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We present a heavy traffic analysis for a single server queue with
renewal arrivals and generally distributed i.i.d. service times, in which
the server employs the Shortest Remaining Processing Time (SRPT)
policy. Under typical heavy traffic assumptions, we prove a diffusion
limit theorem for a measure-valued state descriptor, from which we
conclude a similar theorem for the queue length process. These results
allow us to make some observations on the queue length optimality
of SRPT. In particular, they provide the sharpest illustration of the
well-known tension between queue length optimality and quality of
service for this policy.

1. Introduction. In a single server queue employing the Shortest Re-
maining Processing Time (SRPT) policy, preemptive priority is given to the
job that can be completed first, that is, the job with the shortest remaining
processing time. More precisely, consider a single server queue with renewal
arrivals and i.i.d. service times, and let I(t) index in the order of their arrival
those jobs that are in the queue at time t. For i ∈ I(t), let wi(t) denote the
residual service time at time t of job i. This is the remaining amount of pro-
cessing time required to complete this job. If j ∈ I(t) is the smallest index
such that wj(t) ≤ wi(t) for all i ∈ I(t), then under SRPT, d

dt
wj(t+) = −1

and d
dt
wi(t+) = 0 for all i ∈ I(t) \ j.

Interest in the SRPT policy goes back to the first optimality result of
Schrage [15], who showed that SRPT minimizes the number of jobs in the
system, or queue length, at each point in time (see also Smith [18]). More
explicitly, given fixed arrival and service processes, if Z(t) is the queue length
at time t under SRPT and Q(t) is the queue length at t under an arbitrary
work conserving policy, then almost surely,

(1.1) Z(t) ≤ Q(t), for all t ≥ 0.
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This holds with no distributional assumptions on the underlying arrival and
service processes.

Expressions for the mean response time for an M/G/1 SRPT queue were
developed earlier by Schrage and Miller [16], and extended later in Schas-
sberger [14] and Perera [12] (see Schreiber [17] for a survey of the same
time period). Another notable contribution was made by Pavlov [10] and
Pechinkin [11], who characterized the heavy traffic limit of the steady state
distributions for the queue length of an M/G/1 SRPT queue.

Recently, there has been renewed interest in the SRPT policy, mainly in
computer science. For example, Bansal and Harchol-Balter [1] study fairness
for SRPT ([1] is also a good source for a more extended list of prior work on
SRPT). More recent work seeks to provide a framework for comparing poli-
cies in the M/G/1 setting; see for example Wierman and Harchol-Balter [19].

There has also been a recent body of work on the tail behavior of single
server queues under SRPT; see for example Núñez Queija [8] and Nuyens
and Zwart [9]. They discuss the advisability of implementing SRPT using
large deviations techniques.

In [3], Down and Wu employ diffusion limits to show certain optimal-
ity properties of a multi-layered round robin routing policy for a system of
parallel servers, each operating under SRPT. This was done under the as-
sumption of a finitely supported service time distribution, mainly due to the
absence at the time of diffusion limits for more general service time distribu-
tions. In the case of a general service time distribution, Down, Gromoll, and
Puha [4] developed fluid limits for SRPT queues, and used these to obtain a
formula for state-dependent response times (on fluid scale) of jobs entering
the system (see also [5]).

In this paper, we prove a diffusion limit theorem that holds for a gen-
eral service time distribution, under usual heavy traffic assumptions. We do
this for a measure-valued state descriptor, so that diffusion limits for various
other performance measures may be obtained as corollaries; see Theorem 3.1.
In particular, we obtain a diffusion limit theorem for the queue length pro-
cess. This result reveals just how optimal SRPT is, in the sense of (1.1), and
is explained below.

Let Ẑr(t) = r−1Zr(r2t), t ≥ 0, be the rth diffusion scaled queue length
process from an r-indexed sequence of SRPTmodels, as detailed in Section 3.
In particular, we assume the fairly standard heavy traffic assumptions (3.4),
(3.5), (3.7), (3.8), (3.9), and (3.11). We use W ∗(·) to denote the limit in
distribution of the corresponding sequence of diffusion scaled workload pro-
cesses (see (3.10)). As noted there, W ∗(·) is the same for all work conserving
policies and is a reflected Brownian motion in R+ [7]. We use ν to denote the
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limiting service time distribution (see (3.5)) and x∗ to denote the supremum
of the support of ν. Informally, x∗ is the largest possible job size. Then,

Theorem 1.1. As r → ∞, the processes Ẑr(·) converge in distribution

to

Z∗(·)
d
=

{
W ∗(·)
x∗

, if x∗ < ∞,

0, if x∗ = ∞.

This result follows from Theorem 3.1 by the continuous mapping theorem.
Theorem 1.1 makes a striking statement about the queue length optimal-

ity of SRPT. Consider the following simple lower bound, valid for any work
conserving policy and service time distribution ν. Assume for the moment
that x∗ < ∞. Let Q(t), t ≥ 0, be the queue length process under an arbi-
trary work conserving policy. Then at each time t ≥ 0, the workload W (t)
is bounded above by Q(t)x∗, because it is the sum of Q(t) residual service
times, each of which is bounded above by x∗. So almost surely,

(1.2) Q(t) ≥
W (t)

x∗
, for all t ≥ 0.

Note that (1.2) makes sense when x∗ = ∞ as well, as the right side is
interpreted as zero.

Unlike (1.1), which gives a universal lower bound (over all work conserving
policies) in terms of the queue length process of one such policy, (1.2) gives
a universal lower bound in terms of the common workload process of all
such policies. In particular, we may combine these bounds and have, almost
surely,

W (t)

x∗
≤ Z(t) ≤ Q(t), for all t ≥ 0.

The bound (1.2) is intuitively appealing because it results from the hy-
pothetical configuration of residual service times that minimizes the queue
length at time t, given the workload at t. At each t ≥ 0, the queue length
minimizing configuration is the one that puts as many residual service times
as possible at x∗, such that they sum to W (t). (To be precise, all of them if
x∗ divides W (t) and all but one of them otherwise). Additionally, since the
workload process is a much simpler object than the queue length process
under SRPT, (1.2) may be easier to work with in practice, when x∗ < ∞,
than (1.1).

Of course, this bound is hypothetical because no work conserving policy,
including SRPT, can achieve such optimal configurations for all t ≥ 0, al-
though many may achieve it for some t (including for example all times t
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for which W (t) = 0). The interesting fact contained in Theorem 1.1 is that,
on diffusion scale in heavy traffic, SRPT actually achieves the hypothetical
lower bound asymptotically, almost surely for all t ≥ 0.

So SRPT is not only better than any other work conserving policy in
the sense of (1.1), it is in fact as optimal as possible in the heavy traffic
limit. Of course, this optimality is from the point of view of the server,
who one imagines wants to minimize queue length. As is well known, SRPT
performs poorly from the point of view of large jobs (see e.g. [4]), who
wish to minimize their time in queue, but tend to wait for long periods as
they are preempted by smaller jobs. Indeed the queue length optimality of
SRPT comes at the expense of long sojourn times for large jobs, and this
tension is made explicit by Theorem 3.1, which gives the measure-valued
diffusion limit. From this result, we see that in the heavy traffic limit, all
mass is concentrated at x∗. So asymptotically for all t ≥ 0, the queue consists
entirely of jobs of the largest possible size, whereas smaller jobs are flushed
out instantly. That is, the diffusion limit in Theorem 3.1 puts the contrast
between queue length optimality and poor performance for large jobs in the
sharpest light.

In the remainder of the paper, we give a precise definition of the stochastic
model for an SRPT queue (Section 2), state our assumptions and main result
(Section 3), and provide the proofs (Section 4).

1.1. Notation. The following notation will be used throughout the paper.
Let N denote the set of positive integers and let R denote the set of real
numbers. For a, b ∈ R, we write a ∨ b for the maximum of a and b, and ⌊a⌋
for the largest integer less than or equal to a. The nonnegative real numbers
[0,∞) will be denoted by R+. By convention, a sum of the form

∑m
i=n with

n > m, or a sum over an empty set of indices equals zero. The sets (a, b),
[a, b), and (a, b] are empty for a, b ∈ [0,∞] with a ≥ b. For a Borel set
B ⊂ R+, we denote the indicator of the set B by 1B . We also define the real
valued function χ(x) = x, for x ∈ R+.

Let M denote the set of finite, nonnegative Borel measures on R+. For
ξ ∈ M and a Borel measurable function g : R+ → R that is integrable
with respect to ξ, define 〈g, ξ〉 =

∫
R+

g(x)ξ(dx). The set M is endowed with

the weak topology. That is, for ξn, ξ ∈ M, we have ξn
w
→ ξ if and only

if 〈g, ξn〉 → 〈g, ξ〉 as n → ∞, for all g : R+ → R that are bounded and
continuous. With this topology, M is a Polish space [13]. We denote the
zero measure in M by 0 and the measure in M that puts one unit of mass
at the point x ∈ R+ by δx. For x ∈ R+, the measure δ+x is δx if x > 0
and 0 otherwise. For ξ ∈ M, we say that x ∈ R+ is a ξ-continuity point if
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〈1{x}, ξ〉 = 0. Let Ma denote those elements of M that do not charge the
origin. We say that a measure ξ ∈ M has a finite first moment if 〈χ, ξ〉 < ∞.
Let Mχ denote the set of all such measures and let M0 = Mχ ∩Ma.

We use “
d
=” for equality in distribution and “⇒” to denote convergence in

distribution of random elements of a metric space. Unless otherwise specified,
all stochastic processes used in this paper are assumed to have paths that
are right continuous with finite left limits (r.c.l.l.). For a Polish space S,
we denote by D([0,∞),S) the space of r.c.l.l. functions from [0,∞) into S,
endowed with the Skorohod J1-topology [6].

2. Stochastic model for an SRPT queue. Our stochastic model
of an SRPT queue consists of the following: a random initial condition
Z(0) ∈ M specifying the state of the system at time zero, stochastic primi-
tives E(·) and {vk}k∈N describing the arrival of jobs to the queue and their
service times, and a measure valued state descriptor Z(·) describing the time
evolution of the system. These are defined below.

Initial condition. The initial condition specifies the number Z(0) of jobs
in the queue at time zero, as well as the initial service time of each job.
Assume that Z(0) is a nonnegative integer valued random variable that is
finite almost surely. The initial service times are the first Z(0) elements of
a sequence {ṽj}j∈N of strictly positive, finite random variables. The initial
job with service time ṽj, j ≤ Z(0), is called job j.

A convenient way to express the initial condition is to define an initial
random measure Z(0) ∈ M by

Z(0) =

Z(0)∑

j=1

δṽj ,

which equals 0 if Z(0) = 0. Our assumptions imply that Z(0) satisfies

(2.1) P(〈1,Z(0)〉 ∨ 〈χ,Z(0)〉 < ∞) = 1.

In particular, the number of initial jobs and the initial workload are finite
almost surely, and so Z(0) ∈ M0 almost surely.

Stochastic primitives. The stochastic primitives consist of an exogenous
arrival process E(·) and a sequence of initial service times {vk}k∈N. The
arrival process E(·) is a rate α ∈ (0,∞) delayed renewal process such that
the interarrival times have standard deviation a ∈ [0,∞). For t ∈ [0,∞),
E(t) represents the number of jobs that arrive to the queue during the time
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interval (0, t]. Jobs arriving after time 0 are indexed by integers j > Z(0).
For t ∈ [0,∞), let

(2.2) A(t) = Z(0) + E(t).

Then job j ∈ N arrives at time Tj = inf{t ∈ [0,∞) : A(t) ≥ j}. Hence, for
i < j, Ti ≤ Tj and we say that job i arrives before job j.

For each k ∈ N, the random variable vk represents the initial service time
of the (Z(0)+k)th job. That is, job j > Z(0) has initial service time vj−Z(0).
Assume that the random variables {vk}k∈N are strictly positive and form
an independent and identically distributed sequence with common Borel
distribution ν on R+. Assume that the mean 〈χ, ν〉 ∈ (0,∞) and standard
deviation b =

√
〈χ2, ν〉 − 〈χ, ν〉2 ∈ [0,∞). Let β = 〈χ, ν〉−1. Define the

traffic intensity ρ = α/β.
It will be convenient to combine the stochastic primitives into a single,

measure valued load process.

Definition 2.1. The load process is given by

V(t) =

E(t)∑

k=1

δvk , for t ∈ [0,∞).

Then V(·) ∈ D([0,∞),M) since E(·) ∈ D([0,∞),R+).

Evolution of the residual service times. In an SRPT queue, the smallest
nonzero residual service time decreases at rate one until either it becomes
zero or a job arrives that has a smaller initial service time, at which time
the rate changes to zero and the new smallest nonzero residual service time
begins decreasing at rate one. We adopt the convention that in case of a tie,
the residual service time of the job that arrived first (that is, the job with
smaller index) begins decreasing at rate one.

For j ∈ N and t ∈ [0,∞), let wj(t) denote the residual service time of job
j. By convention, for j ∈ N and t ∈ [0, Tj ],

wj(t) =

{
ṽj , 1 ≤ j ≤ Z(0),

vj−Z(0), j > Z(0).

Furthermore, for j ∈ N, if Dj denotes the time at which job j completes
service and departs the system, then wj(t) = 0 for all t ≥ Dj . On (Tj ,Dj),
wj(·) is nonincreasing. In particular, wj(·) decreases at rate one when job
j is in service, and is constant when job j is not in service. See [4] for a
detailed definition of the residual service times.



DIFFUSION LIMITS FOR SRPT 7

Measure-valued state descriptor. For t ∈ [0,∞), define the state descriptor
by

(2.3) Z(t) =

A(t)∑

j=1

δ+
wj(t)

.

3. Diffusion limit theorem. We first define a sequence of systems
over which the limit is taken. Let R be a sequence of positive real numbers
increasing to infinity. Consider an R-indexed sequence of stochastic models,
each defined as in Section 2. For each r ∈ R, there is an initial condition
Zr(0); there are stochastic primitives Er(·) and {vrk}k∈N with parameters
αr, ar, νr, βr, br, and ρr, and an arrival process Ar(·) with arrival times
{T r

j }j∈N; there is a corresponding measure valued load process Vr(·); there
is a state descriptor Zr(·). The stochastic elements of each model are defined
on a probability space (Ωr,Fr,Pr) with expectation operator Er. A diffusion
scaling (or central limit theorem scaling) is applied to each model in the R-
indexed sequence as follows. For each r ∈ R and t ∈ [0,∞), let

(3.1) Êr(t) =
1

r

(
Er(r2t)− r2tαr

)
.

Also, for each r ∈ R and t ∈ [0,∞), let

(3.2) Ẑr(t) =
1

r
Zr(r2t) and Ŵ r(t) = 〈χ, Ẑr(t)〉.

Let α, a ∈ (0,∞) and define α(t) = αt for all t ∈ [0,∞). Let ν be a
probability measure such that

(3.3) 〈1{0}, ν〉 = 0, 〈χ, ν〉 = 1/α, and 0 < 〈χ2, ν〉 < ∞.

Set b =
√

〈χ2, ν〉 − 〈χ, ν〉2 and

x∗ = sup{x ∈ R+ : 〈1[0,x], ν〉 < 1}.

For the sequence of stochastic primitives we make the following asymp-
totic assumptions. For the exogenous arrival processes, assume that as
r → ∞,

(3.4) αr → α, ar → a, and Êr(·) ⇒ E∗(·),

where E∗(·) is a Brownian motion starting from zero with drift zero and
variance a2α3 per unit time. This implies a functional weak law of large
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numbers for the exogenous arrival processes. In particular, it implies that as
r → ∞,

Ēr(·) ⇒ α(·),

where Ēr(t) = Er(r2t)/r2 for all t ∈ [0,∞) and r ∈ R. For the sequence of
service time distributions, assume that as r → ∞,

(3.5) νr
w
→ ν and 〈χ2, νr〉 → 〈χ2, ν〉.

Then βr → α, ρr → 1, and br → b as r → ∞. It also follows that {νr, r ∈ R}
satisfies a Lindeberg-Feller condition, i.e., for all ε > 0,

(3.6) lim
r→∞

〈(χ− 〈χ, νr〉)2
(
1[0,〈χ,νr〉−εr) + 1(〈χ,νr〉+εr,∞)

)
, νr〉 = 0.

In addition, assume the heavy traffic condition that for some γ ∈ R,

(3.7) lim
r→∞

r(1− ρr) = γ.

Finally, if x∗ < ∞, also assume that for all x > x∗,

(3.8) lim
r→∞

r〈χ1(x,∞), ν
r〉 = 0.

For the sequence of diffusion scaled initial conditions {Ẑr(0) : r > 0},
assume that as r → ∞,

(3.9) Ŵ r(0) ⇒ W ∗
0 ,

for some random variable W ∗
0 . Then from (3.4), (3.5) (which implies (3.6)),

(3.7), (3.9), and the fact that SRPT is a work conserving discipline, it follows
that, as r → ∞,

(3.10) Ŵ r(·) ⇒ W ∗(·),

where W ∗(·) is a reflected Brownian motion with initial value W ∗(0)
d
= W ∗

0 ,
variance (a2 + b2)α per unit time, and drift −γ (see [7]). Further assume
that, as r → ∞,

(3.11) Ẑr(0) ⇒

{
W ∗

0

x∗
δx∗ , if x∗ < ∞,

0, if x∗ = ∞.

Note that (3.11) implies that Ẑr(0) converges in distribution to a random
measure that is almost surely an invariant state (see [4, Corollary 3.7]).
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Theorem 3.1. Under the asymptotic assumptions (3.4), (3.5), (3.7),
(3.8), (3.9), and (3.11), the sequence {Ẑr(·) : r ∈ R} converges in distribu-

tion on D([0,∞),M) to a measure valued process Z∗(·) such that

Z∗(·)
d
=

{
W ∗(·)
x∗

δx∗ , if x∗ < ∞,

0, if x∗ = ∞.

This result, in the first case when x∗ < ∞, is a continuous analog of
the diffusion limit result for a multi-class static buffer priority queue, where
in the diffusion limit work only resides in the lowest priority class [20]. In
an SRPT queue, those jobs with larger service times receive lower priority.
Hence, an informal restatement of the first case is that in the diffusion limit
the work concentrates in jobs with the largest possible service time, i.e., the
lowest priority. The case when x∗ = ∞ is the natural extension of this result
when there is no largest possible service time. Indeed, for the work to get
pushed out to infinity on diffusion scale while the diffusion scaled workload
process converges, the queue length must necessarily tend to zero.

4. Proofs. Throughout this section we assume that (3.4), (3.5), (3.7),
(3.8), (3.9), and (3.11) hold. In Section 4.1, we state a well known result
and use it to derive three diffusion limit results to be used in the sequel. In
Section 4.2, Theorem 3.1 is proved.

4.1. Diffusion limits for load related processes. The following result is
well known and follows from [13, Theorem 3.1] used to extend [2, Sec-
tion 17.3].

Proposition 4.1. For each r ∈ R, let {xrk}
∞
k=1 be an independent and

identically distributed sequence of nonnegative random variables on (Ωr,Fr,
Pr) with finite mean µr and standard deviation σr, that is independent of

Er(·). Suppose that for some finite nonnegative constants µ and σ, µr → µ
and σr → σ as r → ∞. Further assume that for each ε > 0,

lim
r→∞

Er
[
(xr1 − µr)2; |xr1 − µr| > rε

]
= 0.

For r ∈ R, n ∈ N, and t ∈ [0,∞), let

Xr(n) =
n∑

k=1

xrk and X̂r(t) =
Xr(⌊r2t⌋)− ⌊r2t⌋µr

r
.

Then as r → ∞, (Êr(·), X̂r(·)) ⇒ (E∗(·),X∗(·)), where E∗(·) is given by

(3.4) and X∗(·) is a Brownian motion starting from zero with zero drift and
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variance σ2 per unit time, that is independent of E∗(·). Furthermore, as

r → ∞,
Xr(r2Ēr(·)) − r2αr(·)µr

r
⇒ X∗(α(·)) + µE∗(·),

where for each r ∈ R and t ∈ [0,∞), αr(t) = αrt.

Note that the limiting process X∗(α(·)) + µE∗(·) in Proposition 4.1 is
a Brownian motion starting from zero with zero drift and variance ασ2 +
µ2α3a2 per unit time. We apply this proposition to three processes of interest
here, that we respectively refer to as the total load, the truncated load, and
the tail load processes. For r ∈ R and t ∈ [0,∞), let

V̂r(t) =
1

r

(
Vr(r2t)− r2αrtνr

)
.

Then, for r ∈ R, let the total load and scaled total load processes be given
respectively by

V r(·) = 〈χ,Vr(·)〉 and V̂ r(·) = 〈χ, V̂r(·)〉.

Then, for r ∈ R,

V̂ r(·) =

∑r2Ēr(·)
k=1 vrk − r2αr(·)〈χ, νr〉

r
.

From (3.5) and Proposition 4.1, it follows that as r → ∞,

V̂ r(·) ⇒ V ∗(·),

where V ∗(·) is a Brownian motion starting from zero with zero drift and
variance α(a2 + b2) per unit time.

Next we consider the truncated load process. For r ∈ R and x ∈ R+, let

V r
x (·) = 〈χ1[0,x],V

r(·)〉 and V̂ r
x (·) = 〈χ1[0,x], V̂

r(·)〉.

Then, for r ∈ R and x ∈ R+,

V̂ r
x (·) =

∑r2Ēr(·)
k=1 vrk1{vrk≤x} − r2αr(·)〈χ1[0,x], ν

r〉

r
.

Note that (3.5) implies that for any ν-continuity point x ∈ R+, as r → ∞,

(4.1) 〈χ21[0,x], ν
r〉 → 〈χ21[0,x], ν〉.
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Hence (3.5) and Proposition 4.1 imply that for any ν-continuity point x ∈
R+, as r → ∞,

(4.2) V̂ r
x (·) ⇒ V ∗

x (·),

where V ∗
x (·) is a Brownian motion starting from zero with drift zero and

finite variance per unit time.
Finally, for each r ∈ R and x ∈ R+, we consider the tail load process

V r(·)− V r
x (·). Then, for r ∈ R and x ∈ R+,

V̂ r(·)− V̂ r
x (·) =

∑r2Ēr(·)
k=1 vrk1{vrk>x} − r2αr(·)〈χ1(x,∞), ν

r〉

r
.

Note that (3.5) (which implies (4.1)) also implies that for any ν-continuity
point x ∈ R+, as r → ∞,

〈χ21(x,∞), ν
r〉 → 〈χ21(x,∞), ν〉.

Hence, (3.5) and Proposition 4.1 imply that for any ν-continuity point x ∈
R+, as r → ∞,

(4.3) V̂ r(·)− V̂ r
x (·) ⇒ T ∗

x (·),

where T ∗
x (·) is a Brownian motion starting from zero with drift zero and

variance s2x per unit time. Here,

(4.4) s2x = α(〈χ21(x,∞), ν〉 − 〈χ1(x,∞), ν〉
2) + 〈χ1(x,∞), ν〉

2α3a2.

Notice that if x∗ < ∞ and x > x∗, then x is a ν-continuity point and
〈1(x,∞), ν〉 = 0. Hence, if x > x∗, then in (4.4), s2x = 0, i.e.,

(4.5) T ∗
x (·) ≡ 0.

4.2. Proof of the main theorem. Here we use the diffusion limits for the
load related processes derived in Section 4.1 to prove the main result. We use
the result about the scaled truncated load process to prove that, on diffusion
scale, the truncated queue length tends to zero when the truncation is below
x∗, the supremum of the support of the limiting service time distribution.
Then we use the result about the scaled tail load processes to prove that, on
diffusion scale, the queue length above x tends to zero when x is above x∗.
Then these two results are put together to show that in the diffusion limit,
the queue mass concentrates at x∗.

For r ∈ R and x ∈ R+, let

Zr
x(·) = 〈1[0,x],Z

r(·)〉 and W r
x (·) = 〈χ1[0,x],Z

r(·)〉,(4.6)

Ẑr
x(·) = 〈1[0,x], Ẑ

r(·)〉 and Ŵ r
x (·) = 〈χ1[0,x], Ẑ

r(·)〉.(4.7)
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Lemma 4.2. For any x ∈ (0, x∗), as r → ∞,

(4.8) Ẑr
x(·) ⇒ 0.

Proof. Since Ẑr
y(·) ≤ Ẑr

x(·) for each 0 < y ≤ x < x∗, it suffices to verify
(4.8) for x ∈ (0, x∗) that are ν-continuity points. Fix such an x. For r ∈ R
and t ∈ [0,∞), let

τ rx(t) = sup{s ∈ [0, t] : Ẑr
x(s) = 0},

which is taken to be zero if {s ∈ [0, t] : Ẑr
x(s) = 0} = Ø. Then, for r ∈ R

and t ∈ [0,∞),

(4.9)
Ẑr
x(t) ≤ Ẑr

x(τ
r
x(t)) +

Er(r2t)− Er(r2τ rx(t))

r
= Ẑr

x(τ
r
x(t)) + Êr(t)− Êr(τ rx(t)) + r (t− τ rx(t))α

r.

First, we obtain an upper bound on Ẑr
x(τ

r
x(·)). Fix r ∈ R and t ∈ [0,∞).

Either τ rx(t) = 0 or τ rx(t) > 0. If τ rx(t) = 0, then Ẑr
x(τ

r
x(t)) = Ẑr

x(0). Oth-
erwise, τ rx(t) > 0. If Ẑr

x(τ
r
x(t)) = 0, then any nonnegative upper bound suf-

fices. Hence, without loss of generality, we also assume that Ẑr
x(τ

r
x(t)) > 0.

Then Ẑr
x(τ

r
x(t)−) = 0 and Ẑr

x(τ
r
x(t)) > 0. Hence, in the rth system at time

r2τ rx(t), the exogenous arrival process jumps and at least one of the en-
tering jobs has an initial service time in [0, x], and/or the residual service
time of the job in service just before time r2τ rx(t) decreases to x. Therefore,
Ẑr
x(τ

r
x(t)) ≤ Êr(τ rx(t))−Êr(τ rx(t)−)+ 1

r
. Combining the bounds for τ rx(t) = 0

or τ rx(t) > 0 gives

Ẑr
x(τ

r
x(t)) ≤ Ẑr

x(0) + Êr(τ rx(t))− Êr(τ rx(t)−) +
1

r
,

where we adopt the convention Êr(0−) = Êr(0) = 0. Hence, for r ∈ R and
t ∈ [0,∞),

(4.10) Ẑr
x(t) ≤ Ẑr

x(0) + Êr(t)− Êr(τ rx(t)−) +
1

r
+ r (t− τ rx(t))α

r.

For r ∈ R and t ∈ [0,∞), let θrx(t) = t− τ rx(t). In order to show that the
upper bound in (4.10) tends to zero and thereby prove (4.8), it suffices to
show that as r → ∞,

(4.11) rθrx(·) ⇒ 0.

To see this, assume that (4.11) holds. Then, for r ∈ R and t ∈ [0,∞), let

θ̃rx(t) = θrx(t) +
1

r2
.
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By (4.11), as r → ∞,

(4.12) θrx(·) ⇒ 0 and θ̃rx(·) ⇒ 0.

We have that for each r ∈ R and t ∈ [0,∞),

Êr(t)− Êr(τ rx(t)−) = Êr(t)−
1

r
Er(r2τ rx(t)−) + rτ rx(t)α

r.

Hence, for each r ∈ R and t ∈ [0,∞),

Êr(t)− Êr (τ rx(t)) ≤ Êr(t)− Êr(τ rx(t)−) ≤ Êr(t)− Êr

(
τ rx(t)−

1

r2

)
+

αr

r
,

where we adopt the convention that Er(t) = Er(0) if t < 0. Therefore, for
each r ∈ R and t ∈ [0,∞),

Êr(t)− Êr (t− θrx(t)) ≤ Êr(t)− Êr(τ rx(t)−) ≤ Êr(t)− Êr
(
t− θ̃rx(t)

)
+

αr

r
.

By (3.4), the fact that E∗(·) is continuous almost surely, and (4.12), it follows
that, as r → ∞,

Êr(·)− Êr (· − θrx(·)) ⇒ 0 and Êr(·)− Êr
(
· − θ̃rx(·)

)
+

αr

r
⇒ 0.

(see [2, Section 17]). Hence, as r → ∞,

(4.13) Êr(·) − Êr(τ rx(·)−) ⇒ 0.

Then (4.10), (3.11), (4.13), (3.4), and (4.11) together imply (4.8).
Hence, all that remains is to prove (4.11). For this, for each r ∈ R and

t ∈ [0,∞), we exploit the behavior of W r
x(·) (defined in (4.6)) on time

intervals of the form (r2τ rx(t), r
2t] to derive an expression that relates Ŵ r

x (t)
and θrx(t). In particular, since for each r ∈ R and t ∈ [0,∞), Zr

x(s) 6= 0 for
all s ∈ (r2τ rx(t), r

2t] and the service discipline is SRPT, it follows that for
each r ∈ R and t ∈ [0,∞),

W r
x(r

2t) = W r
x (r

2τ rx(t)) + V r
x (r

2t)− V r
x (r

2τ rx(t))− r2(t− τ rx(t)).

Then, for r ∈ R and t ∈ [0,∞),

Ŵ r
x(t) = Ŵ r

x(τ
r
x(t)) + V̂ r

x (t)− V̂ r
x (τ

r
x(t)) +

(
αr〈χ1[0,x], ν

r〉 − 1
)
rθrx(t).

Using the same line of reasoning that gave rise to (4.10), for r ∈ R and
t ∈ [0,∞),

Ŵ r
x(t) ≤ Ŵ r

x (0) + V̂ r
x (t)− V̂ r

x (τ
r
x(t)−) +

x

r
+

(
αr〈χ1[0,x], ν

r〉 − 1
)
rθrx(t).
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Since Ŵ r
x (t) ≥ 0 for all r ∈ R and t ∈ [0,∞), it follows that for r ∈ R and

t ∈ [0,∞),

(4.14)
(
1− αr〈χ1[0,x], ν

r〉
)
θrx(t) ≤

Ŵ r
x (0)

r
+

V̂ r
x (t)

r
−

V̂ r
x (τ

r
x(t)−)

r
+

x

r2
.

By (3.5) and the fact that x is a ν-continuity point, we have that

(4.15) lim
r→∞

(
1− αr〈χ1[0,x], ν

r〉
)
= 1− α〈χ1[0,x], ν〉 > 0.

Hence, for r sufficiently large,
(
1− αr〈χ1[0,x], ν

r〉
)
θrx(t) ≥ 0 for all t ∈ [0,∞).

Then (4.14), (3.11), (4.2), and (4.15) together imply that as r → ∞,

θrx(·) ⇒ 0.

Hence, by (4.2) and the same line of reasoning that gave rise to (4.13), as
r → ∞,

V̂ r
x (·) − V̂ r

x (τ
r
x(·)−) ⇒ 0.

Therefore, if one multiplies (4.14) by r and uses this and (3.11), (4.11)
follows.

We are ready to use Lemma 4.2, (4.3), and (4.5) to prove the main theo-
rem.

Proof of Theorem 3.1. First suppose that x∗ = ∞. Then it suffices
to show that as r → ∞,

(4.16) Ẑr(·) ⇒ 0.

For r ∈ R, x ∈ R+ and t ∈ [0,∞), we have

Ẑr(t) = Ẑr
x(t) + 〈1(x,∞), Ẑ

r(t)〉

≤ Ẑr
x(t) +

1

x
〈χ1(x,∞), Ẑ

r(t)〉

≤ Ẑr
x(t) +

1

x
Ŵ r(t).

Hence (4.16) follows from Lemma 4.2, (3.10), and the fact that x is arbitrary.
Next suppose that x∗ < ∞ and let ε > 0 be such that x∗ − ε is a ν-

continuity point. Then by Lemma 4.2, as r → ∞,

(4.17) Ẑr
x∗−ε(·) ⇒ 0.
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For r ∈ R and t ∈ [0,∞), we have

〈1(x∗+ε,∞), Ẑ
r(t)〉 ≤

1

x∗ + ε
〈χ1(x∗+ε,∞), Ẑ

r(t)〉.

But, for r ∈ R and t ∈ [0,∞),

〈χ1(x∗+ε,∞), Ẑ
r(t)〉 ≤ 〈χ1(x∗+ε,∞), Ẑ

r(0)〉+
V r(r2t)− V r

x∗+ε(r
2t)

r

≤ 〈χ1(x∗+ε,∞), Ẑ
r(0)〉+ V̂ r(t)− V̂ r

x∗+ε(t)

+ rtαr〈χ1(x∗+ε,∞), ν
r〉.

Hence, by (3.9), (3.11), (4.3), (4.5), and (3.8), as r → ∞,

(4.18) 〈χ1(x∗+ε,∞), Ẑ
r(·)〉 ⇒ 0.

Therefore,

(4.19) 〈1(x∗+ε,∞), Ẑ
r(·)〉 ⇒ 0.

In addition, (4.18) together with (4.17) and (3.10) implies that as r → ∞,

(4.20) 〈χ1(x∗−ε,x∗+ε], Ẑ
r(·)〉 ⇒ W ∗(·).

Since for r ∈ R,

1

x∗ + ε
〈χ1(x∗−ε,x∗+ε], Ẑ

r(·)〉 ≤ 〈1(x∗−ε,x∗+ε], Ẑ
r(·)〉

≤
1

x∗ − ε
〈χ1(x∗−ε,x∗+ε], Ẑ

r(·)〉,

(4.20), (4.17), (4.19), and the fact that ε > 0 can be made arbitrarily small
completes the proof.
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