

for t = 0. By (4.30), we have for each t ≥ 0 and 0< x <w ≤∞,

〈1[x,w), µ̄(t)〉 = 〈1[x,w)(· − S̄(t)), ξ 〉
+ α

∫ t

0

〈
1[x,w)

(· − (S̄(t)− S̄(s))), ν〉ds.(4.32)

Fix x ∈ (0,∞), let w ↓ x, and use bounded convergence to obtain

〈1{x}, µ̄(t)〉 = 〈1{x}(· − S̄(t)), ξ 〉+ α
∫ t

0

〈
1{x}
(· − (S̄(t)− S̄(s))), ν〉ds,(4.33)

for t ≥ 0, x ∈ (0,∞). The first term on the right side of (4.33) is clearly zero
since ξ has no atoms. Recall that S̄(·) is strictly increasing and ν has at most
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countably many atoms. Thus, for each fixed (t, x) ∈ [0,∞) × (0,∞), 〈1{x}(· −
(S̄(t)− S̄(s))), ν〉 = 0 for (Lebesgue) almost every s ∈ [0, t]. Therefore the second
term on the right side of (4.33) is zero. Thus, 〈1{x}, µ̄(t)〉 = 0 for all x > 0. By
definition 〈1{0}, µ̄(t)〉 = 0, so µ̄(t) has no atoms for each t ≥ 0.

In order to show that for eachw ∈ (0,∞], 〈1(0,w), µ̄(t)〉 is a continuous function
of t ∈ [0,∞), it suffices to show that each term on the right side of (4.30) is
continuous. This is straightforward for the first term since S̄(·) is continuous and
ξ has no atoms. For each w ∈ (0,∞] and t ≥ 0, and for each s ∈ [0, t] such that
ν does not have an atom either at S̄(t)− S̄(s) or at w+ S̄(t)− S̄(s),

lim
u→t

〈
1(0,w)

(· − (S̄(u)− S̄(s))), ν〉= 〈1(0,w)(· − (S̄(t)− S̄(s))), ν〉.
Since S̄(·) is strictly increasing and ν has at most countably many atoms, the above
holds except perhaps for countably many values of s ∈ [0, t], which comprise a set
of Lebesgue measure zero (possibly depending on w and t). So, using bounded
convergence and the fact that the integrand is bounded, one can show that, for
each fixed w ∈ (0,∞], the second term on the right side of (4.30) is a continuous
function of t ∈ [0,∞).

Finally, we must show that µ̄(·) is continuous. In order to do this, we must show
that for each g ∈ Cb(R+), 〈g, µ̄(t)〉 is a continuous function of t ∈ [0,∞). Since
Z̄(·) is strictly positive and continuous, it suffices to show that

〈g, µ̄(t)〉
Z̄(t)

,(4.34)

is a continuous function of t ∈ [0,∞). In order to do this, for each x ∈R+, let

G(t, x)= 〈1[0,x), µ̄(t)〉
Z̄(t)

, t ≥ 0.

Since, for each t ≥ 0, µ̄(t) does not have an atom at the origin, it follows that for
each x ∈ R+, 〈1[0,x), µ̄(t)〉 = 〈1(0,x), µ̄(t)〉 for each t ≥ 0. Thus, from the results
proved above, for each x ∈ R+, G(t, x) is a continuous function of t ∈ [0,∞).
Since µ̄(t)/Z̄(t) is a probability measure for each t ≥ 0, it follows that (4.34) is
a continuous function of t ∈ [0,∞) (cf. [2], Theorem 2.2 and use the fact that
{[x, y) : 0≤ x < y <∞}∪∅ forms a π -system). �

Thus far, it has been shown that the measure valued function µ̄(·) defined
via (4.30) satisfies conditions (1) and (2) in the definition of a fluid model solution,
and that t∗ = ∞. Thus condition (4) holds trivially. So the remaining task is to
prove that µ̄(·) satisfies (3.3) for all t ≥ 0. This is addressed in Lemmas 4.7 and 4.8
below. Lemma 4.7 implies that the definitions of S̄(·) and µ̄(·) give rise to the
appropriate relationship between S̄′(·) and Z̄(·). The proof of Lemma 4.8 uses this
relationship to prove that µ̄(·) satisfies a differential form of (3.3).
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LEMMA 4.7. Let µ̄ : [0,∞)→MF be defined via (4.30). Then, for all t ≥ 0,

S̄′(t)= 1

Z̄(t)
.(4.35)

PROOF. In order to verify (4.35), perform the change of variables v = S̄(s)
in (4.31) to obtain, for t ≥ 0,

Z̄(t)=H ′
ξ

(
S̄(t)

)+ α ∫ S̄(t)

0

(
1− F (S̄(t)− v))dT̄ (v)

=H ′
ξ

(
S̄(t)

)+ (T̄ ′ ∗ Fe)(S̄(t))= T̄ ′(S̄(t)).
Here the final equality follows from the fact that N(·)= T̄ ′(·) is the unique locally
bounded solution of (4.4). By (4.29), the above yields Z̄(t) = 1/S̄′(t) for all
t ≥ 0. �

We are now ready to prove a differential form of (3.3), which will complete the
verification that µ̄(·) defined via (4.30) is a fluid model solution.

LEMMA 4.8. Let µ̄ : [0,∞)→ MF be defined via (4.30). For g ∈ C, t →
〈g, µ̄(t)〉 is a function in C1([0,∞)) and

d

dt
〈g, µ̄(t)〉 = −〈g

′, µ̄(t)〉
〈1, µ̄(t)〉 + α〈g, ν〉, t ≥ 0.(4.36)

PROOF. Observe that for each g ∈ C, 〈g, µ̄(t)〉 and the terms in the expression
on the right side of (4.36) are continuous functions of t ∈ [0,∞). To see this
note that µ̄(·) is continuous, g and g′ are bounded continuous functions and
Z̄(·) = 〈1, µ̄(·)〉 is continuous and strictly positive (since t∗ = ∞). Therefore,
in order to prove Lemma 4.8, it suffices to prove that for each g ∈ C, t →
〈g, µ̄(t)〉 is a differentiable function of t ∈ [0,∞) and that (4.36) holds. Note that
by (4.30), (4.33) and a monotone class theorem,

〈g, µ̄(t)〉 = 〈g(· − S̄(t)), ξ 〉+ α ∫ t

0

〈
g
(· − (S̄(t)− S̄(s))), ν〉ds, t ≥ 0,(4.37)

for all g ∈ Cb(R) such that g(x) = 0 for x ≤ 0. Fix g ∈ C and extend g to be
identically equal to zero on the negative half line. Then g ∈ C1

b(R) and g(x) = 0
and g′(x) = 0 for x ≤ 0. In particular, (4.37) holds for both g and g′. We will
proceed by first showing that for this fixed g, each term on the right side of (4.37)
is differentiable, and then computing the derivative of each term.

By (4.35),

∂

∂t
g
(
x − S̄(t))= −g′(x − S̄(t))

Z̄(t)
, t ∈ [0,∞), x ∈R.
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For each b <∞, the term on the right side of the above equation is continuous
and bounded for (t, x) ∈ [0, b] × R, where we have used the fact that 1/Z̄(·) is
continuous and bounded on [0, b]. This together with the fact that ξ ∈MF allows
an interchange in the order of integration and differentiation to obtain

d

dt

〈
g
(· − S̄(t)), ξ 〉=−

〈
g′(· − S̄(t))

Z̄(t)
, ξ

〉
, t ≥ 0,(4.38)

where the right member is a continuous function of t ∈ [0,∞). Similarly, for each
(fixed) s ∈ [0,∞),

∂

∂t
g
(
x − S̄(t)+ S̄(s))= −g′(x − S̄(t)+ S̄(s))

Z̄(t)
, t ∈ [0,∞), x ∈R,

which for each b < ∞ is again continuous and bounded (uniformly in s) for
(t, x) ∈ [0, b] ×R. Thus, for each (fixed) s ∈ [0,∞),

∂

∂t

〈
g
(· − S̄(t)+ S̄(s)), ν〉=−

〈
g′(· − S̄(t)+ S̄(s))

Z̄(t)
, ν

〉
, t ≥ 0.(4.39)

For each b <∞, the right side is again continuous and bounded (uniformly in s)
as a function of t ∈ [0, b]. Using the facts that 〈g(· − S̄(t)+ S̄(s)), ν〉 and the right
side of (4.39) are continuous functions of (s, t) ∈ [0,∞)× [0,∞), it follows that

d

dt

∫ t

0

〈
g
(· − (S̄(t)− S̄(s))), ν〉ds

=−
∫ t

0

〈
g′(· − S̄(t)+ S̄(s))

Z̄(t)
, ν

〉
ds + 〈g, ν〉, t ≥ 0.

(4.40)

Thus, each term on the right side of (4.37) is differentiable and so t→〈g, µ̄(t)〉 is
a differentiable function of t ∈ [0,∞). Moreover, using (4.37), (4.38) and (4.40)
and then using (4.37) again with g′ in place of g gives, for t ≥ 0,

d

dt
〈g, µ̄(t)〉 = −

〈
g′(· − S̄(t))

Z̄(t)
, ξ

〉
− α

∫ t

0

〈
g′(· − (S̄(t)− S̄(s)))

Z̄(t)
, ν

〉
ds + α〈g, ν〉

= −
〈
g′(·)
Z̄(t)

, µ̄(t)

〉
+ α〈g, ν〉,

which verifies that (4.36) holds. �

PROOF OF EXISTENCE FOR THEOREM 3.1 WITH ξ ∈ M
c,p
F . The function

µ̄(·) defined via (4.30) clearly satisfies µ̄(0)= ξ and condition (2) in the definition
of a fluid model solution. By Proposition 4.6, condition (1) holds and t∗ = ∞,
so that (4) holds trivially. Finally, condition (3) follows from Lemma 4.8 by
integrating (4.36). �
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4.3. Dependence on the initial condition. One consequence of our construc-
tion of a fluid model solution in Section 4.2 is that the mapping from the initial
measure to the associated fluid model solution is measurable. We will need this
rather technical fact in order to prove Theorem 3.2. Since the measurability argu-
ment depends on the construction, it is presented here. However, readers that are
willing to accept this fact may forego an immediate reading of the proof in order
to proceed to the convergence argument in Section 5.

Consider the Borel σ -algebra on MF associated with the topology of weak
convergence. Note that the sets Mc

F and M
c,p
F are measurable subsets of MF . The

set M
c,p
F is endowed with the relative topology of weak convergence inherited

from MF . Since M
c,p
F is measurable, a relatively open set in M

c,p
F is measurable

in MF . LetCp :Mc,p
F →D([0,∞),MF ) be given byCp(ξ)= µ̄(·) for ξ ∈M

c,p
F ,

where µ̄(·) is defined via (4.30). Then for all t ≥ 0 and 0≤ x <w ≤∞,

〈1[x,w), µ̄(t)〉 = 〈1[x,w)(· − S̄(t)), ξ 〉+ α
∫ t

0

〈
1[x,w)

(· − (S̄(t)− S̄(s))), ν〉ds.
For x �= 0, this is simply (4.32). To see that the above holds for x = 0, use (4.30)
and the following facts: µ̄(t) does not charge the origin for all t ≥ 0, ξ has no
atoms, S̄(·) is strictly increasing, and ν has at most countably many atoms. Since
{[x,w) : 0 ≤ x < w <∞} ∪ ∅ forms a π -system, Dynkin’s π -λ theorem implies
that, for each t ≥ 0 and all Borel sets B ⊂R+,

〈1B, µ̄(t)〉 = 〈1B(· − S̄(t)), ξ 〉+ α
∫ t

0

〈
1B
(· − (S̄(t)− S̄(s))), ν〉ds.

As a shorthand notation, we write for each t ≥ 0,

µ̄(t)= ξ ◦ θS̄(t) + α
∫ t

0
ν ◦ θS̄(t)−S̄(s) ds,(4.41)

where for each Borel set B ⊂R+, 〈1B, ξ ◦ θS̄(t)〉 = 〈1B(· − S̄(t)), ξ 〉 and
〈
1B,
∫ t

0
ν ◦ θS̄(t)−S̄(s) ds

〉
=
∫ t

0

〈
1B
(· − (S̄(t)− S̄(s))), ν〉ds.

Finally, let C :Mc
F −→D([0,∞),MF ) be given by C(ξ)= µ̄(·), where µ̄(·) =

Cp(ξ) if ξ �= 0 and µ̄(·)≡ 0 if ξ = 0.

LEMMA 4.9. The mapping Cp is continuous, and C is measurable.

Before proceeding with the proof of Lemma 4.9, some comments are in
order. Notice that the inverse image under the mapping C of the function that
is identically equal to the zero measure is simply the zero measure, which is
a measurable subset of Mc

F . Therefore, in order to show that C is measurable,
it suffices to show that the inverse images under the mapping C of measurable
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subsets of D([0,∞),MF ) that do not contain the function that is identically
equal to the zero measure are measurable subsets of M

c,p
F . This holds if Cp is

continuous. Thus measurability of C is an immediate consequence of the fact that
Cp is continuous, which is verified in the proof of Lemma 4.9 below.

This naturally raises the question as to whether or not the mapping C is
continuous, that is, is the mapping C continuous at the zero measure. This turns
out to be true, however the proof requires techniques not used elsewhere in this
paper. In particular, the proof exploits a certain order preservation property of the
fluid model dynamics. The interested reader can find both the statement of the
order preservation property and a proof that C is continuous at the zero measure
in [18].

PROOF OF LEMMA 4.9. As explained in the paragraph following the
statement of Lemma 4.9, measurability of C follows immediately from continuity
of Cp. Thus, it suffices to show thatCp is continuous. In order to do that, consider
the spaces

C↗ = {U : [0,∞)→[0,∞)whereU is continuous, nondecreasing andU(0)=0
}
,

C↑ = {U ∈C↗ :U is strictly increasing
}

and

C↑,∞={U ∈C↑ : lim
u→∞U(u)=∞},

each of which is endowed with the topology of uniform convergence on compact
sets. Note that, since the functions in these spaces are all nondecreasing, uniform
convergence on compact sets is equivalent to pointwise convergence for each of
these spaces. The proof that Cp is continuous proceeds by proving continuity of
various intermediate maps to and from these spaces.

Let F :Mc,p
F → C↑,∞ be defined by F(ξ) = S̄(·), where S̄(t) = T̄ −1(t) =

inf{u≥ 0 : T̄ (u) > t}, t ≥ 0, is the functional inverse of T̄ (·)= (Hξ ∗Ue)(·) with
Hξ(·) defined by (4.1) and Ue(·) defined by (4.5). The first step of the proof is to
show that F is continuous. In order to do this, we define two maps F1 and F2
given by

F1 :Mc,p
F →C↑,∞ such that F1(ξ)= T̄ (·),

F2 : C↑,∞ →C↑,∞ such that F2
(
T̄ (·))= S̄(·).

Then F=F2 ◦F1. Therefore, it suffices to show that F1 and F2 are continuous.
We begin by showing thatF1 is continuous. In order to do this, letF1,1 :Mc,p

F →
C↗ be given by F1,1(ξ)=Hξ(·), with Hξ(·) defined by (4.1). It is easily verified
that Hξ(x) = 〈χ ∧ x, ξ 〉, x ∈ R+. Note that for each fixed x ∈ R+, χ(·) ∧ x ∈
Cb(R+). Therefore, if ξn ∈M

c,p
F , n≥ 1, ξ ∈M

c,p
F and ξn

w→ ξ , it follows that Hξn
converges pointwise to Hξ . Thus, F1,1 is continuous since pointwise convergence
of functions in C↗ to a limit in C↗ implies uniform convergence on compact sets.
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Also, let F1,2 : C↗ → C↑,∞ be given by F1,2(H(·)) = (H ∗ Ue)(·). It is perhaps
not surprising that F1,2 is also continuous. To see this, consider Hn ∈ C↗, n ≥ 1
and H ∈ C↗ such that Hn→H uniformly on compact sets as n tends to infinity.
For each K ≥ 0,

‖(Hn ∗Ue)− (H ∗Ue)‖K ≤ ‖Hn −H‖KUe(K),
which tends to zero as n tends to infinity. Thus, F1,2 is continuous. Since F1 =
F1,2 ◦F1,1, it follows that F1 is continuous.

Next we show thatF2 is continuous. To see this, consider T̄n ∈C↑,∞, n≥ 1, and
T̄ ∈ C↑,∞ such that T̄n→ T̄ uniformly on compact sets as n tends to infinity. Let
S̄n(·) = F2(T̄n(·)), n ≥ 1, and S̄(·) = F2(T̄ (·)). It suffices to show that S̄n(t)→
S̄(t) as n tends to infinity for each t ≥ 0. Fix t ≥ 0. For each n ≥ 1, choose un
such that T̄n(un)= t and choose u such that T̄ (u)= t . In other words, S̄n(t)= un,
n ≥ 1 and S̄(t) = u, and consequently it suffices to show that un→ u. Using the
fact that T̄ (·) is strictly increasing, it can be verified that the sequence {un}n≥1 is
bounded. This together with the fact that T̄n→ T̄ uniformly on compact sets as n
tends to infinity and T̄n(un) = T̄ (u), n ≥ 1, implies that limn→∞ T̄ (un) = T̄ (u).
Again using the fact that T̄ (·) is strictly increasing, it then follows that un→ u as
n tends to infinity.

We now turn our attention to proving that Cp is continuous. Suppose that

{ξn}n≥1 ⊂ M
c,p
F , ξ ∈ M

c,p
F and ξn

w→ ξ . We will show that Cp(ξn)→ Cp(ξ) in
the Skorohod J1-topology. For this, note that the Prohorov metric defined on the
set of Borel probability measures on R+ naturally extends to a metric ρ on MF

under which MF is a Polish space. In particular, for ζ1, ζ2 ∈MF , ρ(ζ1, ζ2) is given
by

ρ(ζ1, ζ2)= inf
{
ε > 0 : 〈1B, ζ1〉 ≤ 〈1Bε, ζ2〉 + ε, 〈1B, ζ2〉 ≤ 〈1Bε, ζ1〉 + ε

for all closed nonempty sets B ⊂R+
}
,

where Bε = {x ∈ R+ : infy∈B |x − y| < ε}. Moreover, if {ζn}n≥1 ⊂ MF and

ζ ∈ MF , then ζn
w→ ζ if and only if limn→∞ ρ(ζn, ζ ) = 0 (cf. [10], Chapter 3,

Theorems 1.7 and 3.1, which readily generalize from probability measures to MF ).
In order to show that Cp(ξn)→Cp(ξ) in the Skorohod J1-topology, it suffices to
show that there exists {λn}n≥1 ⊂C↑,∞ such that for each K ≥ 0,

lim
n→∞ sup

0≤t≤K
|λn(t)− t| = 0,(4.42)

lim
n→∞ sup

0≤t≤K
ρ(ξn ◦ θS̄n(λn(t)), ξ ◦ θS̄(t))= 0,(4.43)

lim
n→∞ sup

0≤t≤K
ρ

(∫ λn(t)

0
ν ◦ θS̄n(λn(t))−S̄n(s) ds,

∫ t
0
ν ◦ θS̄(t)−S̄(s) ds

)
= 0,(4.44)
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where S̄n(·)=F(ξn), n≥ 1 and S̄(·)=F(ξ). Here we have also used the fact that
ρ(ζ11+αζ12, ζ21+αζ22)≤ ρ(ζ11, ζ21)+αρ(ζ12, ζ22), ζij ∈MF , i, j = 1,2, (4.41)
above, and Proposition 5.3 and Remark 5.4 in Chapter 3 of [10].

For n ≥ 1, let λn(t) = T̄n(S̄(t)) for all t ≥ 0, where T̄n(·) = F1(ξn). Since
T̄n ∈C↑,∞, n≥ 1, and S̄ ∈C↑,∞, it follows that λn ∈C↑,∞ for each n≥ 1. SinceF1
is continuous, for T̄ =F1(ξ), T̄n→ T̄ uniformly on compact sets as n→∞. This
together with T̄ (S̄(t)) = t , t ≥ 0, and the fact that S̄ ∈ C↑,∞ implies that (4.42)
holds for all K ≥ 0. Note that S̄n(λn(t)) = S̄(t), t ≥ 0, which can be used to
simplify the expressions in (4.43) and (4.44).

We now verify (4.43). Let ε̃ > 0 and choose Nε̃ such that n ≥ Nε̃ implies that
ρ(ξn, ξ)≤ ε̃. For a closed nonempty set B ⊂R+, B + S̄(t) is also closed, and so,
for n≥Nε̃, 〈

1B+S̄(t), ξn
〉≤ 〈1(B+S̄(t))ε̃ , ξ 〉+ ε̃ and〈

1B+S̄(t), ξ
〉≤ 〈1(B+S̄(t))ε̃ , ξn〉+ ε̃.(4.45)

Note that (
B + S̄(t))ε̃ ⊂ (Bε̃ + S̄(t))∪ [(S̄(t)− ε̃)+, S̄(t)).(4.46)

Combining (4.45), (4.46) and the definitions of ξn ◦ θS̄(t) and ξ ◦ θS̄(t) yields that
for n≥Nε̃,〈

1B, ξn ◦ θS̄(t)
〉≤ 〈1Bε̃ , ξ ◦ θS̄(t)〉+ 〈1[(S̄(t)−ε̃)+,S̄(t)), ξ 〉+ ε̃,(4.47) 〈

1B, ξ ◦ θS̄(t)
〉≤ 〈1Bε̃ , ξn ◦ θS̄(t)〉+ 〈1[(S̄(t)−ε̃)+,S̄(t)), ξn〉+ ε̃.(4.48)

Since ρ(ξn, ξ)≤ ε̃ for n≥Nε̃, and since ξ({0})= 0, it follows that 〈1[(S̄(t)−ε̃)+,S̄(t)],
ξn〉 ≤ 〈1((S̄(t)−2ε̃)+,S̄(t)+ε̃), ξ 〉+ ε̃ for n≥Nε̃. This together with (4.48) implies that
for n≥Nε̃,〈

1B, ξ ◦ θS̄(t)
〉≤ 〈1Bε̃ , ξn ◦ θS̄(t)〉+ 〈1((S̄(t)−2ε̃)+,S̄(t)+ε̃), ξ

〉+ 2ε̃.(4.49)

Since ξ has no atoms, limε̃→0 supt≥0〈1((S̄(t)−2ε̃)+,S̄(t)+ε̃), ξ 〉 = 0 (cf. proof of Lem-
ma A.1). Therefore, given ε>0, there exists ε̃ > 0 such that 〈1((S̄(t)−2ε̃)+,S̄(t)+ε̃), ξ 〉
+ 2ε̃ ≤ ε for all t ≥ 0. Since ε̃ ≤ ε, ξ has no atoms, and ((S̄(t) − ε̃)+, S̄(t)) ⊂
((S̄(t)−2ε̃)+, S̄(t)+ ε̃), from (4.47) and (4.49) it follows that, for all t ≥ 0, n≥Nε̃
and closed nonempty B ⊂R+,〈

1B, ξn ◦ θS̄(t)
〉≤ 〈1Bε , ξ ◦ θS̄(t)〉+ ε and

〈
1B, ξ ◦ θS̄(t)

〉≤ 〈1Bε, ξn ◦ θS̄(t)〉+ ε.
Since S̄n(λn(t))= S̄(t), t ≥ 0, and since ε > 0 was arbitrary, (4.43) holds.

We now verify (4.44). Fix K,ε > 0. Let ε̃ ∈ (0, ε). Since S̄n(λn(t)) = S̄(t),
t ≥ 0, for a closed nonempty set B ⊂R+, t ≥ 0, and n≥ 1,〈

1B,
∫ t

0
ν ◦ θS̄(t)−S̄(s) ds

〉
=
∫ t

0

〈
1B
(· − (S̄(t)− S̄(s))), ν〉ds,

〈
1B,
∫ λn(t)

0
ν ◦ θS̄n(λn(t))−S̄n(s) ds

〉
=
∫ λn(t)

0

〈
1B
(· − (S̄(t)− S̄n(s))), ν〉ds.
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By (4.42) and the continuity of F, there exists N such that n ≥ N implies that
sup0≤t≤K |λn(t)− t| < ε/2 and ‖S̄n − S̄‖K+ε/2 < ε̃. Fix such an N . Then, since
ε̃ < ε, it follows that for n ≥ N , t ∈ [0,K], s ∈ [0, t] and x ∈ R+ such that x −
S̄(t)+ S̄(s) ∈B , either x− S̄(t)+ S̄(s) ∈ [0, ε̃) or x− S̄(t)+ S̄n(s) ∈ Bε . Similarly,
for n ≥ N , t ∈ [0,K], s ∈ [0, λn(t)] and x ∈ R+ such that x − S̄(t)+ S̄n(s) ∈ B ,
either x − S̄(t)+ S̄(s) ∈ (−ε̃,0) or x − S̄(t)+ S̄(s) ∈ Bε . This gives, for n ≥ N
and t ∈ [0,K],〈

1B,
∫ t

0
ν ◦ θS̄(t)−S̄(s) ds

〉
≤
∫ t

0

〈
1Bε
(· − (S̄(t)− S̄n(s))), ν〉ds

+
∫ t

0

〈
1[0,ε̃)

(· − (S̄(t)− S̄(s))), ν〉ds,
〈
1B,
∫ λn(t)

0
ν ◦ θS̄n(λn(t))−S̄n(s) ds

〉
≤
∫ λn(t)

0

〈
1(−ε̃,0)∪Bε

(· − (S̄(t)− S̄(s))), ν〉ds.
Since each of the integrands on the right side is bounded above by 1, since
S̄(t)= S̄n(λn(t)), and since, for n≥N and t ∈ [0,K], |λn(t)− t|< ε/2, it follows
that for n≥N and t ∈ [0,K],〈

1B,
∫ t

0
ν ◦ θS̄(t)−S̄(s) ds

〉

≤
∫ λn(t)

0

〈
1Bε
(· − (S̄n(λn(t))− S̄n(s))), ν〉ds + ε/2(4.50)

+
∫ t

0

〈
1[0,ε̃)

(· − (S̄(t)− S̄(s))), ν〉ds,
〈
1B,
∫ λn(t)

0
ν ◦ θS̄n(λn(t))−S̄n(s) ds

〉

≤
∫ t

0

〈
1Bε
(· − (S̄(t)− S̄(s))), ν〉ds + ε/2(4.51)

+
∫ t

0

〈
1(−ε̃,0)

(· − (S̄(t)− S̄(s))), ν〉ds.
Thus, it suffices to show that there exists ε̃ ∈ (0, ε) such that, for all t ∈ [0,K],∫ t

0

〈
1(−ε̃,ε̃)

(· − (S̄(t)− S̄(s))), ν〉ds ≤ ε/2.
This requires some care since ν can have atoms. Let A ⊂ R+ denote the
set containing all of the atoms of ν, which is at most countable, and let
νd = ∑a∈A ν({a})δa be the Borel measure comprised of only the atoms of
ν. Then νc = ν − νd has no atoms. Therefore, there exists ε̃1 ∈ (0, ε) such
that supy∈R+〈1(y−ε̃1,y+ε̃1), νc〉 < ε/6K (cf. the proof of Lemma A.1). Thus, for
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t ∈ [0,K] and ε̃ ∈ (0, ε̃1], we have∫ t

0

〈
1(−ε̃,ε̃)

(· − (S̄(t)− S̄(s))), ν〉ds
=
∫ t

0

〈
1(S̄(t)−S̄(s)−ε̃,S̄(t)−S̄(s)+ε̃), νc

〉
ds +

∫ t

0

〈
1(S̄(t)−S̄(s)−ε̃,S̄(t)−S̄(s)+ε̃), νd

〉
ds

≤ ε

6K
t +∑

a∈A
ν({a})

∫ t

0

〈
1(S̄(t)−S̄(s)−ε̃,S̄(t)−S̄(s)+ε̃), δa

〉
ds.

Since
∑
a∈A ν({a}) ≤ 1, there exists a finite set Aε ⊂ A such that

∑
a∈A\Aε ν({a})≤ ε/6K . For t ∈ [0,K] and ε̃ ∈ (0, ε̃1], we have∫ t

0

〈
1(−ε̃,ε̃)

(· − (S̄(t)− S̄(s))), ν〉ds
≤ ε

6K
t + ∑

a∈A\Aε
ν({a})t + ∑

a∈Aε
ν({a})

∫ t
0

〈
1(S̄(t)−S̄(s)−ε̃,S̄(t)−S̄(s)+ε̃), δa

〉
ds

≤ ε

6
+ ε

6
+ ∑
a∈Aε

ν({a})
∫ t

0

〈
1(S̄(t)−S̄(s)−ε̃,S̄(t)−S̄(s)+ε̃), δa

〉
ds.

Note that for t ∈ [0,K], s ∈ [0, t] and a ∈Aε such that a ∈ (S̄(t)− S̄(s)− ε̃, S̄(t)−
S̄(s)+ ε̃),

s ∈ [T̄ ((S̄(t)− a− ε̃)+), T̄ ((S̄(t)− a+ ε̃)+)].
If Aε �=∅, let ε̃ ∈ (0, ε̃1] be such that

max
a∈Aε

sup
t∈[0,K]

{
T̄
((
S̄(t)− a+ ε̃)+)− T̄ ((S̄(t)− a − ε̃)+)}≤ ε

6|Aε| ,

where |Aε| denotes the number of atoms in Aε. Otherwise, let ε̃ = ε̃1. Then, for
t ∈ [0,K], ∫ t

0

〈
1(−ε̃,ε̃)

(· − (S̄(t)− S̄(s))), ν〉ds ≤ ε

6
+ ε

6
+ ε

6
= ε

2
.

This together with (4.50) and (4.51) gives, for n≥N and t ∈ [0,K],
〈
1B,
∫ t

0
ν ◦ θS̄(t)−S̄(s) ds

〉
≤
〈
1Bε ,

∫ λn(t)

0
ν ◦ θS̄n(λn(t))−S̄n(s) ds

〉
+ ε,(4.52)

〈
1B,
∫ λn(t)

0
ν ◦ θS̄n(λn(t))−S̄n(s) ds

〉
≤
∫ t

0

〈
1Bε
(· − (S̄(t)− S̄(s))), ν〉ds + ε.(4.53)

Since K,ε > 0 were arbitrary, (4.52) and (4.53) imply (4.44). �
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5. Convergence to fluid model solutions. The objective of this section is to
prove the following theorem, and then apply it to prove Theorem 3.2.

THEOREM 5.1. Consider a sequence of processor sharing queues as defined
in Section 3.3, satisfying assumptions (3.14)–(3.22). Then the sequence of fluid
scaled measure valued processes {µ̄r(·)} is tight. Moreover, any limit point µ̄2(·)
is a.s. a fluid model solution for the critical data (α, ν).

Recall that the sequence {µ̄r(·)} is tight if and only if the associated sequence
of probability laws onD([0,∞),MF ) is tight. The term “limit point” in the above
statement refers to any limit in distribution along some subsequence of {µ̄r(·)}. We
use this terminology because our objective is to show that all such limit points have
the same law. This uniqueness in law will hinge on the almost sure characterization
of limit points as fluid model solutions. Throughout this section we assume that the
conditions in Section 3.3 hold. In Section 5.1 we lay the groundwork for our main
proofs by compiling some basic results, and making some rather technical choices
of various constants. Tightness of {µ̄r(·)} is proved in Section 5.2, and the fact
that limit points are a.s. fluid model solutions is proved in Section 5.3. Finally, the
proof of Theorem 3.2 appears in Section 5.4.

5.1. Preliminaries. To expedite the proofs later on, we first establish some
basic consequences of the assumptions (3.14)–(3.22) of Section 3.3, and make
some judicious choices of various constants. For subsequent reference, the
results of the following discussion are summarized at the end of this section, in
Lemma 5.2. For the remainder of this section, let T > 0 and 0< ε,η < 1 be fixed,
and define η̃= η/8.

A dynamic equation. We begin by specifying a dynamic equation satisfied by
the fluid scaled state descriptor µ̄r (·). Starting with (2.13) and substituting in the
definition of the residual service times, one obtains after some simplification that
for each r , a.s. for each bounded, Borel measurable function g : R+ → R, and all
t, h≥ 0,

〈g,µr(t + h)〉 = 〈(1(0,∞)g)(· − Srt,t+h),µr(t)〉

+
Er(t+h)∑
i=Er (t)+1

(
1(0,∞)g

)(
vri − SrUri ,t+h

)
.

(5.1)

Recall that we always assume g is extended to be identically zero on (−∞,0) so
that functions of the form g(· − a) are well defined on R+ for any a > 0. Notice
that this equation provides a decomposition of the quantity 〈g,µr(t + h)〉 into
a component arising from jobs already in the system at time t and a component
resulting from the arrival of new jobs during the interval (t, t + h]. Intuitively,



834 H. C. GROMOLL, A. L. PUHA AND R. J. WILLIAMS

since Srt,t+h gives the cumulative service received by each job in the system during
the interval (t, t + h], the measure µr(t + h) should be obtained from µr(t) by
shifting the latter measure to the left by Srt,t+h, and removing any mass that ends
up in (−∞,0]. This explains the shift and truncation of g in the first term on
the right side above. Similarly, a job arriving at time Uri ∈ (t, t + h] will receive
a cumulative amount of service equal to Sr

Uri ,t+h ∧ v
r
i up to time t + h, and so

vri must be shifted to the left by this amount before contributing to the integral
〈g,µr(t + h)〉. This explains the second term on the right side.

Equation (5.1) takes the following form for the fluid scaled processes. For
each r , a.s. for each bounded, Borel measurable function g : R+ → R, and all
t, h≥ 0,

〈g, µ̄r(t + h)〉 = 〈(1(0,∞)g)(· − S̄rt,t+h), µ̄r(t)〉

+ 1

r

rĒr (t+h)∑
i=rĒr (t)+1

(
1(0,∞)g

)(
vri − S̄rUri /r,t+h

)
.

(5.2)

We refer to (5.2) as the dynamic equation for µ̄r(·), and it is the equation we will
use to analyze the behavior of µ̄r(·). Frequently we will set g ≡ 1 in this equation,
in which case the first term on the right side will look like 〈1(S̄rt,t+h,∞), µ̄r(t)〉.
Although we are ultimately only interested in functions g ∈ C1

b(R+) when we
use (5.2) to show convergence in distribution of the fluid scaled state descriptors,
we will need to work with discontinuous functions at various stages along the way,
which is why we include this possibility in (5.2).

Functional weak laws of large numbers; the constant l. We now establish
some basic functional weak law of large numbers estimates which arise from our
asymptotic assumptions (3.14)–(3.18) on the arrival and service processes.

First note that by Lemma A.2 (cf. the Appendix) and (3.14)–(3.18), we have the
following functional weak law:

1

r

rĒr (·)∑
i=1

g(vri )(⇒ α(·)〈g, ν〉 as r→∞,(5.3)

for each nonnegative Borel measurable function g : R+ → R+ that is ν-a.e.
continuous and satisfies 〈g, ν〉<∞, 〈g, νr〉<∞ for each r > 0, and

〈g, νr〉→ 〈g, ν〉 as r→∞.(5.4)

Here α(t)= αt for all t ≥ 0. Moreover, since the limit in (5.3) is deterministic, the
convergence in distribution there is joint with (3.19).

By (3.15), any nonnegative g ∈ Cb(R+) satisfies (5.4). In particular, for such
a g and any 0< l ≤ T we have

lim
r→∞P

(
sup

t∈[0,T−l]
1

r

rĒr (t+l)∑
i=rĒr (t)+1

g(vri )≤ 2αl〈g, ν〉
)
= 1.(5.5)
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With l = T and g ≡ 1, this implies

lim
r→∞P

(
Ēr(T )≤ 2αT

)= 1.(5.6)

For the rest of this section, we fix l such that 0< l < ε/16α and T is an integer
multiple of l. Then by (5.5), for any g ∈Cb(R+),

lim
r→∞P

(
sup

t∈[0,T−l]
1

r

rĒr (t+l)∑
i=rĒr (t)+1

g(vri )≤
ε

8
〈g, ν〉

)
= 1.(5.7)

We will use (5.3) repeatedly for several choices of g below, as well as (5.7) for
several choices of g ∈ Cb(R+). To begin with, let g ≡ 1. Then our choice of l
implies by (5.7) that

lim
r→∞P

(
sup

t∈[0,T−l]
(
Ēr (t + l)− Ēr(t))≤ ε

4

)
= 1,(5.8)

where for convenience we have relaxed the bound from ε/8 to ε/4 and used the
fact that ν is a probability measure.

Global bounds for the initial condition; the constants M0,MT . By (3.19)–
(3.21), we can choose an M0 > 0 such that

lim inf
r→∞ P

(〈1, µ̄r(0)〉 ∨ 〈χ, µ̄r(0)〉<M0
)≥ 1− η̃(5.9)

and

P
(
〈1[M0,∞),/〉<

ε

4

)
≥ 1− η̃

2
.(5.10)

Define MT =M0 + 2αT .

Fine structure bounds for the initial condition; the constant κ . Given κ > 0,
let Nκ = �M0/κ� and define the finite set of overlapping closed intervals {In}Nκn=0
by In = [nκ, (n+2)κ], for n= 0,1, . . . ,Nκ−1, and INκ = [Nκκ,∞). It is evident
that for every x ∈R+, there is an n ∈ {0,1, . . . ,Nκ} such that

[x, x + κ] ⊂ In.(5.11)

By (5.10) and (3.23) (using 2κ instead of κ there), we can choose 0< κ < l
2MT

so
that

P
(
Nκ

max
n=0

{〈1In,/〉}<
ε

4

)
≥ 1− η̃.

Now define the set

A=
{
ζ ∈MF :

Nκ
max
n=0

{〈1In, ζ 〉}<
ε

4

}
,
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and suppose that {ζk}∞k=1 ⊂MF with ζk
w→ ζ ∈A, as k→∞. Then since each of

the sets In is closed, a trivial generalization of the Portmanteau theorem (cf. [2],
Theorem 2.1) to finite measures yields that for n= 0,1, . . . ,Nκ ,

lim sup
k→∞

〈1In, ζk〉 ≤ 〈1In, ζ 〉<
ε

4
.

Thus ζk ∈ A for sufficiently large k, which implies that A ⊂ MF is an open set.
This together with (3.19) and a second application of the Portmanteau theorem
yields

lim inf
r→∞ P

(
µ̄r(0) ∈A)≥ P(/ ∈A)≥ 1− η̃,

which implies by (5.11) that

lim inf
r→∞ P

(
sup
x∈R+

〈
1[x,x+κ], µ̄r(0)

〉
<
ε

4

)
≥ 1− η̃.(5.12)

Convergence of the fluid scaled workload processes; the constant γ . It is
well known that, for any queue operating under a nonidling service discipline,
the fluid scaled workload processes W̄ r(·) converge in distribution, under the
assumptions (3.14)–(3.22), to a process that a.s. equals its initial value for all
time. So, since processor sharing is a nonidling service discipline, the sequence
of processes {〈χ, µ̄r(·)〉} converges in distribution to a process that a.s. equals its
initial value for all time. For completeness, we sketch the verification of this fact
below. Consider the workload equation (2.2) on fluid scale. If we define the fluid
scaled load processes

L̄r(t)= 〈χ, µ̄r(0)〉 + 1

r

rĒr (t)∑
i=1

vri − t,(5.13)

then the fluid scaled workload equation can be rewritten for all t ≥ 0 as

〈χ, µ̄r(t)〉 = L̄r (t)+ sup
0≤s≤t

(
L̄r (s)

)−
.(5.14)

Note that by (3.16), (5.3) holds with g = χ . This together with the fact that
α〈χ, ν〉 = 1 implies by (5.13), (5.3) and (3.19) that L̄r (·) converges in distribution,
as r→∞, to the process that a.s. equals its initial value for all time, where that
initial value has the same distribution as 〈χ,/〉. The mappingϒ :D([0,∞),R)→
D([0,∞),R+) defined by ϒ(x(·))(t) = x(t) + sup{(x(s))− : 0 ≤ s ≤ t} is
continuous, so the continuous mapping theorem applied to (5.14) implies the
result.

We make use of the above fact in the following way. Having fixed l,M0,MT

and κ , we now choose a 0 < γ < min{κε/4, l/4, αT }. Then the fact that as
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r →∞, 〈χ, µ̄r(·)〉 converges in distribution to a process that is a.s. equal to its
initial value implies that

lim
r→∞P

(
sup
t∈[0,T ]

|〈χ, µ̄r(t)〉 − 〈χ, µ̄r(0)〉|< γ/4
)
= 1.(5.15)

Tail estimate for the state descriptor; the constant K . For any K > 0 such
that the distribution ν does not charge K , (3.15) implies that 〈χ1[0,K], νr 〉 →
〈χ1[0,K], ν〉 as r→∞, which implies by (3.16) that 〈χ1(K,∞), νr〉 →
〈χ1(K,∞), ν〉 as r→∞. So using (5.3), we have for any such K that

1

r

rĒr (·)∑
i=1

vri 1{vri >K} ⇒ α(·)〈χ1(K,∞), ν〉 as r→∞.(5.16)

Since, by (3.22), / does not charge any K a.s., we have by (3.19) that for any
K > 0,

〈χ1[0,K], µ̄r(0)〉⇒ 〈χ1[0,K],/〉 as r→∞.

Then, using the joint convergence in (3.19) as well as (3.21), we have for any
K > 0,

〈χ1(K,∞), µ̄r(0)〉⇒ 〈χ1(K,∞),/〉 as r→∞.

Since 〈χ1(K,∞), ν〉 → 0 and E[〈χ1(K,∞),/〉] → 0 as K→∞, we can choose a
K > 0 sufficiently large so that

lim inf
r→∞ P

(
sup
t∈[0,T ]

1

r

rĒr (t)∑
i=1

vri 1{vri >K} + 〈χ1(K,∞), µ̄r (0)〉< γ/5
)
≥ 1− η̃.(5.17)

Fine structure estimate for the state descriptor; the constant M. Now we define
M =K(γ4 − γ

5 )
−1, and consider (5.7) for each member of a finite set of functions

{gn}Nn=0, which we define in the following way. Let N = �T M/κ�, and for each
n = 0,1, . . . ,N , choose gn ∈ Cb(R+) such that gn is nonnegative, and for all
x ∈ R+, 1[nκ,(n+1)κ)(x) ≤ gn(x) ≤ 1[(n− 1

2 )κ,(n+ 3
2 )κ)

(x). Note that for n = 0 and

x ∈R+, 1[(n− 1
2 )κ,(n+ 3

2 )κ)
(x)= 1[0, 3

2κ)
(x). By (5.7), we have

lim
r→∞P

(
N⋂
n=0

{
sup

t∈[0,T−l]
1

r

rĒr (t+l)∑
i=rĒr (t)+1

gn(v
r
i )≤

ε

8
〈gn, ν〉

})
= 1,(5.18)

which implies that

lim
r→∞P

(
N⋂
n=0

{
sup

t∈[0,T−l]
1

r

rĒr (t+l)∑
i=rĒr (t)+1

1[nκ,(n+1)κ)(v
r
i )

≤ ε

8
〈1[(n−1/2)κ,(n+3/2)κ), ν〉

})
= 1,

(5.19)

where for n= 0, we interpret the right side of the inequality as ε
8〈1[0,(3/2)κ), ν〉.
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Finally, having chosen the constants l,M0,MT , κ, γ,K,M in such a way that
(5.6)–(5.19) hold, we define for each r > 0, the intersection Br of all of the events
appearing in (5.6), (5.8)–(5.10), (5.12), (5.15), (5.17) and (5.19). Since η̃ = η/8,
the above discussion implies that lim infr→∞P(Br) > 1 − η. We summarize the
results of this section in the following lemma.

LEMMA 5.2. Consider a sequence of processor sharing queues as defined
in Section 3.3, satisfying assumptions (3.14)–(3.22). Let T > 0 and 0 < ε,η < 1
be given. Then there exist strictly positive constants l,M0,MT , κ , γ,K,M, r0 and
events {Br}r>0, such that T/l is a positive integer,

P(Br)≥ 1− η for all r > r0,

and for each r > 0, on Br the following hold:

sup
t∈[0,T−l]

Ēr(t + l)− Ēr(t)≤ ε

4
,(5.20)

Ēr(T )≤ 2αT,(5.21)

〈1, µ̄r(0)〉 ∨ 〈χ, µ̄r(0)〉<M0,(5.22)

〈1[M0,∞),/〉<
ε

4
,(5.23)

MT =M0 + 2αT,(5.24)

κ <
l

2MT

,(5.25)

sup
x∈R+

〈1[x,x+κ], µ̄r(0)〉< ε

4
,(5.26)

γ <min{κε/4, l/4, αT },(5.27)

sup
t∈[0,T ]

∣∣〈χ, µ̄r(t)〉 − 〈χ, µ̄r(0)〉∣∣< γ/4,(5.28)

sup
t∈[0,T ]

1

r

rĒr (t)∑
i=1

vri 1{vri >K} + 〈χ1(K,∞), µ̄r (0)〉< γ/5,(5.29)

M =K
(
γ

4
− γ

5

)−1

,(5.30)

for N = �T M/κ� and all n ∈ {0,1, . . . ,N},

sup
t∈[0,T−l]

1

r

rĒr (t+l)∑
i=rĒr (t)+1

1[nκ,(n+1)κ)(v
r
i )≤

ε

8
〈1[(n−1/2)κ,(n+3/2)κ), ν〉.(5.31)
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As a final note, we remark that by (5.2),

sup
t∈[0,T ]

〈1, µ̄r(t)〉 ≤ 〈1, µ̄r(0)〉 + Ēr(T ),(5.32)

so by (5.22), (5.21), (5.27), (5.28) and (5.24), we have on Br for r > r0,

sup
t∈[0,T ]

(〈1, µ̄r(t)〉 ∨ 〈χ, µ̄r(t)〉)≤MT .(5.33)

5.2. Proof of tightness. In this section we prove the first half of Theorem 5.1,
that is, that the sequence of measure valued processes {µ̄r(·)} is tight. Recall that
to show tightness, it suffices by Jakubowski’s criterion (cf. [7], Theorem 3.6.4) to
show the following two properties:

TC.1. For each T > 0 and 0< η < 1, there is a compact subset CT,η of MF such
that

lim inf
r→∞ P

(
µ̄r (t) ∈ CT,η for all t ∈ [0, T ])≥ 1− η.

TC.2. For each g ∈C1
b(R+), the sequence of real valued processes {〈g, µ̄r(·)〉} is

tight.

Note that if we define 0g :MF → R by 0g(ζ )= 〈g, ζ 〉 for g ∈ C1
b(R+), then

{0g :g ∈ C1
b(R+)} defines a family of continuous real valued functions on MF

which is closed under addition and separates points of MF . Hence condition
TC.2 above satisfies condition (ii) of [7], Theorem 3.6.4. The proof of TC.2 will
follow from [10], Chapter 3, Theorem 7.2, upon verifying in Theorem 5.6 that
the usual compact containment and controlled oscillation conditions are satisfied
by {〈g, µ̄r(·)〉}. Although the compact containment condition just mentioned is an
immediate consequence of TC.1, we show it separately as part of Theorem 5.6,
since it is elementary and it is needed before we establish TC.1. Controlling the
oscillations of 〈g, µ̄r(·)〉 for Theorem 5.6 is the major difficulty in the above
agenda. Proving that we have this control ultimately revolves around the fact
that changes in this process over a short time interval depend on the arrival
process (which is easily controlled), the magnitude of the fluid scaled queue length,
〈1, µ̄r(·)〉, and the amount of mass concentrated near zero over that time interval
[cf. (5.2) and (3.13)]. We estimate 〈1, µ̄r(·)〉 from the fluid scaled workload,
〈χ, µ̄r(·)〉, and then leverage the fact that 〈χ, µ̄r(·)〉 converges in distribution to
a process that a.s. is equal for all time to its initial value, which has the same
distribution as 〈χ,/〉. To do this, we consider two events for µ̄r(·): the event
where the initial fluid scaled workload is smaller than some threshold, and its
complement. In Lemmas 5.3 and 5.4, we prove an upper bound for the fluid scaled
queue length on the first event, and a lower bound for the fluid scaled queue length
on the second event. Then in Lemma 5.5, we give an upper bound for the amount of
mass that µ̄r(t) can have concentrated near zero. Note that this is a result about the
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“fine” structure of the measure µ̄r(t), as opposed to its total mass (queue length)
or first moment (workload). It is an essential ingredient for completing the proof
of the controlled oscillation condition for Theorem 5.6, as well as for proving the
limit point properties in Section 5.3. Finally, the proof of tightness for Theorem 5.1
appears at the end of this section.

We begin by proving the three aforementioned lemmas. The first lemma
provides an upper bound for the fluid scaled queue length on the event that the
initial fluid scaled workload is below the threshold γ/2.

LEMMA 5.3. Let T > 0 and 0 < ε,η < 1. Let l,M0,MT , κ, γ,K,M, r0 be
the constants and {Br}r>0 be the events given by Lemma 5.2. Define Drγ ={〈χ, µ̄r(0)〉 ≤ γ/2}. Then on Br ∩Drγ , for r > r0,

sup
t∈[0,T ]

〈1, µ̄r(t)〉 ≤ ε.

PROOF. Subdivide [0, T ] into time intervals of length l (recall that l was
chosen so that T is an integer multiple of l). Fix r > r0. We will prove by induction
on n, that on Br ∩Drγ ,

sup
t∈[nl,(n+1)l]

〈1, µ̄r(t)〉 ≤ ε,(5.34)

for n = 0,1, . . . , T
l
− 1. We first verify the case n = 0. To start with we have on

Br ∩Drγ ,

〈1, µ̄r(0)〉 = 〈1[0,κ], µ̄r(0)〉 + 〈1(κ,∞), µ̄r(0)〉

≤ ε

4
+ 1

κ
〈χ, µ̄r(0)〉

≤ ε

4
+ γ/2

κ

≤ ε

2
,

(5.35)

where the first inequality is by (5.26) and Markov’s inequality, the second uses the
definition of Drγ and the last is by (5.27). Now take t ∈ [0, l]. Then on Br ∩Drγ ,

〈1, µ̄r(t)〉 ≤ 〈1, µ̄r(0)〉 + Ēr(l)≤ ε

2
+ ε

4
< ε,(5.36)

by (5.32), (5.35) and (5.20). So (5.34) holds for n= 0.
We now proceed by induction, having verified the first step, and assume

that (5.34) holds on Br ∩Drγ for some 0≤ n < T
l
−1. To show the statement holds

with (n+ 1) in place of n, we argue analogously to (5.36) by first showing that
〈1, µ̄r((n+1)l)〉 ≤ ε/2. To this end, we use an argument inspired in part by an idea
of Grishechkin (cf. [12], page 542). The idea is to consider two cases separately:
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the case where the queue length becomes zero during the interval [nl, (n + 1)l],
and the case where it does not. We have on Br ∩Drγ ,

〈χ, µ̄r(nl)〉 ≤ 〈χ, µ̄r(0)〉 + |〈χ, µ̄r(nl)〉 − 〈χ, µ̄r(0)〉|< γ

2
+ γ

4
< γ,(5.37)

by (5.28) and the definition of Drγ . Now, if 〈1, µ̄r(s)〉 is never zero for s ∈
[nl, nl + 4γ ] we can write

S̄rnl,nl+4γ =
∫ nl+4γ

nl
ϕ(〈1, µ̄r(s)〉) ds =

∫ nl+4γ

nl
〈1, µ̄r(s)〉−1 ds ≥ 4γ/ε,

since we have assumed that (5.34) holds for this n and 4γ < l by (5.27). This in
turn implies, by (5.37), that〈

1(S̄rnl,nl+4γ ,∞), µ̄
r(nl)

〉≤ 〈1(4γ /ε,∞), µ̄r(nl)〉
≤ ε

4γ
〈χ, µ̄r(nl)〉(5.38)

≤ ε

4γ
γ = ε

4
.

If on the other hand 〈1, µ̄r(s)〉 = 0 for some s ∈ [nl, nl+4γ ], then all mass present
in the system at time nl is gone by time s. More precisely, we have in this case,
by (5.2), that 〈

1(S̄rnl,s ,∞), µ̄
r (nl)

〉= 0,

which, since S̄rnl,s ≤ S̄rnl,nl+4γ , also implies that
〈
1(S̄rnl,nl+4γ ,∞), µ̄

r(nl)
〉= 0.(5.39)

Combining the above with (5.2), we see that in either case, on Br ∩Drγ ,〈
1, µ̄r

(
(n+ 1)l

)〉≤ 〈1(S̄rnl,(n+1)l ,∞), µ̄
r(nl)

〉+ Ēr((n+ 1)l
)− Ēr(nl)

≤ 〈1(S̄rnl,nl+4γ ,∞), µ̄
r(nl)

〉+ ε

4
(5.40)

≤ ε

2
,

by (5.27) and (5.20) for the second inequality, and by (5.39) and (5.38) for the third.
Now we can complete the proof as in (5.36). Using (5.2), we have on Br ∩Drγ for
any t ∈ [(n+ 1)l, (n+ 2)l],

〈1, µ̄r(t)〉 ≤ 〈1, µ̄r((n+ 1)l
)〉+ Ēr((n+ 2)l

)− Ēr((n+ 1)l
)≤ ε

2
+ ε

4
< ε,

where the second inequality is by (5.40) and (5.20). �
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The next lemma provides a lower bound for the fluid scaled queue length
process on the event where the initial fluid scaled workload is above the threshold
γ/2. A consequence of this is an upper bound for the rate at which S̄rt,t+h can
increase as a function of h.

LEMMA 5.4. Let T > 0 and 0< ε,η < 1. Let l,M0,MT , κ, γ,K,M, r0 be the
constants and {Br}r>0 be the events given by Lemma 5.2. Let D̆rγ be the comple-

ment of Drγ ; that is, D̆rγ = {〈χ, µ̄r(0)〉> γ/2}. Then on Br ∩ D̆rγ , for r > r0,

inf
t∈[0,T ]〈1, µ̄

r(t)〉 ≥ 1

M
,(5.41)

and

sup
t∈[0,T−h]

S̄rt,t+h ≤ hM,(5.42)

for any 0< h< T .

PROOF. For this we have adapted the proof of Lemma 4.4 in [6]. We have on
Br ∩ D̆rγ ,

γ

4
≤ inf
t∈[0,T ]〈χ, µ̄

r(t)〉
= inf
t∈[0,T ]

(〈χ1[0,K], µ̄r(t)〉 + 〈χ1(K,∞), µ̄r(t)〉)

≤ inf
t∈[0,T ]

(
K〈1[0,K], µ̄r(t)〉 + 1

r

rĒr (t)∑
i=1

vri 1{vri >K} + 〈χ1(K,∞), µ̄r (0)〉
)

≤ inf
t∈[0,T ]K〈1, µ̄

r(t)〉 + γ

5
,

where the three inequalities are by (5.28) and the definition of D̆rγ , (5.2) and (5.29),
respectively. Notice that to obtain the last two terms in the second inequality above
from (5.2), we have simply ignored any processing that has occurred for jobs with
initial service time requirements greater than K . Now we have

inf
t∈[0,T ]〈1, µ̄

r(t)〉 ≥ (γ /4)− (γ /5)
K

= 1

M
.

To prove (5.42), we have by (5.41) on Br ∩ D̆rγ , for 0< h< T ,

sup
t∈[0,T−h]

S̄rt,t+h ≤ h sup
t∈[0,T ]

ϕ
(〈1, µ̄r(t)〉)

≤ h

inft∈[0,T ]〈1, µ̄r(t)〉
≤ hM. �
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The next lemma gives, on Br ∩ D̆rγ , an upper bound for the amount of mass that
µ̄r(t) can have concentrated near zero for t ∈ [0, T ]. Note that by Lemma 5.3, on
Br ∩Drγ , the total mass of µ̄r (t) is bounded above by ε for t ∈ [0, T ].

LEMMA 5.5. Let T > 0 and 0 < ε,η < 1. Let l,M0,MT , κ, γ,K,M, r0 be
the constants, and {Br}r>0 be the events, given by Lemma 5.2. Recall that D̆rγ =
{〈χ, µ̄r(0)〉> γ/2}. Then on Br ∩ D̆rγ , for r > r0,

sup
t∈[0,T ]

〈1[0,κ], µ̄r(t)〉 ≤ ε/2.

PROOF. In this proof we only consider realizations in Br ∩ D̆rγ . Recall that
by Lemma 5.4, 〈1, µ̄r(t)〉 > 0 for all t ∈ [0, T ]. First, consider two jobs, i < j
for which vri , v

r
j ∈ [nκ, (n + 1)κ) for some integer n ≥ 0. If Urj /r ≤ t and

Urj /r −Uri /r ≥ l, then at time t we have

(
vrj − S̄rUrj /r,t

)− (vri − S̄rUri /r,t)= S̄rUri /r,Urj /r + vrj − vri
≥ Urj /r −Uri /r

supt∈[0,T ]〈1, µ̄r(t)〉
− κ

≥ l

MT

− κ
> 2κ − κ = κ,

where the last two inequalities are by (5.33) and (5.25), respectively. This implies
that at most one of

1(0,κ]
(
vri − S̄rUri /r,t

)
and 1(0,κ]

(
vrj − S̄rUrj /r,t

)
is nonzero. So for each n ≥ 0 and t ∈ [0, T ], all jobs arriving by time t and
satisfying 1[nκ,(n+1)κ)(v

r
i )1(0,κ](vri − S̄r

Uri /r,t
) = 1 must have arrived during the

(fluid scaled) time interval (s, s + l], for some s ∈ [0, t − l]. This gives us the
following estimate at time t , for each n= 0,1, . . . , �T M/κ�:

rĒr (t)∑
i=1

1[nκ,(n+1)κ)(v
r
i )1(0,κ]

(
vri − S̄rUri /r,t

)

≤ sup
s∈[0,t−l]

rĒr (s+l)∑
i=rĒr (s)+1

1[nκ,(n+1)κ)(v
r
i )1(0,κ]

(
vri − S̄rUri /r,t

)
,
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which implies that for each n= 0,1, . . . , �T M/κ�, we have

sup
t∈[0,T ]

1

r

rĒr (t)∑
i=1

1[nκ,(n+1)κ)(v
r
i )1(0,κ]

(
vri − S̄rUri /r,t

)

≤ sup
t∈[0,T−l]

1

r

rĒr (t+l)∑
i=rĒr (t)+1

1[nκ,(n+1)κ)(v
r
i ).

(5.43)

Next, for t ∈ [0, T ] and Uri /r ≤ t , we have by Lemma 5.4 that if vri ≥ T M + κ ,
then (vri − S̄rUri /r,t ) > T M + κ − T M = κ . Thus for n≥ �T M/κ� + 1, we have

1[nκ,(n+1)κ)(v
r
i )1(0,κ]

(
vri − S̄rUri /r,t

)= 0.(5.44)

Using (5.2), we have on Br ∩ D̆rγ ,

sup
t∈[0,T ]

〈
1[0,κ], µ̄r(t)

〉 ≤ sup
t∈[0,T ]

〈
1(0,κ](· − S̄r0,t ), µ̄r(0)

〉

+ sup
t∈[0,T ]

1

r

rĒr (t)∑
i=1

1(0,κ]
(
vri − S̄rUri /r,t

)

≤ sup
x∈R+

〈1[x,x+κ], µ̄r (0)〉

+
∞∑
n=0

sup
t∈[0,T ]

1

r

rĒr (t)∑
i=1

1[nκ,(n+1)κ)(v
r
i )1(0,κ]

(
vri − S̄rUri /r,t

)

≤ ε

4
+

�T M/κ�∑
n=0

sup
t∈[0,T−l]

1

r

rĒr (t+l)∑
i=rĒr (t)+1

1[nκ,(n+1)κ)(v
r
i )

≤ ε

4
+

�T M/κ�∑
n=0

ε

8
〈1[(n−1/2)κ,(n+3/2)κ), ν〉

≤ ε

4
+ ε

8

〈 ∞∑
n=0

1[(n−1/2)κ,(n+3/2)κ), ν

〉

= ε

4
+ ε

4
,

where the third inequality is by (5.26), (5.43) and (5.44), and the fourth inequality
is by (5.31). �

We are now ready to apply the previous three lemmas in order to verify
conditions that are sufficient to imply the tightness of {〈g, µ̄r(·)〉}, for g ∈C1

b(R+).
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The proof of the controlled oscillation condition splits into two cases. We use
Lemma 5.3 to prove it on Br ∩ Drγ and use Lemmas 5.4 and 5.5 to prove it on

Br ∩ D̆rγ .

THEOREM 5.6. Let g ∈ C1
b(R+), T > 0 and 0 < β,η < 1. Then there exist

M,δ > 0, and r0 > 0, such that r > r0 implies

P
(

sup
t∈[0,T ]

|〈g, µ̄r(t)〉| ≤M
)
≥ 1− η,(5.45)

P
(

sup
t∈[0,T−δ]

sup
h∈[0,δ]

|〈g, µ̄r(t + h)〉 − 〈g, µ̄r(t)〉| ≤ β
)
≥ 1− η.(5.46)

PROOF. Define ε = β/(2(‖g‖∞ ∨ 1)). Then by Lemma 5.2, there exist
constants l, M0, MT , κ , γ , K , M, r0 and events {Br}r>0 such that r > r0 implies
P(Br)≥ 1− η and on Br , (5.20)–(5.33) hold. Define

M = (‖g‖∞ ∨ 1)MT ,

δ = min
{
T/2, l,

β

4MMT (‖g′‖∞ ∨ 1)
, κ/M,1

}
.

(5.47)

We only consider r > r0 below. To prove (5.45), observe that on Br , by (5.33),

sup
t∈[0,T ]

|〈g, µ̄r(t)〉| ≤ ‖g‖∞ sup
t∈[0,T ]

〈1, µ̄r(t)〉

≤ ‖g‖∞MT

≤M.
To prove (5.46), consider first Drγ as before. On Br ∩ Drγ , we have by

Lemma 5.3,

sup
t∈[0,T−δ]

sup
h∈[0,δ]

|〈g, µ̄r(t + h)〉 − 〈g, µ̄r(t)〉| ≤ 2 sup
t∈[0,T ]

|〈g, µ̄r(t)〉|

≤ 2‖g‖∞ sup
t∈[0,T ]

〈1, µ̄r(t)〉

≤ 2‖g‖∞ε ≤ β.
We must show that the above estimate also holds on Br ∩ D̆rγ . First, observe that

on Br ∩ D̆rγ , a first order Taylor expansion of g gives the following estimate for all
0< h< T , t ∈ [0, T − h] and y ∈ (S̄rt,t+h,∞):∣∣g(y − S̄rt,t+h)− g(y)∣∣= ∣∣−S̄rt,t+hg′(wy)∣∣≤ hM‖g′‖∞(5.48)

for some wy ∈ [y − S̄rt,t+h, y], where the inequality follows by Lemma 5.4.
Now subtracting 〈g, µ̄r(t)〉 from both sides of (5.2) and using the fact that
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(1(0,∞)g)(· − S̄rt,t+h) = 1(S̄rt,t+h,∞)(·)g(· − S̄rt,t+h) for t ∈ [0, T − h] yields that

on Br ∩ D̆rγ ,

|〈g, µ̄r(t + h)〉 − 〈g, µ̄r(t)〉|

=
∣∣∣∣∣
〈
1(S̄rt,t+h,∞)(·)

(
g(· − S̄rt,t+h)− g(·)

)
, µ̄r (t)

〉
−
〈
1[0,S̄rt,t+h]g, µ̄

r (t)
〉

+ 1

r

rĒr (t+h)∑
i=rĒr (t)+1

(
1(0,∞)g

)(
vri − S̄rUri /r,t+h

)∣∣∣∣∣
≤
〈∣∣∣1(S̄rt,t+h,∞)(·)(g(· − S̄rt,t+h)− g(·))

∣∣∣, µ̄r (t)〉+ ‖g‖∞〈1[0,hM], µ̄r(t)〉
+ ‖g‖∞(Ēr(t + h)− Ēr(t))

≤ hM‖g′‖∞〈1, µ̄r(t)〉 + ‖g‖∞〈1[0,hM], µ̄r(t)〉
+ ‖g‖∞(Ēr(t + h)− Ēr(t)),

where the first inequality is by Lemma 5.4 and the second is by (5.48).
Now taking the supremum over h ∈ [0, δ] and t ∈ [0, T − δ], we see that on

Br ∩ D̆rγ ,

sup
t∈[0,T−δ]

sup
h∈[0,δ]

|〈g, µ̄r(t + h)〉 − 〈g, µ̄r(t)〉|

≤ sup
t∈[0,T−δ]

(
δM‖g′‖∞〈1, µ̄r(t)〉 + ‖g‖∞〈1[0,δM], µ̄r (t)〉

+ ‖g‖∞(Ēr(t + δ)− Ēr(t)))

≤ sup
t∈[0,T−δ]

(
β

4MT

〈1, µ̄r(t)〉 + ‖g‖∞〈1[0,κ], µ̄r(t)〉

+ ‖g‖∞(Ēr(t + l)− Ēr(t))
)

≤ β

4MT

MT + ‖g‖∞ ε2 + ‖g‖∞ ε4
≤ β

4
+ β

4
+ β

8
< β,

where the second inequality is by (5.47) and the third is by (5.33), Lemma 5.5
and (5.20). So the desired estimate holds on both Br ∩ Drγ and Br ∩ D̆rγ . Since
P(Br)≥ 1− η, this proves (5.46). �

PROOF OF TIGHTNESS FOR THEOREM 5.1. Recall that it suffices to show
conditions TC.1 and TC.2. Let T > 0 and 0< β,η < 1. To show TC.1, define

C̃T,η = {ζ ∈MF : 〈1, ζ 〉 ∨ 〈χ, ζ 〉 ≤MT

}
.
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Since 〈χ, ζ 〉 ≤MT implies 〈1[K,∞), ζ 〉 ≤MT /K , we have

sup
ζ∈C̃T ,η

〈1[K,∞), ζ 〉→ 0 as K→∞,

which implies that C̃T,η ⊂ MF is relatively compact (cf. [16], Theorem A 7.5).
Now by (5.33),

lim inf
r→∞ P

(
µ̄r (t) ∈ C̃T,η for all t ∈ [0, T ])≥ 1− η.

Define CT,η to be the closure of C̃T,η and TC.1 is proved. Finally, TC.2 follows
directly from Theorem 5.6 by applying a standard tightness criterion for real valued
processes (cf. [10], Chapter 3, Corollary 7.4). �

5.3. Proof of limit point properties. In this section we complete the proof of
Theorem 5.1 by showing that any limit point of the sequence {µ̄r(·)} is a.s. a
fluid model solution for the critical data (α, ν). In particular, we show that a.s.,
the sample paths of any such limit point µ̄2(·) have the properties (1)–(4) of
Section 3.1. Property (1) will follow from the a.s. continuity of the sample paths
of any limit point of {〈g, µ̄r(·)〉}, for g ∈ C1

b(R+). Property (2) will be a direct
consequence of Lemmas 5.3 and 5.5. We will show en route that limit points µ̄2(·)
satisfy t∗ = ∞ on {µ̄2(0) �= 0} and t∗ = 0 on {µ̄2(0) = 0} [cf. (5.50) and (5.51)
below]. This is to be expected in light of Lemma 4.4. Consequently, it will suffice
for the proof of property (3) to show that a.s. on the event {µ̄2(0) �= 0}, (3.3) holds
for all g ∈ C and all t ≥ 0. For this, we will use the dynamic equation satisfied
by µ̄r(·) [cf. (5.2)], together with a Riemann integral approximation, to obtain a
prelimit version of (3.3), and then we pass to the limit. Similarly for the proof of
property (4), it will suffice to show that a.s. on the event {µ̄2(0) = 0}, µ̄2(t) = 0
for all t ≥ 0.

Let µ̄2(·) be a limit point of {µ̄r (·)} and suppose {µ̄r ′(·)} ⊂ {µ̄r (·)} is a
subsequence such that µ̄r

′
(·) ⇒ µ̄2(·) as r ′ → ∞. To ease notation for the

remainder of the proof, we relabel r ′ as r , remembering that we have passed to
a subsequence which converges in distribution to µ̄2(·).

PROOF OF PROPERTY (1). To see that a.s. µ̄2(·) has continuous sample paths,
choose a countable set V ⊂ C1

b(R+) that separates elements of MF (cf. [10],
Chapter 3, Proposition 4.2 ff.). It follows from Theorem 5.6 [in particular (5.46)]
that for each g ∈ V ⊂ C1

b(R+), the real valued process 〈g, µ̄2(·)〉 a.s. has
continuous sample paths. Since V is a countable separating class for MF , this
implies that a.s., for every t ≥ 0, µ̄2(t−)= µ̄2(t). �

PROOF OF PROPERTIES (2) AND (4). As mentioned above, it suffices to show
that for each T > 0 we have a.s.,
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〈1{0}, µ̄2(t)〉 = 0 for all t ∈ [0, T ),(5.49)

µ̄2(t) �= 0 for all t ∈ [0, T ) on
{
µ̄2(0) �= 0

}
,(5.50)

µ̄2(t)= 0 for all t ∈ [0, T ) on
{
µ̄2(0)= 0

}
.(5.51)

To this end, let Qr and Q be the probability laws induced on D([0,∞),MF ) by
µ̄r (·) and µ̄2(·), respectively. For T > 0 fixed, define the sets

A′ =
{
ζ(·) ∈D([0,∞),MF ) : sup

t∈[0,T )
〈1{0}, ζ(t)〉> 0

}
,

A′′ =
{
ζ(·) ∈D([0,∞),MF ) : sup

t∈[0,T )
〈1, ζ(t)〉> 0

}
,

A′′′ =
{
ζ(·) ∈D([0,∞),MF ) : inf

t∈[0,T )〈1, ζ(t)〉 = 0
}
,

and let A = A′ ∪ (A′′ ∩ A′′′). Clearly, any sample path of µ̄2(·) which is not an
element of A satisfies (5.49)–(5.51). So it suffices to show that A is contained
in a Q-null set. For each n = 1,2, . . . , choose a pair 0 < εn,ηn < 1 such that∑∞
n=1 ηn <∞ and (εn, ηn)→ (0,0) as n→∞. Then by Lemma 5.2, for each n

there exist strictly positive constants ln,M0,n,MT,n, κn, γn,Kn,Mn, r0,n and events
{Brn : r > 0} such that r > r0,n implies P(Brn)≥ 1− ηn, and (5.20)–(5.31) hold on
Brn with the above constants in place of the analogous ones appearing there. For
each n, choose 0< cn < κn such that cn→ 0 as n→∞. Also define for each n,

A′n =
{
ζ(·) ∈D([0,∞),MF ) : sup

t∈[0,T )
〈1[0,cn), ζ(t)〉> εn

}
,

A′′n =
{
ζ(·) ∈D([0,∞),MF ) : sup

t∈[0,T )
〈1, ζ(t)〉> εn

}
,

A′′′n =
{
ζ(·) ∈D([0,∞),MF ) : inf

t∈[0,T )〈1, ζ(t)〉< 1/Mn

}
,

and let An = A′n ∪ (A′′n ∩ A′′′n ). Recall from the definition of the Skorohod
topology, that if C is a closed subset of MF , then sets of the form {ζ(·) ∈
D([0,∞),MF ) : ζ(t) ∈ C for all t ∈ [0, T )} are closed in D([0,∞),MF ), and so
their complements are open. Since for each n, the sets {ζ ∈MF : 〈1[0,cn), ζ 〉 ≤ εn},
{ζ ∈ MF : 〈1, ζ 〉 ≤ εn}, and {ζ ∈ MF : 〈1, ζ 〉 ≥ 1/Mn} are all closed subsets of
MF , we see that A′n,A′′n,A′′′n and An are open sets in D([0,∞),MF ). Notice that
the definition of A implies that

A⊂ {An i.o.
}= ∞⋂

k=1

∞⋃
n=k

An,
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so it suffices to show that Q(An i.o.)= 0. Let n be fixed for the moment. Since we
have chosen cn so that

sup
t∈[0,T ]

〈1[0,cn), µ̄r (t)〉 ≤ sup
t∈[0,T ]

〈1[0,κn], µ̄r(t)〉 ≤ sup
t∈[0,T ]

〈1, µ̄r(t)〉

for every r , combining Lemmas 5.3 and 5.5 yields the fact that on the entire event
Brn, for r > r0,n,

sup
t∈[0,T )

〈1[0,cn), µ̄r(t)〉 ≤ sup
t∈[0,T ]

〈1[0,cn), µ̄r(t)〉 ≤ εn.

Similarly, combining Lemmas 5.3 and 5.4 yields the fact that on Brn for r > r0,n,
either

sup
t∈[0,T )

〈1, µ̄r(t)〉 ≤ sup
t∈[0,T ]

〈1, µ̄r(t)〉 ≤ εn
or

inf
t∈[0,T )〈1, µ̄

r(t)〉 ≥ inf
t∈[0,T ]〈1, µ̄

r(t)〉 ≥ 1/Mn.

These three facts together imply that for r > r0,n, Qr (An) ≤ 1− P(Brn). So since
P(Brn) ≥ 1 − ηn for r > r0,n, we have lim supr→∞Qr (An) ≤ ηn. Now since

Qr w→Q as r→∞, and since An is an open set, the Portmanteau theorem (cf. [2],
Theorem 2.1) yields

Q(An)≤ lim inf
r→∞ Qr (An)≤ lim sup

r→∞
Qr (An)≤ ηn,

which implies by choice of the ηn and the Borel–Cantelli lemma that
Q(An i.o.)= 0. �

PROOF OF PROPERTY (3). Recall that since we have established that a.s.,
t∗ =∞ on {µ̄2(0) �= 0}, and t∗ = 0 on {µ̄2(0)= 0}, it suffices to show that a.s. on
{µ̄2(0) �= 0}, (3.3) holds for all g ∈ C and all t ≥ 0. We begin by restricting our
attention to a slightly smaller class of functions than C. We will establish (3.3) for
functions in this smaller class, and then make a simple generalization at the end of
the proof. Define

C̃ = {g ∈ C :g′ has compact support in R+
}
.

Recall that we always assume g is extended to be identically zero on (−∞,0)
so that functions of the form g(· − a) are well defined on R+ for any a > 0. In
particular, for g ∈ C̃ this extension yields a function in C1

b(R) that together with
its first derivative is uniformly continuous on R. We will use this fact below to
simplify certain technical details involving Taylor’s formula applied near zero.

Fix g ∈ C̃ , and observe that since g is continuous and bounded, the assumptions
of Lemma A.2 are clearly satisfied. Thus we have as r→∞,

X̄rg(·)⇒ X̄g(·),
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where X̄rg(t) = 1
r

∑rĒr (t)
i=1 g(vri ) and X̄g(t) = αt〈g, ν〉 for all t ≥ 0. The function

g ≡ 1 also satisfies the assumptions of Lemma A.2, and so we have Ēr(·)⇒ α(·)
as r→∞. Also recall that we have passed to a subsequence so that µ̄r(·)⇒ µ̄2(·)
as r →∞. Now since the limits X̄g(·) and α(·) are deterministic, we see that
the convergence in the three results just mentioned can be taken to be joint
convergence in distribution (cf. [2], Theorem 4.4). Furthermore, by invoking the
Skorohod representation theorem, we may assume that there is a single underlying
probability space (Q,F ,P) on which all of the random elements in question are
defined, and such that the joint convergence occurs a.s. That is, we have a.s. as
r→∞,

(
µ̄r (·), X̄rg(·), Ēr(·)

)−→ (
µ̄2(·), X̄g(·), α(·)),(5.52)

where the convergence is in the product topology of D([0,∞),MF ) ×
D([0,∞),R) × D([0,∞),R), where each of the terms in the product is en-
dowed with the relevant Skorohod J1-topology. Notice that since each of the limits
in (5.52) is a.s. continuous, the convergence is in fact uniform on compact time in-
tervals.

Consider any ω ∈ {µ̄2(0) �= 0} such that (5.52) and properties (1) and (2) of
Section 3.1 hold, and such that t∗ =∞; that is, we consider any outcome for which
the limiting initial fluid scaled queue length 〈1, µ̄2(0)〉 is strictly positive, and such
that ω is not in any “exceptional” set. We first show that for such an ω, (3.3)
holds for all t ≥ 0 and the chosen g ∈ C̃ . In what follows, all random elements
are understood to be evaluated at this particular ω, and most references to it are
suppressed.

Our goal will be to derive a prelimit version of (3.3), which the path µ̄r (·) ∈
D([0,∞),MF ) satisfies for sufficiently large r . We will then pass to the limit
in this relation to obtain (3.3) for µ̄2(·). We start by noting that since g ∈ C̃ , g′
is uniformly continuous on R+, so there is a continuous nondecreasing function
ψg : [0,∞)→[0,∞) with ψg(0)= 0, such that for any h ∈R,

sup
x∈R

‖g′(x + h)− g′(x)‖ ≤ψg(|h|).(5.53)

Fix T > 0. By (5.52), the fact that µ̄2(·) is continuous, and the fact that
for ω, µ̄2(t) �= 0 for all t ∈ [0, T ], we may assume that r is large enough so that
inft∈[0,T ]〈1, µ̄r(t)〉> 0. Then for such an r we always have

Mr = ‖〈1, µ̄r(·)〉‖T <∞,(5.54)

mr = ‖〈1, µ̄r(·)〉−1‖T <∞.(5.55)
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Now let t ∈ [0, T ], and for any n= 1,2, . . . and j = 0,1, . . . , n− 1, define tj = j t
n

and tj = tj+1. Then we have

〈g, µ̄r(t)〉 − 〈g, µ̄r(0)〉 =
n−1∑
j=0

(〈g, µ̄r(tj )〉 − 〈g, µ̄r(tj )〉)

=
n−1∑
j=0

(〈g, µ̄r(tj )〉 − 〈g(· − S̄r
tj ,t

j ), µ̄
r(tj )〉)

+
n−1∑
j=0

(〈g(· − S̄r
tj ,t

j ), µ̄
r (tj )〉 − 〈g, µ̄r(tj )〉)

=
n−1∑
j=0

1

r

rĒr (tj )∑
i=rĒr (tj )+1

g(vri − S̄rUri /r,tj )

+
n−1∑
j=0

〈g(· − S̄r
tj ,t

j )− g(·), µ̄r (tj )〉,

(5.56)

where the first term in the last equality is by (5.2) and the fact that (1(0,∞)g)≡ g,
since g(0)= 0 for g ∈ C̃.

We handle the two terms in (5.56) separately. To begin with, since g ∈ C̃ has
been extended to be an element of C1

b(R), we have the following first order Taylor
expansion for each j = 0,1, . . . , n− 1 and each x ∈R+:

g(x − S̄r
tj ,t

j )− g(x)= g′(wxj )hj ,(5.57)

where hj =−S̄r
tj ,t

j and wxj ∈R is in the interval [x − S̄r
tj ,t

j , x]. Note that

max
j<n

|hj | =max
j<n

|S̄r
tj ,t

j | ≤ t

n
‖〈1, µ̄r(·)〉−1‖T = tmr

n
.(5.58)

For each j ∈ {0, . . . , n − 1}, let zj = sups∈[tj ,tj )〈1, µ̄r(s)〉−1 and define h̃j =
−zj tn . Then

n−1∑
j=0

|hj − h̃j | =
n−1∑
j=0

∣∣∣∣zj tn − S̄rtj ,tj
∣∣∣∣

=
n−1∑
j=0

(
zj
t

n
− S̄r

tj ,t
j

)
(5.59)

=
n−1∑
j=0

(
zj
t

n

)
− S̄r0,t .
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For each n = 1,2, . . . and s ∈ [0, t), let kn(s) = ∑n−1
j=0 zj1[tj ,tj )(s) and define

kn(t)= 0. Now we can make the following estimate for the second term in (5.56):

∣∣∣∣∣
n−1∑
j=0

〈g(· − S̄r
tj ,t

j )− g(·), µ̄r (tj )〉 −
n−1∑
j=0

〈g′(·)h̃j , µ̄r(tj )〉
∣∣∣∣∣

≤
n−1∑
j=0

sup
x∈R+

∣∣g(x − S̄r
tj ,t

j )− g(x)− g′(x)h̃j
∣∣〈1, µ̄r(tj )〉

=
n−1∑
j=0

sup
x∈R+

∣∣g′(wxj )hj − g′(x)h̃j ∣∣〈1, µ̄r(tj )〉
(5.60)

≤ ‖〈1, µ̄r(·)〉‖T
n−1∑
j=0

sup
x∈R+

(|g′(wxj )− g′(x)| |hj | + |g′(x)| |hj − h̃j |)

≤Mr

(
nψg

(
tmr

n

)
tmr

n
+ ‖g′‖∞

(
n−1∑
j=0

(
zj
t

n

)
− S̄r0,t

))

=Mr

(
ψg

(
tmr

n

)
tmr + ‖g′‖∞

(∫ t

0
kn(s) ds −

∫ t

0
〈1, µ̄r(s)〉−1 ds

))
.

In the third line above we have used the Taylor expansion (5.57). The last in-
equality above then follows from (5.54), (5.53), (5.58) and (5.59). The substi-
tution of the second integral in the last line follows by (5.55) and (3.13). Now
we let n→∞ in the above inequality. By the continuity of ψg and the fact that
ψg(0)= 0, we see that the first term in the outer parentheses tends to zero. Note
that kn(s)→ 〈1, µ̄r(s)〉−1, as n→∞, for any s ∈ [0, t) at which 〈1, µ̄r(·)〉−1 is
continuous. Since it is continuous for almost every s (the path µ̄r(·) is right con-
tinuous with finite left limits), the second term in the outer parentheses tends to
zero by (5.55) and bounded convergence. Furthermore, we note that

n−1∑
j=0

〈g′(·)h̃j , µ̄r(tj )〉 = −
n−1∑
j=0

〈g′, µ̄r(tj )〉zj t
n
,

and that as n→∞,

−
n−1∑
j=0

〈g′, µ̄r(tj )〉zj t
n
→−

∫ t

0

〈g′, µ̄r(s)〉
〈1, µ̄r(s)〉 ds,

by (5.54), (5.55) and bounded convergence, since the function 〈g′, µ̄r(·)〉
〈1, µ̄r(·)〉−1 is also continuous for almost every s. Together with the esti-
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mate (5.60), this implies that as n→∞,

n−1∑
j=0

〈g(· − S̄r
tj ,t

j )− g(·), µ̄r (tj )〉 −→−
∫ t

0

〈g′, µ̄r(s)〉
〈1, µ̄r(s)〉 ds.(5.61)

We handle the first term of (5.56) in a similar (although simpler) fashion. Once
again we can use a first order Taylor expansion for each summand appearing in
this term:

g(vri − S̄rUri /r,tj )= g(v
r
i )+ g′(wij )hij ,(5.62)

where hij =−S̄r
Uri /r,t

j , and wij ∈ [vri − S̄rUri /r,tj , v
r
i ]. Since

∣∣tj − (Uri /r)∣∣≤ t/n for

each pair j, i in the first term of (5.56), we have as before that

max
j,i

|hij | ≤
t

n
‖〈1, µ̄r(·)〉−1‖T = tmr

n
.(5.63)

Now using the Taylor expansion (5.62) along with (5.63) and recalling that

X̄rg(t)= 1
r

∑rĒr (t)
i=1 g(vri ), we have
∣∣∣∣∣
(
n−1∑
j=0

1

r

rĒr (tj )∑
i=rĒr (tj )+1

g(vri − S̄rUri /r,tj )
)
− X̄rg(t)

∣∣∣∣∣
=
∣∣∣∣∣
n−1∑
j=0

1

r

rĒr (tj )∑
i=rĒr (tj )+1

g′(wij )hij

∣∣∣∣∣≤ Ēr(t)‖g′‖∞ tm
r

n
,

(5.64)

which tends to zero as n→∞. By combining this fact with (5.61), we can let
n→∞ in (5.56) to obtain the relation

〈g, µ̄r(t)〉 = 〈g, µ̄r(0)〉 −
∫ t

0

〈g′, µ̄r(s)〉
〈1, µ̄r(s)〉 ds +

1

r

rĒr (t)∑
i=1

g(vri ),(5.65)

for each t ∈ [0, T ]. We would like to let r→∞ in this relation to obtain

〈g, µ̄2(t)〉 = 〈g, µ̄2(0)〉 −
∫ t

0

〈g′, µ̄2(s)〉
〈1, µ̄2(s)〉 ds + αt〈g, ν〉,(5.66)

for each t ∈ [0, T ]. For this, fix t ∈ [0, T ]. By (5.52), we have that the left side, as
well as each of the first and third terms on the right side of (5.65), converges to
the corresponding term in (5.66). Similarly, (5.52), (5.54) and (5.55) imply that the
integrands in the second term on the right side of (5.65) are uniformly bounded,
and converge pointwise on [0, t] to the integrand in the second term on the right
side of (5.66). Thus the integrals converge by bounded convergence, and it is clear
that we obtain (5.66) from (5.65) by letting r→∞.

We have shown that for the given g ∈ C̃ , a.s. on {µ̄2(0) �= 0}, (3.3) holds for all
t ∈ [0, T ]. Since T > 0 was arbitrary, we may replace t ∈ [0, T ] by t ≥ 0 in this
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statement. Notice that the exceptional set in the above statement may depend on g
[cf. (5.52)]. We now show that a.s. on {µ̄2(0) �= 0}, (3.3) holds for all t ≥ 0 and all
g ∈ C̃. For this, suppose that there are functions gk, g ∈ C̃, k = 1,2, . . . , such that
{gk}∞k=1 and {g′k}∞k=1 are uniformly bounded and as k→∞,

gk→ g and g′k → g′,(5.67)

pointwise on R+. Suppose further that for a given ω ∈ {µ̄2(0) �= 0} such that
µ̄2(·) is continuous and t2 =∞, (3.3) holds for each k; that is, we have for each
k = 1,2, . . . , and t ≥ 0,

〈gk, µ̄2(t)〉 = 〈gk, µ̄2(0)〉 −
∫ t

0

〈g′k, µ̄2(s)〉
〈1, µ̄2(s)〉 ds + αt〈gk, ν〉.(5.68)

Letting k → ∞ in (5.68), it follows by (5.67) and bounded convergence that
the left side as well as the first and third terms on the right side of (5.68)
converge respectively to the corresponding terms of (3.3). Similarly, since µ̄2(·)
is continuous and t∗ = ∞, the integral term also converges by (5.67) and two
applications of bounded convergence. Thus for this ω, we obtain (3.3) from (5.68)
by letting k→∞.

Thus, to show that a.s. on {µ̄2(0) �= 0}, (3.3) holds for all t ≥ 0 and all
g ∈ C̃ , it suffices to show that there is a countable subset V ⊂ C̃ such that
for any g ∈ C̃, there is a sequence {gk}∞k=1 ⊂ V that together with {g′k}∞k=1 is
uniformly bounded and satisfies (5.67). One way to construct such a set V is the
following: For each k = 1,2, . . . and j = 1, . . . , k2, let Ok

j be the open interval

((j − 1)/k, (j + 1)/k)⊂R+. Then for each k, Ok = {Ok
j }k

2

j=1 is an open cover of

the compact interval [1/k, k]. Let Gk = {gkj }k
2

j=1 be a partition of unity subordinate

to the open cover Ok. More precisely, Gk is defined such that for each k and
j = 1,2, . . . , k2, gkj : R+ → [0,1] is a smooth function with support contained in

Ok
j , and such that for each x ∈ [1/k, k], ∑k2

j=1 g
k
j (x)= 1. Let G̃k be the set of all

finite linear combinations of elements of Gk with rational coefficients, and let V k

be the set of all functions of the form

g(x)=
∫ x

0
g̃(y) dy,

where g̃ ∈ G̃k . Clearly, the set V =⋃∞
k=1V

k is a countable subset of C̃. To see that
V has the desired properties, suppose g ∈ C̃ . Approximate g′ first by defining for
each k = 1,2, . . . ,

g′k =
k2∑
j=1

ckjg
k
j ,

where ckj is a rational number chosen such that |ckj − g′(j/k)|< 1/k. Let gk(x)=∫ x
0 g

′
k(y) dy. Then, it can be verified that {gk}∞k=1 ⊂ V and that (5.67) is satisfied.



FLUID LIMIT OF A PROCESSOR SHARING QUEUE 855

Finally, we show that in fact a.s. on {µ̄2(0) �= 0}, (3.3) holds for all t ≥ 0 and all
g ∈ C. For this, fix g ∈ C. For n= 1,2, . . . , choose a function ψn ∈C1

b(R+) such
that ψn(x) ∈ [0,1] and |ψ ′

n(x)| ≤ 2 for all x ∈R+, ψn ≡ 1 on [0, n] and ψn ≡ 0 on
[n+ 1,∞). Let ĝn = ψng, and note that {ĝn}∞n=1, {ĝ′n}∞n=1 are uniformly bounded
and that ĝn→ g, and ĝ′n→ g′ pointwise on R+ as n→∞. Since ĝ′n has compact
support, we see that ĝn ∈ C̃. Therefore, a.s. on {µ̄2(0) �= 0}, (3.3) holds for all
t ≥ 0 and for each of the functions ĝn. By the same argument as that appearing
after (5.68), this implies that (3.3) also holds for g. This completes the proof of
Theorem 5.1. �

5.4. Proof of convergence to fluid model solutions.

PROOF OF THEOREM 3.2. By Theorem 5.1, the sequence {µ̄r(·)} of measure
valued processes is tight, and any limit point µ̄2(·) has sample paths which a.s.
are fluid model solutions for the critical data (α, ν). By (3.19), µ̄2(0) is equal in
distribution to /, so it remains to show that µ̄2(·) is unique in law. Theorem 3.1
asserts that fluid model solutions are unique given an initial value ξ ∈Mc

F = {ζ ∈
MF : 〈1{x}, ζ 〉 = 0 for all x ∈ R+}. More precisely, given a ξ ∈ Mc

F , the unique
fluid model solution µ̄(·) for critical data (α, ν) with initial value µ̄(0) = ξ is
given by C(ξ), where C :Mc

F → D([0,∞),MF ) is the mapping introduced in
Section 4.3. Since µ̄2(0) is equal in distribution to /, we have by (3.22) that
µ̄2(0) ∈Mc

F a.s. Thus we see that a.s.,

µ̄2(·)=C(µ̄2(0)).(5.69)

By Lemma 4.9, the mapping C is measurable. So, the law of µ̄2(·) is uniquely
determined by the law of the random measure /, which completes the proof. �

APPENDIX

Here we prove two ancillary lemmas which are needed in several places
throughout the paper. The first lemma provides an equivalent formulation of
assumption (3.22), which is better suited to our analysis in Section 5. The second
lemma provides a basic functional weak law of large numbers, which we include
for completeness.

LEMMA A.1. Let / be a random element of MF . Then the following are
equivalent:

(i) Almost surely, 〈1{x},/〉 = 0 for all x ∈R+.
(ii) For each ε > 0,

lim
κ↓0

P
(

sup
x∈R+

〈1[x,x+κ],/〉< ε
)
= 1.
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PROOF. The implication (ii) ⇒ (i) is straightforward. We prove (i) ⇒ (ii) by
contradiction. Suppose that (ii) does not hold. Then there exists an ε > 0 and a
sequence κn such that κn ↓ 0 as n→∞, and

lim inf
n→∞ P

(
sup
x∈R+

〈1[x,x+κn],/〉 ≥ ε
)
> 0.(A.1)

Define

An =
{
ζ ∈MF : sup

x∈R+
〈1[x,x+κn], ζ 〉 ≥ ε

}
,

and define A =⋂n An. Since An ⊃ An+1, (A.1) implies that P(/ ∈ A) > 0. We
claim that any ζ ∈A has an atom, which yields a contradiction to (i). To see this,
let ζ ∈A, and define

Bn =
{
x ∈R+ : 〈1[x,x+κn], ζ 〉 ≥

ε

2

}
.

The setsBn are nonempty since ζ ∈A. Suppose {xk}∞k=1 ⊂ Bn and xk→ x ∈R+ as
k→∞. Since there exists a sequence of closed intervals {Ik}∞k=1 such that for each
k = 1,2, . . . , Ik+1 ⊂ Ik , Ik ⊃ [xk, xk + κn] ∪ [x, x + κn], and

⋂
k Ik = [x, x + κn],

the fact that 〈1Ik , ζ 〉 ≥ 〈1[xk,xk+κn], ζ 〉 ≥ ε/2 implies that x ∈ Bn. So the sets Bn
are closed. Moreover, ζ ∈MF implies that the sets Bn are bounded, and therefore
compact. Finally, Bn ⊃ Bn+1 implies that B = ⋂n Bn �= ∅. So continuity from
above of ζ implies that for any x ∈ B , 〈1{x}, ζ 〉 ≥ ε/2; that is, x is an atom of ζ .

�

LEMMA A.2. Consider a sequence of real numbers r ∈ (0,∞) such that
r→∞. For each r , let {uri }∞i=1 be a sequence of independent nonnegative random
variables, such that {uri }∞i=2 are i.i.d. Assume for each r that E[ur1] <∞ and
E[ur2]−1 = αr ∈ (0,∞). For each r , let {vri }∞i=1 be an i.i.d. sequence of strictly
positive random variables with common distribution νr . Let α ∈ (0,∞), let ν be a
probability distribution on R+, and let g : R+→R be a Borel measurable function
that is ν-a.e. continuous and satisfies 〈|g|, ν〉<∞ and 〈|g|, νr〉<∞ for every r .
Assume that the following asymptotic assumptions hold as r→∞:

αr −→ α,(A.2)

νr
w−→ ν,(A.3)

〈g+, νr〉 −→ 〈g+, ν〉,(A.4)

〈g−, νr〉 −→ 〈g−, ν〉,(A.5)

E[ur1]/r −→ 0,(A.6)

E[ur2;ur2 > r] −→ 0.(A.7)
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Let Ur0 = 0, Uri =
∑i
j=1 u

r
j , i = 1,2, . . . and for t ≥ 0, let Er(t) = sup{i ≥ 0 :

Uri ≤ t}, Ēr(t) = 1
r
Er(rt), X̄rg(t) = 1

r

∑rĒr (t)
i=1 g(vri ) and X̄g(t) = αt〈g, ν〉. Then

as r→∞,

X̄rg(·)⇒ X̄g(·).

PROOF. It suffices to show that for each T > 0,

‖X̄rg(·)− X̄g(·)‖T ⇒ 0 as r→∞,(A.8)

where ‖ · ‖T denotes the supremum norm over [0, T ]. Note that both g+ and g−
themselves satisfy the conditions of Lemma A.2 and that X̄rg(·) and X̄g(·) are linear
in g. So it is sufficient to show that (A.8) holds with g+ in place of g.

We require a condition on the tails of the distributions of the members of the
sequence {g+(vri )}∞i=1 which will imply a weak law of large numbers. Since g+ is
ν-a.e. continuous, the distribution νr

g+ of g+(vr1) converges weakly as r→∞ to

the distribution νg+ , where νg+(A) = ν({x ∈ R+ :g+(x) ∈ A}), for any Borel set
A⊂R+. By (A.4), we also have as r→∞,

〈χ, νrg+〉 = 〈g+, νr〉 −→ 〈g+, ν〉 = 〈χ, νg+〉<∞.(A.9)

Since νg+ can have at most countably many atoms, we can always choose an
arbitrarily large K > 0 so that χ1[0,K] is νg+ -a.e. continuous and therefore

〈χ1[0,K], νrg+〉 −→ 〈χ1[0,K], νg+〉 as r→∞.

Combined with (A.9), this implies that

E[g+(vr1);g+(vr1) > r] −→ 0 as r→∞.(A.10)

Together, (A.4) and (A.10) imply by the weak law of large numbers for triangular
arrays that, for t ≥ 0 fixed,

1

r

�rt�∑
i=1

g+(vri )(⇒ t〈g+, ν〉 as r→∞.(A.11)

Verification of this fact uses standard truncation arguments hinging on (A.10)
(cf. [9], pages 41–43, e.g.). Since the right and left members of (A.11) are
nondecreasing as functions of t , and the right side defines a deterministic process
that is uniformly continuous on each compact time interval, the convergence
in (A.11) is actually uniform on compact time intervals; that is, for each T > 0,

sup
t∈[0,T ]

∣∣∣∣∣1r
�rt�∑
i=1

g+(vri )− t〈g+, ν〉
∣∣∣∣∣⇒ 0 as r→∞.(A.12)

Our assumptions (A.2), (A.6) and (A.7) on {uri }∞i=1 imply by the weak law of
large numbers for renewal processes that, for each T > 0, ‖Ēr (·) − α(·)‖T ⇒ 0
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as r →∞, where α(t) = αt . Since α(·) is deterministic, we can combine this
with (A.12) using the random time change theorem (cf. [2], Section 17) to obtain
for each T > 0 as r→∞,∥∥∥∥∥1

r

rĒr (·)∑
i=1

g+(vri )− α(·)〈g+, ν〉
∥∥∥∥∥
T

⇒ 0.(A.13)
�
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