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This paper contains an asymptotic analysis of a fluid model for a heavily
loaded processor sharing queue. Specifically, we consider the behavior of
solutions of critical fluid models as time approachesThe main theorems of
the paper provide sufficient conditions for a fluid model solution to converge
to an invariant state and, under slightly more restrictive assumptions, provide
a rate of convergence. These results are used in a related work by Gromoll for
establishing a heavy traffic diffusion approximation for a processor sharing
queue.

1. Introduction. This paper is a sequel to [10], which establishes a fluid (or
functional law of large numbers) approximation for a heavily loaded processor
sharing queue. In [10], a stochastic procg$9 taking values inMg, the space of
finite, nonnegative Borel measures Bn = [0, co) endowed with the topology
of weak convergence, is used to track the evolution in time of the state of a
processor sharing queue. At timeu (¢) is the measure that has one unit of mass
at the residual service time of each job present in the system at tifrem the
measure-valued state descriptor w(-), one can recover the traditional performance
processes, such as the queue length and workload processes (cf. [10], Section 2.3).
Under mild conditions, it is proved in [10] that the fluid scaled state descriptors
for a sequence of heavily loaded processor sharing queues converge in distribution
to a measure-valued stochastic process, which we refer tdlad Emit (cf. [10],
Theorem 3.2). Almost every sample path of this fluid limit is a solution of a certain
(deterministic) critical fluid model. In this paper, we study the asymptotic behavior
as time tends teo of the solutions of this critical fluid model.

In [1] and [2], Bramson studied the asymptotic behavior of solutions of critical
fluid models associated with open multiclass queueing networks operating under
two HL (head-of-the-line) service disciplines. Then, in [3], Bramson showed
that, if the critical fluid model associated with an open multiclass HL queueing
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network has a certain asymptotic property, then a condition known as state space
collapse holds. In a companion work to [3], Williams [14] showed that state space
collapse, plus an algebraic condition on the first-order queueing model data, is
sufficient to imply a heavy traffic diffusion approximation for an open multiclass
gqueueing network operating under an HL service discipline. To illustrate this
modular approach, Bramson [3] and Williams [14] applied their results, together
with the results of [1] and [2], to obtain new heavy traffic diffusion limit theorems
for FIFO networks of Kelly type and for networks with an HLPPS (head-of-
the-line proportional processor sharing) service discipline. Processor sharing, as
considered in this paper, is not an HL service discipline. However, an analogue of
the modular approach of [3] and [14] is developed for a processor sharing queue
in [9]. The results proved here are used in [9] to prove a state space collapse result,
which in turn is used in [9] to establish a heavy traffic diffusion approximation for
a processor sharing queue.

To state our results, we need to recall the description oftthiesal fluid model
from [10]. The model has two parametesse (0, co) and a Borel probability
measurev on R, that does not charge the origin(f0}) = 0] and has a finite
first moment [f]R<+ xv(dx) < oo]. These parameters correspond to parameters in
the queueing system. Specifically,corresponds to the long-run average rate at
which jobs arrive to the system, and the probability measwerresponds to the
distribution of the i.i.d. service times for those jobs. The qualiréical refers to
the fact that we are interested in the critically loaded regime where the service and
arrival rates are equal. Thus, it is assumed throughout that

(1.1) o= (/R+ xv(dx))_l.

The pair (e, v) is referred to as the data for the critical fluid model, or simply
the critical data. Here we only consider solutions of a critical fluid model, and
we simply refer to these as fluid model solutions. In particular, the assumption of
critical data is implicit.

A fluid model solutionii(-) is a deterministic function of time, taking values
in M, that satisfies conditions (C1)—(C4). To state these conditions, we need to
introduce some notation. For a Borel sétc R, let 14 denote the indicator
function of the setA. To simplify the notation, we use the shorthand notation
in place ofig,. For ¢ € MF, the real-valued projection af associated with a
bounded, real-valued, Borel measurable funcgotefined onR is denoted by
(g, ¢) = [R+ g(x)¢(dx). The dynamic conditions [see (C3)] that aiie-valued
function () must satisfy in order to be a fluid model solution involve the real-
valued projections ofi(-) over the class of functions

e ={g€Cj(Ry):g(0)=0,g'(0)=0}.

Here C,%(RJF) denotes the space of once continuously differentiable real-valued
functions defined o, that, together with their first derivatives, are bounded
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on R,. The requirement thag and g’ vanish at the origin is imposed to avoid
possible singular behavior df, ii(-)) and (g, ii(-)), associated with mass in
the fluid model abruptly disappearing as it reaches the origin. Such behavior
corresponds to jobs in the queueing system abruptly departing when their residual
service times reach 0.

A fluid model solution is a function 1:[0, c0) — Mg that satisfies the
following four conditions.

(C1) The functioni(-) is continuous.
(C2) Foreach >0, (1, (1)) = 0.
(C3) Foreacly € €, ju(-) satisfies
t (o [
(1.2) (g, 20 = (g, 0) = [ ELE ds -+t )
forall0<r <t*=inf{s >0:(1, ix(s)) = 0}.
(C4) Forallt > r*, (1, i(r)) =0.

See [10], Section 3.1, for an interpretation of (C1)—(C4) in terms of the dynamics
of a processor sharing queue. In fact, using dominated convergence and (C2), it
is straightforward to see that: [0, c0) —> MF satisfies (C1)—(C4) if and only if
it satisfies these conditions with replaced by® = {g € Ci(R): g(0) = 0}. The
more restictive class was used in [10] as it simplified the proof of the existence of
solutions. In addition, as is proved in [10] and explained below, for the nontrivial
fluid model solutions considered heré = oco.

To facilitate the present discussion, we review some results from [10] concern-
ing fluid model solutions. Let

ME =16 € Mp: (1), &) =0forallx e Ry},

wherec stands for continuous. Theorem 3.1 in [10] states that, for each measure
& € Mg, there exists a unique fluid model solutigia(-) such thatjis (0) = &.
If £ =0, where0O denotes the zero measure, then, by (¢4);) = 0. Let

MeP = (€ € ME:E #0},

wherep stands for positive. In [10], it was also shown that, for M7, jis () €
,M,‘;’P for all + > 0 (cf. [10], Theorem 3.1 and Proposition 4.6). In particular,
if & € Mg?, thent* = oo.
Givené& e Mg, it is natural to ask about the asymptotic behaviofiefr) ast
tends tooo. Specifically, ag tends tooo, doesjig (1) converge in some sense? If
so, what is the limit and how fast is the convergence? To answer these questions,
we begin by identifying the possible limiting measures. Extending the terminology
in [3] to the present setting, a measgre M is said to be amvariant state if

fe(t) =& forall ¢ > 0.
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Similarly, the collection of invariant statdswhich is given by
J={& € Mg:us(r) =& forall t > 0O},

is called theinvariant manifold. Here it turns out that the invariant manifold

is a one-parameter family of measures that is determined by the probability
measurev. To describeJ, we need to introduce some notation. LEtdenote

the cumulative distribution function associated with the probability measure
The distribution functionF has associated with it an excess lifetime cumulative
distribution functionFg, which is given by

X

Fe(x) =a/ (1-F®y))dy forall x e Ry.
0
In particular, Fe has probability density function
fe(x) =a(l— F(x)) forall x e Ry.

Note that (1.1) was used to simplify the form of the normalizing constant here.
Let ve denote the Borel probability measure Bn that has density functiorfe,
that is, (1[o,x]. ve) = Fe(x) = [y fe(y)dy for all x € Ry. We call ve the excess
lifetime probability measure. Define

1
(X’ Ue) ’

wherey (x) = x for x € R;.. The right member above is interpreted as O if the first
moment ofve IS infinite.

ﬂe:

THEOREM1.1. Ameasureé e Mg isaninvariant stateif and only if £ = cve
for some ¢ € [0, 0o0). Equivalently, the invariant manifold J is given by

J={cve:c €0, 00)}.

Theorem 1.1 is proved in Section 3.

Let £ € ME. We wish to identify conditions under whighg (r) converges to
a point on the invariant manifold astends toco and to determine the limiting
state. For this, we define the fluid analogue of the workload at tim§0, oo) to
be given by(x, fig(1)). By Theorem 3.1 in [10](x, its(¢)) = (x, &) forall t > 0.
[This holds evenif x, &) = oo, in which cas€x, iz (1)) = oo forall r > 0.] Thus,
whenjig (t) converges to an elemente in J ast tends tooo and both(y, &) and
(x, ve) are finite, one might expect the first momenty, ve), of the limit to be
given by(y, &), or, equivalently, that = Be(x, £). Indeed, we have the following
result.

THEOREM 1.2. Let& € ME. If (x,&) < oo, then fig(¢) converges weakly to
Be(x,&)veast — oo.
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Notice thatge > 0 if and only if (x2, v) < o0, since, fory e R, (x”, ve) < o0
if and only if (x?*1, v) < co. Therefore, the case in whigh 0 and(x2, v) = oo
is degenerate in the sense thats) converges to the zero measure &nds tooo,
but(x, jiz(¢)) does not converge to 0.

The result in Theorem 1.2 is more general than, but consistent with, Proposi-
tion 5 of [4], which concerns the asymptotic behavior of a fluid approximation
for the queue length of a heavily loaded processor sharing queue. Theorem 1.2 is
proved in Section 4, using proof techniques similar to those employed in [4].

Finally, we wish to give a rate at whighe (r) converges astends tooo. In fact,
we will prove two rate of convergence results. The first gives a rate of convergence
in terms of a metric oM that induces the weak topology. For this, tetlenote
the extension of the Prohorov metrict6r. Specifically, forzy, g2 € Mg, p(21, £2)
is given by

p(¢1,¢2) =inf{8 > 0:(1p, {1) < (Lps, §2) +
(1.3) and(1p, ¢&2) < (1ps, 1) + 6,
for all nonempty, closed sefs C R },
where, for each nonempty, closed st R,

B‘S:{XGR_p inf |x — y| <8}.
yeB

Note that, undep, Mp is a Polish space. Moreover, {f,,n =1,2,...} C Mf
and ¢ € Mp, then¢, converges weakly t@ asn tends tooo if and only if
liM;— 00 (&, ¢) = 0 (cf. [6], Chapter 3, Theorems 1.7 and 3.1, which readily
generalize from the set of Borel probability measuresMg). Our second rate
result gives a rate of convergence in terms of the total variation distance. For a
signed, Borel measueonR,,

IZlltv = sup{l{(g, ¢)| such thaig : R, — R is Borel measurable
(1.4)

and|g(x)| <1forallx e R}.

Note that, if{¢,,n =1,2,...} C MF, ¢ € Mg and lim,_. [I5, — ¢llTv =0, then
¢, converges weakly tg asn — oo. However, the converse is not true in general
(cf. [5], page 69). For each of our rate of convergence results, the convergence is
uniform over sets of initial conditions satisfying certain moment constraints. These
sets take the following form. For any finite, positive constarasd M, let

(1.5) B ={seME(LE)V (x.6) V(X" &) < M),

(1.6) BN =[EeMENLEV (X, &)V (X2 Vv (xFe &) < M)
Of course, forg € MS, if (1,&) v (x112, &) < M, then e £§M*8. Similarly, if

(1,€) v (x2t%, &) < M, theng € iﬁ{‘,“ Definitions (1.5) and (1.6) are used to
simplify the tracking of constants in our proofs. Our rate of convergence results
are summarized by the following.
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THEOREM 1.3. Let M beafixed, finite, positive constant.

() If, for some ¢ > O, (XZJ“‘?, V) < 00, then there exist a finite, positive
constant C,, and a finite, positive time 7, such that

1.7) sup (e (1), Belx, &)ve) < Cpt~¢/4  foralr>T,.

Seiﬂf{”g

(i) If, for some ¢ > 0, (x3+¢,v) < oo, then there exist a finite, positive
constant Cy and a finite, positive time Tty such that

(1.8) sup ||ie () — Belx, E)ve|y < Crve™®  forall 1> Try.
EcBN*

In Theorem 1.3, the timeE, and7ty and the constantS, andCty depend on
the values of the constanig ande and on the critical datéx, v). In the proofs,
we have not tried to obtain the best possible estimates for these constants.

In [9], Theorem 1.3(i) is used to prove a state space collapse result. In that
application, it is the uniform convergence over sets of the f@ﬁﬁ*s for M, e €
(0, o0) that is critical. In fact, the specific rate and value of the constants are not
important for the argument. Although Theorem 1.3(ii) is not needed for [9], we
have included it here for its intrinsic interest and potential use in other applications.

The proof of part (i) of Theorem 1.3 exploits the asymptotic behavior of the
renewal function for a zero-delayed renewal process with interarrival distribution
determined by the probability measuge The conditionx 24, v) < oo is slightly
stronger than requiring that this interarrival distribution have a finite mean, that is,
that 8e > 0. This condition is used in the proof to obtain a rate of convergence
for Blackwell's renewal theorem. Similarly, the proof of part (ii) of Theorem 1.3
exploits the asymptotic behavior of the renewal measures for certain delayed
renewal processes with interarrival distribution determined by the probability
measureve. The condition (x3+¢, v) < oo is slightly stronger than requiring
that the interarrival distribution have a finite second moment. This condition is
used in the proof to obtain a rate at which the renewal measures converge in
the total variation distance to the stationary renewal measure. Both the rate of
convergence for Blackwell's renewal theorem and the rates of convergence for
renewal measures rely on the coupling results developed in [12]. In using those
results, we pay careful attention to the dependence of the various constants on the
initial measures and the interarrival distributiope.

The remainder of the paper is devoted to the proofs of Theorems 1.1-1.3.
Section 2 contains some background and two preparatory lemmas. Then Theorems
1.1, 1.2, 1.3(i) and 1.3(ii) are proved in Sections 3, 4, 5 and 6, respectively. In the
Appendix, coupling results from [12] are applied to verify some of the estimates
used in Section 6 to prove Theorem 1.3(ii).
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2. Background. Recall that, foré € Mg, ig(-) denotes the unique fluid
model solution such thats (0) = &. Givené € Mg, the fluid analogue of the queue
lengthZ(-) is defined by

(2.1) Z(t) = (1, jig (1)) forallt > 0.

For obvious reasong;(¢) is referred to as theotal mass at timer. Due to (C1),
Z(-) is continuous. As previously noted, §f= 0, then pe(t) #0forallr >0
(cf. [10], Theorem 3.1), and sB(z) is strictly positive for allr > 0. Conversely,
if £ =0, thenjg(-)=0 andZ(-) = 0. Given this, for each> 0, the fluid analogue
of the cumulative service per jofxz) is defined by

0, if &£ =0,
2.2 S(t) = _
22) © /Ot(Z(s))_lds, otherwise

Thus, at timer > 0, S(t) denotes theumulative service per unit of mass in the
system up to time. SinceZ(-) is continuous and(¢) > 0 for all r > 0 when

& #0, it follows thatS(-) is continuously differentiable. The reader will note that,
in order to avoid cluttering the notation, we choose not to append a substapt
guantities defined by (2.1) and (2.2), since it is typically clear from the context
which fluid model solution is under consideration. In [10], it was shown that,
if & € Mg?, then, for each > 0 andx € Ry,

t —_ —_—
(2.3) <]1[0,x]’ﬁf(t))z<]l(5’(t),§(t)+x]’$)+/(; G*(S(1) — S(s)) ds,
where, for eachr € R,

G'(y) = fe(y) — felx + ) forally e R,

(cf. [10], Lemma 4.3 and (4.33)). Here we have used (C2). For each, this
gives an explicit description of the measuire(r) in terms of the nonzero initial
measuré and the cumulative service per unit of mass function.

To state what is known abost.) for a givené € Mg, we need to introduce
therenewal function Ug(-) associated with the critical data, v) and thetruncated
initial workload function Hg(-) associated with an initial measuge For this,
given a locally bounded, Borel measurable functiorR,. — R and a right-
continuous functior/ : R, — R that is locally of bounded variation, let

(g*U)(u):/[o ]g(u—s)dU(s) forallu > 0.

Note that, by convention, the contribution to the above integral(isU (0) at
s =0 whenevelU (0) # 0. Let

Ue(u) =Y (F&(u)  forallu>0,
i=0
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where F0() = 1 and Fzi() = (Fs % Fo)(-) for eachi € {1,2,...}.
Foré € Mg?, define

(2.4) Hg(x):/ Loy )y forallx eR,.
0

It is easily verified that, for eache R, H: (x) = (x A x, &), which explains why
He is referred to as the truncated initial workload function. Siades no atoms,
the integrand in (2.4) is continuous. Thus, foe Mg”, H:(-) is continuously
differentiable with

(2.5) Hi(x) =(Lr.00), &)  forallx eR,.
In Lemma 4.4 of [10], it was shown thast(-) maps[0, co) onto [0, c0). Since

S(-) is also continuously differentiable and strictly increasing, it has a functional
inverse, with the same properties&s), defined o0, co) by

Tw)=S5Yw) =inf{r>0:5¢)>u} forallu=>0.

If we letx tend tooco in (2.3), execute the time change-= S(t) and then use (2.2),
we obtain a convolution equation @Y (-). The solution of this is

(2.6) T'(u) = (H{ xUg)(u)  forallu>0,
from which it follows that
(2.7) T(u)= (Hs *Ug)(u)  forallu>0.

For the full details of this derivation, see Lemma 4.4 of [10]. The convolution
representation (2.7) is key to many of the developments in this paper.

In the next lemma, we use the fact tat) = S~1(-) to expressZ(-) as a time
change off’(-) and to express (2.3) as a time change of a renewal equation.

LEMMA 2.1. Leté € Mg?. Then, for eacht > 0,

(2.8) Z(t) = (Hi % Ue)(S(1)),
and, for eachr > 0and x € R4,
(2.9) (Lj0.x1> 1 (D) = (L (50). 5407 &) + (G 5 He) % Ue) (S(0)).

PROOF  To verify (2.8), use the fact that(-) = S~1(-) together with (2.2) to
obtain, for each > 0,

Z(t) = S T'(8(1)).

This together with (2.6) implies (2.8). To verify (2.9), use the change of variables

y = S(s) and the fact thaf'(-) = S~1() to obtain the following: for each > 0
andx e Ry,

t _ _ S0 _ _ - -
@10) [ G*Sw=5w)ds= [ G*(3W) =) dT () = G+ TS,
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Substituting (2.10) into (2.3) and then using (2.7) and the associativity of the
convolution operation completes the proof.]

In the next lemma, we show that, under appropriate conditi®@$js bounded
below by a linear function for aH sufficiently large.

LEMMA 2.2. Given n > 0, there exists a finite, positive time 7" depending
on n and v such that, for all £ € Mg? with (x, &) < oo,

(2.11) S(t) > for all t > (x, &)T"".

t
(Bet+m(x,8)

PROOR Fix >0 andé € Mg? such thaty, &) < co. By the elementary re-
newal theorem{/s(#)/t converges t@e ast tends tooco (cf. [13], Theorem 3.3.3).
We note that this holds evengg = 0, that is, if(x, ve) = c0. Thus, there exists a
finite, positive timeT ™" such that

Ue(t) < (Be+m)t  forallt>T"".

Note that7"-" does not depend ansincelUs(-) does not depend an Moreover,
since bothH; and U are nondecreasing, from (2.7) and (2.4), it follows that
T(t) < He(t)Ue(t) < (x,&)Ue(z) forall t > 0. Thus,

(2.12) T(t) < (Be+n){x,&)t  forallt>T"".
SinceS(-) = T~1("), it follows that

S@t) > ' forallt > T(T"").
(Be+m)(x.§)

By (2.12),T(T"") < (Be +n){x, &)T"". SettingT """ = (Be+ n)T"*" completes
the proof. O

Whenge > 0, we can seff = B¢ in Lemma 2.2 to obtain the following corollary.

COROLLARY 2.3. If (x2, v) < oo, then there exists a positive, finite time 7"
such that, for all & € Mg with (x, &) < oo,

- t v

3. Theinvariant manifold. Theorem 1.1 is proved in this section. For this,
we begin with the following proposition.

ProPOSITION3.1. Foreachg e,
(3.1) a(g,v) =(g’, ve).
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PROOF Fix g € C. Note that (3.1) may be rewritten as
(3.2) « [ ewdFw=[ ¢/
Ry Ry

Recall that for real-valued, right-continuous functidng) andV (-) onR ., which
are locally of bounded variation and such that at least orfié @f V is continuous,
we have the following integration by parts formula: for ak@ < b < oo,

(3.3) / V(x)dU(x) +/ Ux)dVx)=Vb)U®b) —V(a)U(a)
(a,b] (a,b]

(see, e.g., [8], Theorem 3.30). To prove (3.2), &¥@) =0, (3.3),2(0) =0 and
g is bounded, together with lim, o, F(y) =1, to obtain

/ g dF(x) = / g dF ()
Ry (0,00)

= lim g(x)dF(x)
,y]

y—>00 (O

=— lim ]g(x)d(l — F(x))
y

y—>00 (o’

= &mw[g(y)(l—F(y))—/o

T O,y
:/ g x)(1—F(x))dx.
Ry

Since fo(x) = ¢ (1 — F(x)) for all x € R4, (3.2) holds, and hence so does (3.1).
O

| g @) [1—F)) a’x}

ProOF OFTHEOREM 1.1. Recall thafig(-) =0. Thus,& =0 is an invariant
state. Therefore, to prove Theorem 1.1, it suffices to showsthatME” is an
invariant state if and only i§ = cve for somec € (0, co). Suppose tha € Mg”
is an invariant state, that is, that (1) = £ for all r > 0. Fix r > 0. Then, since
pe(+) is a fluid model solution, it follows from (1.2) that, for any functigre C,

e i)
(3.4) /0 7@’ e () ds =at(g,v).

Since g (1) = &, it follows that, for each O< s < ¢, the numerator and the
denominator of the integrand in (3.4) are given(lg}; &) and(1, &), respectively.
Therefore, (3.4) simplifies to

(g,6) = (L,&)a(g, v).

By (3.1), the right-hand side of the above expression is giveriiby)(g’, ve).
Thus,

(3.5 (g, E)=clg, ve) forall g € C,
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wherec = (1, &). It turns out that® is a sufficiently rich class of functions in order
for (3.5) to imply thatt = cve, Wherec = (1, &). To see this, fixe € (0, 00). For
e€(0,x/2),letg. € CL(R;) suchthatO< g/ <1,

L1, if ye(e,x—e),
gg(y)—{o, if ye[0,e/2]Ux — /2, 00),

andg.(y) = [y g.(z)dz. Theng, € C. Therefore, by (3.5){g., &) = (g}, ve),
wherec = (1, £). By letting ¢ tend to 0, it follows from bounded convergence that
(L0,x), &) = c(L(0,x), ve) for all x € (0, 00). Since neithe€ nor ve has an atom at
the origin,& = cve, Wherec = (1, &). This completes the proof of the “only if”
part of the theorem.

For the proof of the “if” part of the theorem, we must show that & cve
for somec € (0, 00), then& is an invariant state, that is, that (-) = £. For this,
let i(-) = &, where& = cve for somec € (0, 00). It suffices to show thafi(-)
satisfies (1.2). Obviously, for eaghe C,

(3.6) (g, 1) =(g,§)=(g.n(0)  forallz>0.
By the definition ofii(-) and (3.1), for eaclg € C,

/f (', ii(s))
o (L, i(s))
By combining (3.6) and (3.7), we see that) satisfies (1.2), as desired]

(3.7) ds =t(g’,ve) =at(g,v) forallt > 0.

4. Weak convergenceto the invariant manifold. Theorem 1.2 is proved in
this section. For this, note that, by Lemma 2.1, for 0 andx € R, Z(t) and
(Lo,x]» Le(¢)) can be expressed in terms of convolutions involving the renewal
function Ue(-). Under suitable conditions, the key renewal theorem characterizes
the asymptotic behavior of such convolutions. Siigas nonarithmetic, the key
renewal theorem implies that, for any Borel measurable fungidR, — R
that is directly Riemann integrable (see below for the definition),

(4.1) lim (g U () = e |~ g(x)d.

(cf. [7], Chapter 11, page 363).

To apply the key renewal theorem, we will need to verify that certain functions
are directly Riemanmiegrable. We begiby recalling the definition of the latter
and some related facts. FgrR, — R, andn, k€ {1,2,...}, let

mi(g) =inf{g(z):z€[(k—1)/n,k/n)}
and

M} (g) =supg(z):z € [(k—1)/n, k/n)},
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and define

1 1
Ly(g)==) _mi(g) and U,(g)==) M(g).
" k=1 =

Set
o(g)=IlimsupL,(g) and ao(g)=Iiminf U,(g).
n— 00 n—00

The functiong is said to be directly Riemann integrablesifg) < oo ando (g) =

o (g). Note that, for each, the supremums and infimums definimg and M}/
for k € {1,2,...} are taken over intervals of a fixed length (not varying wijh
If g is directly Riemann integrable, thenis Riemann integrable and(g) =
/57 g(x)dx. The converse is not true in general. HowevergifRy — Ry
is Riemann integrable of0, x] for all x € Ry and U, (g) < oo for somen €
{1,2,...}, theng is directly Riemann integrable (cf. [7]). In particular,gfis a
nonincreasing, Riemann integrable function, tiges directly Riemann integrable
since, foralln € {1, 2, ...},

e 1
Un(g) 5/0 g(x)dx + ;g(O) < 0.

Also, if g1 : R, — R, is Riemann integrable di®, x] for all x € R, and satisfies
g1 < g» for some directly Riemann integrable functigsn: R, — R, theng; is
also directly Riemann integrable.

THEOREM4.1. Let& € Mg?. If (x,&) < oo, then, for each x € R,

Nim (110,01, e (1)) = Pelx. £} (Ljox1. ve) and  lim Z(1) = e(x. £).

PROOF Fix& e Mg suchthaty, &) < co. By Lemma 2.2, lim, o S(t) = oo.
Also, the continuous functioﬁlg(-) is directly Riemann integrable sindéé(-) is
nonincreasing and

/oo Hé(x)dx =(x,&) <o0.
0

These two facts together with (2.8) and (4.1) immediately imply the stated
convergence result foz ().

It remains to prove the stated convergence result for the mag6,an for
eachx € R,. For this, fixx € R.. Since the total mass df is finite and since,
by Lemma 2.2, lim_, o S(r) = 0o, we have
(4.2) Iiﬂi’ﬂ(&(r),&(r)ﬂ]’ §) < Im (15).00)- ) =0.

1—00

Thus, the first term on the right-hand side of (2.9) tends to Otaads toco. To
see that the second term on the right-hand side of (2.9) converges to the desired
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limit, we appeal to the key renewal theorem. For this, fg(y) = fe(x + y)

for all y e Ry and consider the functiofy = He)(-). Using the fact thati; is
continuously differentiable, it can be shown thig} « Hg)(-) is continuous, and
therefore it is Riemann integrable o€ y] for eachy € R,. Thus, to show that

(f& = He)(+) is directly Riemann integrable, it suffices to show that it is bounded
above by a function that is directly Riemann integrable. Using the fact that both
fa0) anng (-) are nonincreasing, we obtain the following: for each R,

y/2 , y ,
&+ H)O) = | f;‘@—z)Hg<z)dz+f/2fe"<y—z>H5<z)dz
y
< fi( /2>/y/2H/( yaz+ H/2 [ fi-2d
SJW/D | Hi@dit HeG/2) | fS (- 2)dz

< L2072 [ HI@ dz + HL(3/2)(Felx + 3/2) = Fel)

< fe (/2 (x, &) + Hi(y/2).

As noted aboveHé (-) is directly Riemann integrable. Singg () is nonincreasing
and Riemann integrablefg (-) is also directly Riemann integrable. Therefore,
(f& * He)(-) is bounded above by a function that is directly Riemann integrable,
and hence(fg * Hg)(-) is itself directly Riemann integrable. In particular,
(f& = He)(-) is Riemann integrable ové and

& X o Y X /
/O(fe*Hg)(y)dy=/o /ofe@—z)Hg(z)dzdy
=/O / fE( =2 dy H.(2) dz
(4.3) S A AN ACEE
=<x,s>fo £ () dy

- <x,s>f:0 fo(y)dy.

Since (G x He)(-) = (fg *x He)(-) — (fg = He)(+), it immediately follows that
(G* x Hg)(-) is directly Riemann integrable. Moreover, by (4.3),

o0 X
@4 [T e )0 Ay = (0.8 [ feln)dy = (1. ) e,
This together with the key renewal theorem gives

((G* * Hg) x Ue)(2) = Be(x, §) Fe(x).

lim
77— 00
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Since, by Lemma 2.2, lim, » S(t) = oo, it follows that
(4.5) ((G*  Hg) % Ug)(S(t)) = Pe(x, &) Fe(x).
Combining (2.9), (4.2) and (4.5) completes the proail

lim
t—> o0

PROOF OFTHEOREM 1.2. If £ =0, we havejs(-) =0, Be(x.£) =0, and
the conclusion of Theorem 1.2 holds. Now take Mg such that(x, &) < oco.
First suppose thay2, v) = co. ThenBe = 0, and, by Theorem 4.1Z(t) — 0
ast — oo. Given a continuous, bounded functignR,. — R, we have, for
eachr >0,

(g, e (1)) = sup [g(x)|Z(1).

xeRy

So, it follows thatjs () converges weakly to the zero measure as co. Next
suppose thatx?2, v) < oo, that is, thatBe > 0. Recall thatt # 0 implies that
Z(t) > 0 for all + > 0. Therefore, for each > 0, one can divideie (1) by the
total mass to form a probability measure. This normalizatiopgf) for > 0
facilitates the use of standard results on convergence in distribution. For this, for
eachr > 0, define the probability distribution function

(Ljo,x1, e (1))
Z(t)
SinceBe(x, &) > 0, Theorem 4.1 implies that, for eagke R, F(t, x) —> Fe(x)

asr — oo. It follows that, for any bounded, continuous functignR . — R,

im [ g0)d F(t,x) = /R g(x) dFe(x),

F(t,x)= forall x e R,.

=00 JR
(cf. [5], Chapter 2, Theorem 2.2), that is, that
(g i ()
tleoo ?t) = (&, ve)-

Since lim_ o Z(t) = Be(x, &), it follows that, for any bounded, continuous
functiong :Ry — R4,

Nim (g, 7t (1) = Pelx. £)(8. ve).

which completes the proof.[

5. A rate of convergencein the Prohorov metric. In this section, we prove
Theorem 1.3(i), and in the next section, we prove Theorem 1.3(ii). For this, note
that the conditions of part (i) [as well as those of part (ii)] imply thadatisfies
(x2,v) < 0o, and hencese > 0. To ease the typography, f@e > 0 andé ME
satisfying(y, &) < oo, we use the notation

(5.1) K= Pe(x. &)
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We begin with Lemma 5.1, which identifies conditions that imply the result of
Theorem 1.3(i). For this, recall the definitions given by (1.3) and (1.5).

LEMMA 5.1. Let M,e > 0. Suppose that (x2, v) < co and that there exist
a finite constant C > 1 and a finite time T > 1 such that, for all £ € 324*8, t>T
and 0 < x < oo,

(5.2) [(Lio,x), i1z (1)) — (Ljo,x), K V)| < C17°.
Then, for all § e B)* and 1 > T,

p(fig (1), kve) < Cpt /4,
where C,, isthe unique positive root of the polynomial p(y) = y2—(M+4C)y —
2C, VAS R+.

PROOF LetM,e > 0 and fix¢ e :B/’)”v“?. To prove Lemma 5.1, it suffices to
show that, for each> T and for all nonempty closed sebsc R,

(5.3) (1, (1)) <(lgs,kve)+36 and (Lp,kve) < (Lps, ite(t)) + &,

wheres; = Cpt—s/“. To verify (5.3), we begin with a simple observation. As an
immediate consequence of (5.2), the fact thatr) has no atoms for eaah> 0
and the fact that, has no atoms, it follows that, for eachQx < y < o0,

(5.4) (Lix,y), e (@) — (Lix,y). kve)| <2Ct~° forallr>T.

We will use (5.4) in conjunction with (5.2) to verify (5.3). For this, fix a nonempty
closed seB C R and afinite time > T. Note that, since8 C BY:,

(5.5) (1B, fte(®)) < (Lgs, e (t)) and (Lp,kve) < (Lgs,kVve).

To use (5.2) and (5.4), we will need to wriR® as a union of intervals that are
relatively open inR,. SinceB% is relatively open iR, it is either a finite or

a countable union of relatively open, disjoint intervals. Moreover, by the definition
of B%, the length of each interval is at least Let N denote the number of
these intervals that have nonempty intersection yathé/2). ThenN < rtS/Z/M,
where, for allx € R, [x] denotes the smallest integer greater than or equal to
Moreover, we can write

(5.6) B =L ULU---UIyU(B% N (2 00)),

wherel;, i = 1,..., N, are relatively open, disjoint intervals iR, such that
I N [O,te/z) #+ @ fori =1,...,N. Note that, for each = 1,..., N, either
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I; = [0, x) for some O< x < o0 or I; = (x, y) for some 0< x < y < o0. Using
(5.5) and (5.6), together with inequalities (5.2) and (5.4), we have

N
(Lp, fig (1)) < Z<11, e (D) (Ler2, 00y, e (D)

N
< Z<]lli y KUe) + <]]‘(l‘£/2,00)’ Kl)e> + (N + 1)2Cl‘_8

4
< (135[ , KUe> + (]l(tg/Z’OO), KUe) + (N + 1)2Ct_8

Similarly,

N
<]].B, KUe) < Z<]].[», KUe> + <]]‘(t5/2,00)’ KUe)
i=1

N
Z ]].]l,,bbé'(t) ]].(tg/Z’OO),KVe>+N2Ct_8
i=

(]].BE;, MS(I)> (]]‘(IS/Z,OO)’ KUe>+ NZCI_E

Since(x2, v) < oo, it follows that(x, ve) < co. Thus, by (5.1){x, kve) = (x., &).
Therefore (1,12 o), kve) <t~ /%(x, kve) = (x, &)t~/ This, together with the
fact thatN < (1¢/2/5,) + 1, gives
2Ct¢/2
(Lp, fie (D) < (Lgs, kve) + (x, E) /2 4 ——— +4C1™*
t
and

2Ct=¢/2
(Lp, kve) < (L, g () + (1, E)17°2 4 ———+2C1™".
t

Thus, to prove (5.3), it suffices to show that
2Ct¢/4

—&/2 - —e/4
(x,E)t7 /24 4Ct™8 + <Cpt~*
P
or, equivalently, that
—e/4 —3¢/4 2
(5.7) (x. &0t act >/ c, +2c < C2.

Sincer > T > 1 andé¢ € 3/[)”’8’

(X, EN¥4 4 4Ct /% < (x,£) +4C < M +4C.

Moreover, sinceC, is a root of p(.), it follows that (M + 4C)C, + 2C = Clz).
Therefore, (5.7) holds, which implies that (5.3) hold&l
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The next objective is to verify that the sufficient conditions in Lemma 5.1 hold
under the conditions in part (i) of Theorem 1.3. It suffices to consider 0
since the left-hand side of (5.2) is 0 whénr= 0. Note that, givenM, ¢ > 0 and
& e 324’8, by (2.9) and the fact thate () has no atoms for eaat 0, we have a
useful representation for the first of the two terms that appear on the left-hand side
of (5.2). Also, notice that, for eaah> 0 andx € R,

1 1+
(5.8) (L) 50011 &) = LS 10000 &) = (%) (X1, 8).

By Corollary 2.3, under appropriate conditios§;) is bounded below by a linear
function of¢ for all ¢ sufficiently large (with uniform control fof :B,f)”’s). Thus,

the most significant issue is to look at the difference between the last term in (2.9)
and(1jo.x), kve) for eachx € R.. In the proof of Theorem 1.2, we used the key
renewal theorem to show that, under appropriate conditions, for eaciR .,

the last term in (2.9) converges taFe(x) = Be o~ (G* * Hg)(y)dy ast tends

to oo [cf. (5.1), (4.4) and (4.5)]. Thus, to verify that the sufficient conditions in
Lemma 5.1 hold, we first identify conditions that yield a rate for this convergence
that is uniform over € R, andé € 8)"°.

THEOREM 5.2. Let M,e > 0. Suppose that (x2t¢,v) < oo and that
R :[0, c0) — R, is a nonincreasing function for which there exists a finite time
T > 2 and afinite constant C > 1 such that

(5.9) |Ue(t +5) — Ue(t) — Bes| < CR(2) forall s €[0,1], t > T.

Then there exists a finite constant C > 1 such that, for all £ :B/’%“? and x € R4,

Be / (G* % Hp)(y) dy — ((G* * H) % Ue) (1)
(5.10) 0

<C(t*+R@1/2) foralr=>T.

Before proceeding with the proof of Theorem 5.2, we show how to use it in
conjunction with Lemma 5.1 to prove part (i) of Theorem 1.3.

PROOF OFTHEOREM1.3(i). FixM, ¢ > 0. Suppose thaty2+¢, v) < co. Let
1, 0<r<1,
R() =
e, t>1.

For eachr > 0, let D(t,s) = Ue(t + 5) — Ue(t) — Bes for all s > 0 and denote
by TV1(D(z, -)) the total variation of the functio®(z, -) over the interva[0, 1].
Since, for each > 0, D(¢, 0) = 0, it follows that, for each > 0,

(5.11) |Ue(t +s) — Us(t) — Bes| < TV1(D(t, -)) forall s € [0, 1].
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Using coupling techniques, it is possible to obtain bounds on(TNt, -)) for ¢
sufficiently large (cf. [12]). For this, note that, sin¢g2t¢, v) < oo, it follows
that(x 1%, ve) < co. Therefore, (6.7)(ii) in 111.6 of [12] withG = 1, U (-) = Ue(-),
B =1 andx = B¢ implies that there exist a finite constaiit-= 1 and a finite time
T > 2 such that

TVi(D(t,)) <Ct™ ¢ forallr >T.

This together with (5.11) implies that (5.9) holds. Thus, by Theorem 5.2, there
exists a finite constar@ > 1 [given by (1 + 2¢) times the constant in (5.10)]
such that, for alk € 8)-¢,7 > T andx € Ry,

(5.12)

Be /0 (G*  He)(y)dy — ((G* % He) % Ue)(1)| < C1~°.

Fix & € :8/1)”*8. Using (5.12), together with (2.9), the fact that(r) has no atoms
for eachr > 0, the fact thate has no atoms, g4.4), (5.8) and the fact tiiat 2,
we obtain, for each € Ry ands > 0 such thatS(z) > T,

(L0.x), e (1)) — (L[o.x), Kk ve)|

(5.13) 5(%)% 14 g) C(%)

N
=0+ 0(g) 20r+0(g).

By Corollary 2.3 and the fact thgte :B/’)””f, there exists a finite, positive tinie"
(that does not depend @ such that

t
(5.14) S@t) > TRY,
Let T = max2BeT, T"}. Then, for alls > MT, (5.14) holds and(t) > T. This
together with (5.13) gives, forall e R, andr > M T,

(5.15) [(10.0)» e (1)) = {Lj0.x), K Ve)| < (M + C)(2BeM)*t ™"
By letting x — oo in (5.15) and using the facts that, for eat~c13 0, g (t) € Mf
andve € Mg, we see that (5.15) holds far= oo for all t > M T. Therefore, (5.2)

in Lemma 5.1 holds for the finite constant given(@y + C)(2BeM)* and the finite
time given byM T. So, Theorem 1.3(i) follows from Lemma 5.1

forallt > MT".

The final task of this section is to prove Theorem 5.2. For this, we first establish
some basic properties of the functiof@®* « Hg)(-) for x e R...

PROPOSITION5.3. Leté e M. For each x € R, the following hold:
(i) Forallu>0,0<(G** Hg)(u) < (fex Hg)(u).
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(i) The function (G* * Hg)(-) is absolutely continuous. In particular, for
eachu > 0,

(5.16) G+ Ho)w = [ Liw)du,
where, for each u > 0,
(5.17) g(u) = Gx(u)Hg O — /Ou G*(u —v)&(dv).
(iif) Thefunction (G* * H¢)(-) is of bounded variation. In particular,
[zl <3 e)

(iv) If, for some ¢ > 0, (x2%,v) < co and (x1t¢ &) < oo, then, for
each x € R, the following holds: for all u > O,

[e.e]
(5.18) (G" % Hg)(u) 5/ |Lg(v)|dv < Kgu_l_s,
u
where Ke = (21 + D)((x 7, ve) (L&) + (x 1, €)).
PROOF Fix & € Mg? and x € Ry. Property (i) is immediate since

0<G*(y) < fe(y) for all y > 0 andH; is nondecreasing.
To verify (5.16), note that, by Fubini’s theorem, for each 0,

/O /0 G (w—v)E(dv)dw:/o /v G'(w—v)dwé&(dv)
=/O /0 G*(w)dw&(dv).
Recall that, fory > 0, H{(y) = (1(y,00), §). Thus,d H,(v) = —&(dv). So we have
_/O /O G (w—v)E(dv)dw:/o /O G (w)dwdHS(v).

Thus, regardingfy " G*(w)dw as a function ofv € [0,«] and using the
integration by parts formula (3.3), we obtain

—/Oufow G*(w —v)&(dv)dw

=—H5§(0)/O G (w)dw—{—/o G*(u —v)Hg(v)dv.

Then (5.16) follows.
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To prove (iii) and (iv), note that, by (ii) and the fact th@t' (y) < fe(y) for
all y > 0, we have, for alk > 0,

/MOO|L§(w)|dw§/Idoon(w)Hé(o)dw+/uO°/Owa(w_U)S(dv)dw

< [7 e @ dw+ [ [* fetw - vs@ dw.

By interchanging the order of integration in the second term on the right-hand side,
we obtain, foru > 0,

[ zzw)idw = m©O@- Faw) + [ [ fatw = v dwsav)
u/2
< H/(0)(1— Fe(w)) + /0 (1— Fe(u — v))(dv)

o0
+/ E(dv).
u/2
Now use the fact that + Fg(-) is honincreasing to obtain, far> 0,
o
(5.19) / |LE(w)|dw < H{(0)(1— Fe(u)) + (1 — Fe(u/2))H(0) + H{ (u/2).

To verify (iii), take u = 0 in (5.19). To prove (iv), let > 0 and assume that
(x21e,v) < oo and(x 11, €) < co. Then we havey 1%, ve) < 0o, and the second
inequality in (iv) follows from (5.19) and the fact that, for ali- 0,

(5:20)  H{(N) < (&)1 and 1- Fe() < (x**, veht 71"

To prove the first inequality in (iv), note that, sincg() and H;(-) are
nonincreasing, it follows that, far > 0,

(fo He)w) < HLO) [ eyt 7e(0) / S Hay.

where each term on the right-hand side of this inequality is finite for ail 0.
Therefore, by monotone convergence, each term on the right-hand side of this
inequality tends to 0 ag — oo. This together with (i) implies that

Jim_(G* x Hg)(u) = 0.
Consequently, by (ii), it follows that
o0
(G % Hg)(u) = —/ Li(v)dv,

from which the first inequality in (iv) follows. [

To begin the proof of Theorem 5.2, we borrow an idea from the proof of
Theorem 3.1 in [11]. The idea is to writ€G* x Hg) * Ug)(¢), for x e Ry and
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t > 0, as a sum of integrals over intervals of length 1 [cf. (5.24)] and then to use
integration by parts on each such integral [cf. (5.25)]. In this way, one obtains
expressions involving the quantities thapaar in (5.9). In the next proposition,

a generic term in such a sum is rewritten using integration by parts. Following that,
we give the proof of Theorem 5.2.

PROPOSITION5.4. LetxeR;andé e ME”. Fort>1and0<s <t —1,

/ (G* % He) (1 — y) dUe()
(s,s+1]
(5.21) =(G* % Hg)(t — s)(Ue(s +1) — Ue(s))

_ / (Uels + 1) — Uet — y))LE(y)dy.
[t—s—1,t—s)

PROOF Fix x e Ry andr > 1 and O<s <t — 1. Using (5.16) and (3.3),
followed by a change of variables, gives

f (G* * He)(t — y) dUe(y)
(s,s4+1]
= (G"* % Hg)(l —s—1DUe(s +1) — (G* % Hg)(l —s)Ue(s)
+ Ue(t — y)L; (y) dy.

[t—s—1,t—s)

Adding and subtracting the tero@™ * He)(t — s)Ue(s + 1) gives

/ (G* % He)(t — y) dUs(y)
(s,s+1]
=(G* % Hg)(t — s)(Ue(S +1) — Ue(s))
+ ((G** Hg)(t —s — 1) — (G* x He)(t — 5))Ue(s + 1)
+ f[ o U LE)dy.

Using the fact that

G+ He)t =5 =1 = (G*x Ho)(t =) = - () dy

[t—s—1,t—s)

and combining like terms gives the result]

PROOF OFTHEOREM 5.2. Fix¢& ¢ 324’5 andx e Ry. Forr > T, let N, =
|t —T|.Fort>T,we have

(5.22) ((G* * He) x Ue)(t) = /[o t](G" * He)(t — y) dUe(y) = I1(1) + I2(1),
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where, forr > T,
BO=[ (G H) - y)dUy)
[0,t—N;]
and
RO =[ (G HE ) dUe).
(t—Ny,t]
By parts (i) and (iv) of Proposition 5.3, we have, for T,

I1(t) < K¢ [ ](r — ) 1 dU(y) < Ke N7 Y8 Uo(t — Ny).

0,/—N;
Note that, forr > T, we haver — N; < T + 1. In addition, forr > 2T + 2, we have
N; >t/2. Thus, fort > 2T + 2,

(5.23) I(1) < Y K Uo(T 4 1r 1,
For I>(+), we have
N;
(5.24) L) = Z/ (G* % He)(t — y) dUe(y) forallt > T.
21/ t=Ni+i=1,1=N;+i

Thus, we can use (5.21) and then the change of varighbled’, —i + 1 to obtain,
fort>T,

Ny
L(t) = Y (G* % He) (j)(Ue(t +1— j) — Uelt — )
(5.25) ,le
- Z/, (Uelt +1— j) = Uelt = »)LE() dy.
j=1 =17

Since, for each summang< N;, and since — N, > T, it follows thatr — j > T.
Thus, we can use (5.9) on each term in the first sum. Similarly, since in the
integrand of each term in the second sum we have N;, we can use (5.9) on
each of these integrands. For T, this gives
(5.26) [I2(t) — I2a(t)| < I22(2) + I23(2), t>T,
where, fort > T,

N

B =pe 3 (G s Ho() = [ (1= pLimay),
j=1 -1,
Nt

Io(t) = C Y (G* x He)(HR(t — j),
j=1

0 :C/[ON)R(’ — WILEO)ldy.
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The above representation B (-) can be simplified. In fact, for> T,

(5.27) I1(t) = fe /[0 (G R HOQ)dz.

t

To see this, writ¢' + 1— j as/? _; dz and then interchange the order of integration
to obtain the following: for al(r >T,
Ny

Ia(t) = ﬂeZ((Gx « He) () — /  (GFxHD() — (G % Hg)(Z))dZ)
j=1 U-1.7)
N;
e X H — X H .
ﬂe]Z::l/U_lvj)(G * He)(2) dz 'Be/[O,N,)(G « He)(2)dz

Let us now summarize what has been shown. By (5.22), (5.26) and (5.27),
fort>T,

e [ (G x Ho)@) dz — (G He) » Ue)m‘
(5.28) 0

< Pe N )(G" x He)(y) dy + Ioa(t) + I23(t) + 11(2).

We have already derived an upper boundie6) [cf. (5.23)]. Next, we obtain
estimates on the remaining terms on the right-hand side of the above inequality.

By part (iv) of Proposition 5.3 and the fact that, for 27 + 2, N; > ¢/2, we
have, forr > 2T 4+ 2,

(5.29) /N (G*  He)(y)dy < K /N v tay=—EN 2t

To obtain a bound oiy»(+), note that, for > T,

N;
Y Rt — j) (G x He)())
j=1
= Y RG—)G xH)()+ Y. R@— )G xH)()).
jell,t/2) Jj€Elt/2,Ny]
By part (iv) of Proposition 5.3, the fact tha(-) is nonincreasing and the fact
thatr — N; > T fort > T, we obtain, for > T,

Y R — (G xHe)())

je[t/25NT]

<R(t—-NpKg Y j+F
jE[Z/Z»Nt]

0
< R(T)K: / L
t J—

- R(T)Kg (5 B 1)—8.
- € 2
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Note that, forr > 2T + 2, we have -2/t > T /(T + 1), and so
(5-1) =) ()
- -1 <|—- — .
2 - T 2

R(T)K:2* <T +1>8t_6
- .

Thus, fort > 2T + 2,

Y. R1—j) (G xH)(j) <
J€lt/2,Ni]

SinceR(-) is nonincreasing, it also follows fro part (iv) of Proposition 5.3 that,
fort > 2T + 2,

Y RGt— )G *H)(j) <R/ Y. (G * Hy)())

jell,1/2) Jj€llt/2)

<K:R@t/2) Y
Jjell,00)

Thus, we have, for > 27 + 2,

R(T)K:2° (T +1\° _, S 1. t
(5.30) L) <C 85 ( - )t +CK5<Z] 1 )R(E).

j=1

We now bound/»3(-). In a similar manner to that above, for 2T + 2,
at)=C [ RG=yILI»Idy
[0, Ny)
=C/ R(r—y>|Lg<y)|dy+C/ R(t—y)|L{(y)dy.
[0,t/2) [t/2,N;)

Then, sinceR(-) is nonincreasing, it follows from parts (iii) and (iv) of
Proposition 5.3 that, for > 2T + 2,

o0
Ia(t) < CR(1/2) / ILE()Idy + CR(0) f ILE()dy
(5.31) 0 [1/2,00)
<3C(1,£)R(1/2) + 2YT*CR(O) Kt ~17°.
Combining (5.28)—(5.31) and (5.23) with the fact that, sibee8)-*,
Ke <M+ D((xM, ve) + 1),

proves the desired result]
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6. A rateof convergencein thetotal variation distance. Theorem 1.3(ii) is
proved in this section. For this, fix, ¢ > 0. Throughout this section, we assume
that

(6.1) (3% 1) < c0.

Note that, foré = 0, (1.8) holds for any positive consta@ty and any positive
time Tty. To see this, observe that, §f= 0, thenx = 0 [cf. (5.1)]. Moreover,
fto(-) = 0, and therefore, for al > 0, ||z (1) — kvellTv = 0 if £ = 0. So it suffices
to prove (1.8) foit € B7\,° such thak 0.

Fix & € :B%s and¢ # 0. The first order of business is to obtain an upper bound
on || ftg (1) — kvellTv, for t > 0, that is comprised of three terms [cf. (6.6)]. Then
a rate of convergence to 0 asends tooco is obtained for each of the three terms.
For this, we need to introduce some notation. For a fungiioR;. — R that is
locally of bounded variation, let TMg) denote the total variation gfon [0, x] for
eachx € R,. Also, denote the total variation @f by TV(g) = lim,_ oo TV, (g).
Let

J(t,x) =(Ljo.x], e (1)) — k{L[0.x], Ve forallr >0, x e R,.

Note that, for each > 0, neitherjig (r) nor ve charges the origin. Therefore, for
allr >0,

(6.2) e (t) — kvellry =TV (U (2, ).

For eachr > 0, the functionJ(z, -) is readily expressed as three distinct terms. To
see this, note that, by (2.3), (2.10) and the definitiorFgf), it follows that, for
allr >0andx e Ry,

(6.3) J(t, %) = (13 50y 41 &)+ (G % T)(S (1)) — i Fe(x).

Clearly, sinceS(r) tends tooo ast tends tooo, the total variation of the first term

on the right-hand side of (6.3) tends to Oragnds toco. However, individually,

the total variation of the second and third terms on the right-hand side of (6.3)
fails to converge to 0. Therefore, it will be necessary to take advantage of the
minus sign. This can be done by expressing the third term on the right-hand side
of (6.3) as a sum of two terms (cf. Lemma 6.1), the first of which combines with
the second term on the right-hand side of (6.3) to form a term whose total variation
tends to 0 as tends tooo. For this, it will be convenient to view the convolution

in the second term on the right-hand side of (6.3) as a convolution of a function
with a measure. We make the following definition. Given a signed Radon measure
¢ and a bounded, Borel measurable functaiR,. — R, let

(g*{)(x):/{o ]g(x—y){(dy) forallx e R,.

Let r be the Radon measure @& such that
(6.4) (jox, T)=T(x)  forallx e R;.



542 A. L. PUHA AND R. J. WILLIAMS

Then, for allz > 0 andx € R,

(6.5) J(t, %) = (150 5041 &) T (GF % T)(S(1)) — ik Fe(x).

To obtain an upper bound on TY(z, -)) for eachx € R, we will expressFe(x)
as a convolution oG* (-) with Lebesgue measure d, plus a remainder term.
For this, let¢ denote Lebesgue measurel®n.

LEMMA 6.1. For x e Ry,
Fe(x) = (G* % g)(E(t)) + <]]‘(§(t),§(t)+x]’ Ve>-

PROOF Foreachk e Ry,

Feo) = [ ey =( [ femrdy = [ setma)

= (/OOO fe(y)dy —/Ooofe(x+y)dy) =/OOOGx(y)dy-

Splitting this integal into two pieces gives, for € R, andr > 0,
S@) 0
Fen)= [ G*(etdy) + fm G* (y)e(dy)

S@) _ 00
=[G (G0 = ey + [ (fel) = folx + »)ecdy)
0 S(t)

_ x+8()
= (G" x£)(S(1)) + 50 Je(y)e(dy)
= (G* * O)(S®) + (L350 5014 Vel O
For eachr > 0 andx € (0, c0), let
A 2) = (L50), 50421 §)
B(t,x) = (G* x1)(5(1)) — k(G* % £)(5(1)),
C(t,x) = &L 50y 5(1) 4] Vel-

Also, for each > 0, setA(z,0) =0, B(¢, 0) = 0 andC (¢, 0) = 0. Note thatA (¢, -),
B(t,-) andC(z, -) are right continuous. Then, by (6.5) and Lemma 6.1, for all0
andx e Ry,

J(,x)=A(t,x)+ B(t,x) — C(t, x).
Thus, by (6.2), for alt > 0,
(6.6) e (1) — kvellrv < TV(A(L, -) + TV(B(t, ) + TV(C(t, -)).
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To prove part (ii) of Theorem 1.3, we will bound each term on the right-hand side
of (6.6) from above.
Since, for each > 0, the functionsA(z, -) andC (¢, -) are hondecreasing,

(6.7) TV(A(t, ) = lim_ At x) = A, 0) = (15 o). &)
(6.8) TV(C(t,)) = lim_C(t,x) = C(t,0) = k{15 o) Ve)-

By (6.7), (6.8), Chebyshev's inequality, (6.1), (2.13), (5.1) and the fact that
£ € BN, it follows that, forr > MT”,
(6.9)  TV(AE,)) < (S0) 275 (x*, &) < (2B M3Te1 7%,
(6.10) TV(C(t, ) < k()72 (X7, ve) < 22 (BeM)®* (x 7+, ve)t 72 7°.
Thus, for a proof of (1.8), we have obtained suitable upper bounds on the first and
last terms on the right-hand side of (6.6).
The remaining task is to bound T¥(z, -)) from above forr sufficiently large.
Observe that, for al > 0 andx € R,
B(t,x) = (G* % (1 —x0))(S(1) = ((fe— f&) * (t —k0))(S(1))

=a((F* — F)* (t —k£))(S(1))

=a(F* % (t — k0))(S(1)) — a(F * (t — k£))(S(1)),
where, for eaclx e Ry, F*(y) = F(x 4+ y) for all y € R,.. Note that(F * (t —

k£))(S(t)) does not depend om. Hence, it makes no contribution to the total
variation of B(z, ). Thus, for each > 0,

(6.11) TV(B(t, ) =aTV(D(, ")),

where D(t, x) = (F* s (t —«£)) (5(z)) for all > 0 andx € R,. To obtain a
suitable upper bound on the total variation/ft, -) for all ¢ sufficiently large, we
introduce the following additional notation. For a signed Radon me&soneR .,
let |¢| denote the total variation measurefind let¢ ™ and¢~ be nonnegative
Radon measures suchtliat=¢* — ¢~ and|¢|=¢T +¢ ™.

LEMMA 6.2. Let ¢ beasigned Radon measureon R... For fixed r > O, define
two functions g(x) = (F* % ¢)(r) and g(x) = (F* % |¢|)(r) for all x € Ry. Then
TV(g) <TV(Q).

PROOF Fixx € Ry andh > 0. We have

g+ ) — g(x) =/OV(F<x b htr—y)— F(x+r—y))dy).
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SinceF is nondecreasing,
8+ = g1 = [ (FGxhr =3) = Flxr = ) 21(dy)

=18(x +h) —gW)|.
The result follows from the definition of TV). O

By Lemma 6.2, for each> 0,
(6.12) TV(D(t, ) = TV(D(t, ).

where D(t, x) = (F"* |t —«l]) (S(1)) for all t > 0 andx € R... SinceF(-) is
nondecreasing)(z, -) is also nondecreasing for each fixed 0. Therefore,

(6.13) TV(D({, ) = Jim_ D(@t,x)— D@0  forallz>0.

By monotone convergence,

. S@)
lim D(z, x) =/ |t — xl|(dy) forallt > 0.
X—>00 0

Therefore, by (6.13),

~ S@) _
(6.14) TV(D(,-)) =/0 t (L= F(S@) —y))lt —«l|(dy) forallr > 0.

When considering why (6.14) should be small whéslarge, one realizes that,
for large values of the argumentthe measures andk ¢ are close, while for small
values of the argument, the function - F(S(r) — y) is small. To take advantage
of this, fix§ € (0, 1). Givenr > 0, rewrite the above integral as two pieces:

(1-8)5@t) _

(6.15) L[ - FGo - y)ie - cti@y,
S@) _

(6.16) L1y 5, 3= FE@ = )i —tiay.

We begin by analyzing (6.15). For each O,

(1-8)S@t) _
[ @ FGo - )i - xei@y

_ (1-8)5@)
(6.17) = (1-F@E50) [ T — kEl(dy)

<(1-F@ESe))lt —«tlry.

Using Chebyshev’s inequality, (6.1), (2.13) and the fact ghati;’%’s gives, for
eachr > M T?,

3
ZﬁeM) *‘;_3_8.

(6.18) (1—F(83(t)))§<x3+8,v)(85(t))_3_8§<x3+8,V>( ;
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Combining (6.17) and (6.18), we have, foreach MT",

(1-8)8(1) _
[ @ rw -y - ey
(6.19) o
< It — ictllv (3, v>(ﬁTe) 3.

We now analyze (6.16). For eack 0O,

S() _
[ @=F@ =) -l
(6.20) 1-8)50)

S
= T Z d = ]]' S ’ T — g .
_/(1_5)30)' Kl (@dy) = {150y -8).00 1T —«LI)
Then, by combining (6.14), (6.19) and (6.20), we have, for eaed/T",

2ﬁeM)3+8t_3_8

TV(D(, ) < It —cblry (3, v>( .

(6.21)
+ (150 1-5).00) 1T — K L1)-
From (6.21), we see that what is needed are estimates on
(6.22) It —«llltv  and (L o), [T —Kk|)

for larger. Recall thatc = Be(x, &) and thatt # 0. So, after factoring outy, &)
from each of the expressions in (6.22), it suffices to obtain estimates on

IT/(x, &) — Belllrv - and (Ljr.o0), [T/{(x, &) — Bet]),

for larger. We note thapgef is a stationary renewal measure. To see this, consider a
renewal process for which the interarrival distribution is determined:tand the
initial delay distribution is determined bige)e, Where(ve)e is the excess lifetime
probability measure associated with Specifically,(ve)e is the Borel probability
measure ok, that is absolutely continuous with respect to Lebesgue measure
onR, and has density function

Be(l— Fe(x))  forallx e R,.

Here note that, by (6.183e > 0. This renewal process is stationary, and, for any
Borel setA C R4, Be(l 4, ¢) is the expected number of arrivals that occur in the
setA (cf. [12], Chapter 11.2, (2.1)). Also notice thdl: (-)/(x, &) is a probability
distribution function onR .. In fact, it has density functiom{é(-)/(x,s), which
makes it the excess lifetime distribution function for the Borel probability measure
£/(1,&) on R, [cf. (2.5)]. Let & denote the Borel probability measure &
associated with the distribution functioH:(-)/(x,&). The observation that
H:(-)/(x, &) is a probability distribution function, together with (6.4) and (2.7),
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implies thatt/(yx, &) is the renewal measure associated with the renewal process
for which the interarrival distribution is determined by and the initial delay
distribution is determined b (cf. [12], Chapter III.1, (1.4)(ii)). Therefore, what
is needed are estimates on the rate at which the delayed renewal megguie
converges to the stationary renewal meagigre

One powerful tool that yields rates of convergence to stationarity for renewal
measures is coupling (cf. [12]). In fact, under certain conditions, it is possible
to couple two renewal processes with a common interarrival distribution so that
the respective excess lifetimes agree forever after some randong toaked the
coupling time. In our case, the common interarrival distribution is determineg by
and the initial delay distributions are determinedégyand (ve)e, respectively. In
addition, the coupling time is finite a.s. due to (6.1) and the fact ti§at :B%’E
(cf. [12], Section 5 of Chapter IIl). Furthermore, the results in [12] state that if the
initial delay distributions and the interarrival distribution have finite moments,
then the coupling time: has a finiteyth moment (cf. [12], Chapter 111.6, (6.2)).
Thus, by (6.1) and the fact thgte 3%’8, it follows that E[¢”] < oo for all
y €[0, 1+ ¢], whereE denotes expected value. In fact, by carefully following the
discussion on pages 83 and 84 in [12], which explains how to adapt the proof of
Theorem 4.2 in Chapter Il of [12] from the discrete-time setting to the continuous-
time setting, and by carefully keeping track of the constants used in that argument,
one can verify that, foy € [1, 1+ ¢],

6 (x 17, &) (x% &)
6.23 E[cY + CY(y)+ C5(y),
(6.23) =T e Tag et W

whereCy (y) andC;(y) are finite, positive constants that dependcandy, but

do not depend o#. In particular, sincég e :B%’E,
ci1
629 oEs=(3+ 2w,
61+8 C'(l+¢)
1+e 1 v
(6.25)  (x,&)El ]§(2+8 > +C2(1+8))M.

Since it is more than a simple exercise to obtain (6.23) from the details included

in [12], the verification of (6.23) is included as an Appendix here (cf. Section A.2).
Next we show how to use (6.24) and (6.25) to obtain bounds ofx¥, -)) for

t > 0. For this, recall that, by (6.21), it suffices to obtain bounds on the quantities

that appear in (6.22). By carefully following the arguments on pages 84 and 85

of [12], it can be shown that, for> 1,

(6.26) It — xlllTv < 2(x, &) Ue(D)(1+ E(5)),
(6.27) (11r00), |7 — k€1) < 2(x, E)Ue(DE(sH)r*
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(cf. Section A.3). Combining (6.26) and (6.27) with (6.21), (2.13) and the fact that
Ee 3%’8 gives the following bound on T, )): forallt>M T,

TV(D(t,-))

28.M\ 3+¢
(6.28) §2<X75)Ue(1)<(1+E(g))<x3+s’v><ﬂTe) -3

2BeM ¥\ _
E 1+e< )) €
tECETNT=5) )
Combining (6.28) with (6.24) and (6.25) provides a bound oriD¥, -)) for s > 0
of the type that is needed to complete the proof of Theorem 1.3(ii).

PROOF OFTHEOREM1.3(ii). FixM,e > 0.If& =0, it follows that| zs () —
kvellTv = 0 for all t > 0. Therefore, it suffices to show that there exists a finite,
positive constanCty and a finite, positive tim@ty such that (1.8) holds for all
£ € B2° such that # 0. For this, combine (6.1), (6.6), (6.9)—(6.12) and (6.28).
Then use (6.24) and (6.25)

APPENDIX

In this appendix, we verify (6.23), (6.26) and (6.27), which were used in the
proof of Theorem 1.3(ii). For this, fid, e > 0 andé € :8%’8 such thatt # 0.
Throughout the Appendix, it is assumed that (6.1) holds.

The proofs of (6.23), (6.26) and (6.27) hinge on using the general coupling con-
struction given in Section 5 in Chapter Il of [12] to couple two renewal processes
with a common interarrival distribution determinedigyand initial delay distribu-
tions determined b¥e and(ve)e, respectively. We refer to such renewal processes
aséq-delay and stationary renewal processes, respectively. Gigedelay (resp.
stationary) renewal process, I8t(-) [resp. N5(-)] denote the associated count-
ing measure. Here the superscript s stands for stationary. Thus, for each Borel
setA C Ry,

(A1) EIN(A)] = <<1A’ 2

and E[N°(A)] = Be(la, £),

’

where 7 is defined by (6.4) and denotes Lebesgue measure. Also, foe
{1,2,...}, letT, (resp.T;’) denote the time of theth arrival in theg.-delay (resp.
stationary) renewal process. By convention,Bet 77 = 0. Forr > 0, let

A)=min{t —T,>0:n=0,1,2,...},
D(#)=min{T, —t>0:n=0,1,2,...}.

At time ¢, A(¢) is the time that has elapsed since the most recent arrival in
the é.-delay renewal process, that is, tage of the most recent arrival. Similarly,
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D(t) is the time that will elapse beginning from tinreuntil the next arrival

in the &.-delay renewal process, that is, tdday until the next arrival. For the
stationary renewal process, the age process and the delay procedd3(.) are
defined in an analogous fashion. The reason for referring to the renewal process
with initial delay distribution determined bipe)e as a stationary renewal process

is that, for each > 0, the distribution ofD3(¢) is equal to that o5(0), which is
determined by(ve)e.

The coupling construction in [12] uses various properties of zero-delay renewal
processes, which are renewal processes with initial delay distribution determined
by 89, wheredg is the probability measure that puts one unit of mass at the origin.
Given such a renewal process with interarrival distribution determinedacpy
the associated counting measure and other processes are defined in a manner
analogous to that for thé,-delay and stationary renewal processes, except that
they are distinguished by the presence of a superscript’z.], 7%, A%(-) and
D?(-)]. Note thatN*({0}) = 1, T{ = 0 almost surely and, for each> 0,

(A.2) E[N*([0, 1])] = Ue(2)

(cf. [12], Chapter Ill, (1.4)(i)). Properties of the distribution a@f(r), for ¢
sufficiently large, are used in determining the frequency of coupling attempts.
Specifically, sinceve has a density (which implies that it is “spread out”), by
Lemma 5.1 in Chapter lll of [12], there exist finite, positive constanisk

and T such that, for each > T, the distribution of A%(r) has an absolutely
continuous component for which the density is bounded below loy [0, k] and

1— Fe(k) > 0. For the remainder of the Appendix, we fix such a trigle, k, T).

Note that these constants depend onlyvpmand not ong, since it is zero-delay
renewal processes that are under consideration here.

We begin in Section A.1 by summarizing some important properties of the
coupling construction given in [12]. Then, in Section A.2, we use these properties
to derive a bound that is sufficient to imply (6.23) (cf. Theorem A.1). Finally
(6.26) and (6.27) are verified in Section A.3.

A.l. Thecouplingtime. Forthe case where the initial delay distributions are
determined by and(ve)e, the interarrival distributions are determinedigyand
the triple (associated with the interarrival distributiog) is given by (m, k, T),
the coupling construction in Section 5 of Chapter Il of [12] yield§c.edelay
renewal process and a stationary renewal process, both defined on the same
probability space, with certain additional properties, some of which we describe
below. For this, we use the same notation for the interarrival times, age processes
and delay processes associated with these two renewal processes as established at
the beginning of the Appendix. In addition, we Wp = 0, ng = 0, nj = 0 and for
ief{l 23,...}, we iteratively define

Zi—1=maxD(W;_1), D(W;_1)}, Wi=Wia+Zi—1+T,

ni=maxn:T, < W;}, n?=maxn: Ty < W;}.
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Finally, we let
(A.3) T =min{i > 1:D(W;) = D3(W;)}.
The coupling construction in [12] is such that
P(T <oo)=1 and D(t)= D) forall t > Wy

(cf. [12], page 81). In fact, by (5.3) in Chapter Il of [12], there exi&ts (O, 1],
which does not depend dn such that

(A.4) PT>i)<@-8"1 fori=12....

Using the fact that the interarrival distribution is determinedyit is possible to
show that (A.4) holds fo8 = m?(1 — Fe(k))k?. Thecoupling time ¢ is given by

T 00
(A.5) c=Zo+ Y (T+Z)=Zo+ Y Lg=iy(T + Z).
i=1 i=1

The timesW;,i =1,...,7, are the times at which coupling attempts were
made. For 1< i < 7, each attempt was unsuccessful sidzéV;) # DS(W;).
However, the7th such attempt was successful sinbéWs) = DS(Ws). The
coupling construction is such that, between successive coupling attempts, the
coupled renewal processes satisfy a conditional independence property, which we
now describe. For this, let, fare {0, 1, 2, ...},

Fi = G{TnA(ni+1), TnSA(niS—i-l) n=0, 1, 2,... }

For fixedi € {1, 2,3, ...}, conditioning on¥; allows the two renewal processes
to be restarted at the arrival tim@, ;1 and T'% 11» respectively. When the two
renewal processes conditioned @ are restarted at their respective renewal
arrival times, the coupling construction ensures that{on- i}, they evolve as
independent zero-delay renewal processesIter Z;, — D(W;) andT + Z; —
DS(W;) units of time, respectively. This conditional independence property is

important for the proofs given below.

A.2. Bounds for moments of the coupling time. In this section, we prove
the following theorem, which implies (6.23).

THEOREMA.1. Lety €[1, 1+¢]. Then ¢ hasafinite yth moment. Moreover,
ELc?DYY < EIZIDYY + (2T + 22T + 1) + 22 L1 E[ Zo)) VY
L@+ 22710 (T + 1)(1 - §) + 2% +2C1C) VY
1—(1-=8lr ’

where T isasin Section A.1,§ € (0,1] isasin (A.4) and C1 and C> are finite,
positive constants that do not depend on & (but may depend on v and y).
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We begin by showing how to obtain (6.23) from Theorem A.1.
PROOF OF(6.23). Fixy €[1, 1+ ¢]. Recall thatr ands do not depend oé.
Let
Ki=2"TY + 22 TCy(T + 1),
K2 — 22)/+1C1’

. (2T + 2210 (T 4+ 1))(1 — 8) + 22 +2C1Co) Y
3= 1-1-8r '
Thus,K1, K2 andK3 do not depend o&. By Theorem A.1,

Elc”] < (EIZX)YY + (K1+ K2E[ZoD)Y? + K3)?
(A.6) < (B3maq{(E[ZI DY, (K1 + K2E[Zo)Y, K3))”
<3VElZy1+ 3 (K1 + K2E[Zo)) + 3K}

Since Zo < D(0) + D%(0), it follows that Zj < 27(D(0))” + 27 (DS(0))”.
Therefore,

(A7) E[Zo]l <E[D(0)]+E[D%0)] = (x.&e) + (X, (Ve)e)
(A.8) ElZy] <2"E[(D(0))"]1+ 2"E[(D%(0))"]1=2"(x”. &) + 2" (x" . (ve)e)-
It is easily verified that

(X%, &) (X7, )
A.9 , = d v = "7°
(A.9) (x,&e) 20x.E) and (x",&e) A+7)(x.2)

Combining (6.1) and (A.6)—(A.9) proves (6.23)]

The remaining task is to prove Theorem A.l. For this, we apply some of
the general arguments given in [12] to the special case where the interarrival
distribution is determined by, and the initial delays are given lye)e andée,
respectively. Since [12] does not indicate how the various constants that appear in
the proofs depend on the initial delgy, we provide enough details here to keep
track of this dependence. For this, we follow the arguments on pages 83 and 84
in [12], filling in certain details and carefully keeping track of the constants
and what they depend on. These general arguments exploit certain properties of
zero-delay renewal processes. For our purposes, the statements in Lemma A.2
suffice. Note that, in Lemma A.2, it is the zero-delay renewal process that is being
considered. Therefore, the constafi{sandC2 do not depend o&. However, they
do depend om and the constant; may also depend op.

LEMmMA A.2. (i) For each y € [0,2 + ¢], there exists a finite, positive
constant C; such that, for all # > 0, E[(D?(#))”] < C1(t + 1).
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(i) There exists a finite, positive constant C, such that E[ D%(r)] < C> for all
t>0.

PROOE Fixy €[0,2+ ¢] ands > 0. Note that, by (6.1),x", ve) < co. From
page 84 of [12], it follows that

E[(D*(1)1= (X", ve)Ue(t).

By (6.1), (x2, ve) < co. Therefore, by Lorden’s inequality (cf. [12], Chapter III,
(4.1)(i)),

2
2

<vave> (Xy’VeHX ’Ue>

E[(D? 4
D == Sy ™ (o ve)

which proves (i). To prove (i), note that

Dz(t) = T[\Z/Z([o’,])+1 — 1.
Therefore, by (A.2) and Wald's identity,
E[D*(1)] = (x. ve) (Ue(t) + 1) — 1.

Then, by Lorden’s inequality,

2 2
D) 4 (ove) — 1 = (v + X
<X7 l)e) <X7 l)e)

which completes the proof.(]

E[D*(1)) <1+

’

PROOF OFTHEOREM A.1. Fix y €[1,1+ ¢]. By (A.5) and Minkowski's
inequality,

(A10)  (E["DY" < EIZIDYY + Y (E[(T + Z)" 1i7=5]) "
i=1

Since y € [1,1 + €], by (6.1), (x7, (ve)e) < oco. Also, since ¢ e 3%’8,

(x7, &) < oo. Therefore,E[Zg] < oo [cf. (A.8)]. The next objective is to
bound E[(T + Z;)"1(7>;;] from above for each € {1,2,3,...}. For this,
fix i € {1,2,3,...}. Note thatls~;, € F_1. Moreover, by using the inequality
(x+y)Y <2¥(x¥ 4+ y?), forx, y € Ry, it follows that

ENT + Z)" |Fi—1] <2'TY + 2VE[Z] | Fi_1].
By definition, Z; = max{D(W;), DS(W;)}. Therefore,

E[Z] |Fi-1] < 27E[(D(W)" | Fi-1] + 2 E[(DS(W:))” | Fi-1].
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By Lemma A.2(i) and the conditional independence property of the coupling
construction, it follows that, ofg™ > i},

E[Z)|Fi-1] <2/ C1(T + Zi—1— D(Wi—1) +1)
+2"Cy(T + Zi—1 — D5(Wi—1) + 1)
<2HCUT + 14 Zi).
Thus, on{T > i},
ELT + Z)Y|Fi_1] <2V T + 22 F1Cy(T + 1+ Zi_1).
This together with (A.4) implies that
E[(T + Z)" Li7=y] < (2'TY + 2% F1Cy(T +1))A—8)' 1
+ 22 FICIE[Zia Ty =)
If i =1, we obtain

(ELT + 20" Lz=1])"”
(A.11) .
< (2T +22+LC(T + 1) + 227 s EZo)) 7.

If i > 2, then making the observation thir~;; < 1;7>;,-1; and conditioning
on F;_» gives

E[(T + Z) L] < (2VTY + 2% F1ey(T + 1)1 - 8)' 2
+ 227 TICIE[E[Zi 1| Fi 27 =i-1]-

Recall thatZ;_1 = max{{D(W;_1), DS(W;_1)} < D(W;_1) + DS(W;_1). Thus,
if i > 2, Lemma A.2(ii) and the conditional independence property of the coupling
construction imply that, of7™ > i — 1},

E[Z;_1|Fi_2] < 2C>.

Therefore, ifi > 2,

ELT + Z)" 17 5]) "

(A.12) < ((2'T7 +22H1CU(T + 1)) (1 — 8) 4 22 T2C1C0) Y
x (1—8)=2/7,

Combining (A.10)—(A.12) completes the proof.]
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A.3. Verification of (6.26) and (6.27). Here we apply the general arguments
given on pages 84 and 85 of [12] to the particular circumstances of interest here
while keeping track of the constants to verify (6.26) and (6.27). For this, note that,
for eachr > 0,

(L4, 17— k€)= (X, ENLirr+), 1T — Bell),

where? = 7/{x, &). Recall thatt and e are the renewal measures associated
with the coupledée-delay and stationary renewal processes described in Sec-
tion A.1. As noted in the introduction to the Appendix, for each 0, the Borel
probability measure corresponding to the distribution of the dél&y) is given

by (ve)e for all # > 0. For each > 0, let&e(¢) denote the Borel probability measure
corresponding to the distribution of the delB\r). For eachr > 0, by restarting
each process at time it follows that

(A-13) (]1[t,t+l), |f - ﬁeﬂ) = Ue(l)er(t) - (Ve)e||TV

(cf. [12], Chapter lll, (6.6)). By the amupling—mapping inguality (cf. [12],
Chapter I, (2.12)), for each> 0,

(A.14) §e(r) — (Ve)ellTv < 2P(5 > 1).
By (A.13) and (A.14), for each > 0,

(Liro0). 1T = Bell) = D (Lirtisrsitn). [T — Bell) < Ue(D) Y 2P(s > r +1).
i=0 i=0

In the above irquality for eachi € {0, 1, 2, ...}, replaceP (¢ > r + i) with

o0
Y Pr+j<c=r+j+0,

j=i
interchange the order of summation and simplify, to obtain, for eael®,
o0
(A15)  (Lpc0). IT — Bell) <2Ue()) Y (j+DPr+j<g<r+j+0.
j=0
Lettingr = 0 in (A.15) gives
1T — Bellltv < 2Ue(1)(1+ E[s]).

Multiplying this by (x, &) proves (6.26). To verify (6.27), fix > 1. Then,
from (A.15), using the fact that> 1, it follows that

o0
(Ufroo) |T — Bell) <2Ue(D) D (r + HP(r+j<g<r+j+1).
j=0
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Note that, for each > 0, 1<r~(r + j)¢. So it follows that

(L1r.00), 1T — Bell) < 2Ue(1)<2(r + PP+ j<c<r+j+ 1))r‘8
j=0

< 2Ue(DE[s1r™.
Multiplying the above inequality byy, &) proves (6.27).

REFERENCES

[1] BRAMSON, M. (1996). Convergence to equilibria for fluid models of FIFO queueing networks.
Queueing Systems Theory Appl. 22 5-45.
[2] BRAMSON, M. (1997). Convergence to equilibrieorf fluid models of head-of-the-line
proportional processor sharing queueing netwo€useueing Systems Theory Appl. 23
1-26.
[3] BRAMSON, M. (1998). State space collapse with applications to heavy traffic limits for
multiclass queueing network@ueueing Systems Theory Appl. 30 89-148.
[4] CHEN, H., KELLA, O. and WEISS, G. (1997). Fluid approximations for a processor-sharing
queue Queueing Systems Theory Appl. 27 99-125.
[5] DURRETT, R. T. (1996).Probability: Theory and Examples, 2nd ed. Duxbury, Belmont, CA.
[6] ETHIER, S. N. and KURTZ, T. G. (1986).Markov Processes. Characterization and Conver-
gence. Wiley, New York.
[7] FELLER, W. (1971).An Introduction to Probability Theory and Its Applications 2, 2nd ed.
Wiley, New York.
[8] FOLLAND, G. (1984).Real Analysis: Modern Techniques and Their Applications. Wiley, New
York.
[9] GrRomoLL, H. C. (2004). Diffusion approximation for a processor sharing queue in heavy
traffic. Ann. Appl. Probab. To appear.
[10] GrRomoOLL, H. C., RUHA, A. L. and WiLLIAMS, R. J. (2002). The fluid limit of a heavily
loaded processor sharing queAan. Appl. Probab. 12 797—-859.
[11] HEATH, D., RESNICK, S. and 3MORODNITSKY, G. (1998). Heavy tails and long range
dependence in on/off processes and associated fluid mbtils.Oper. Res. 23 145-165.
[12] LINDVALL , T. (1982).Lectures on the Coupling Method. Wiley, New York.
[13] RESNICK, S. I. (1992)Adventures in Stochastic Processes. Birkhduser, Boston.
[14] WiLLiamMs, R. J. (1998). Diffusion appximations for open multiclass queueing networks:
Sufficient conditions involving state space collapQeeueing Systems Theory Appl. 30

27-88.
DEPARTMENT OFMATHEMATICS DEPARTMENT OFMATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO CALIFORNIA STATE UNIVERSITY, SAN MARCOS
LA JOLLA, CALIFORNIA 92093-0112 SAN MARCOS, CALIFORNIA 92096-0001
USA USA

E-MAIL : williams@math.ucsd.edu E-MAIL : apuha@csusm.edu



