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Abstract

Motivated by a service platform, we study a two-sided network where heterogeneous demand
(customers) and heterogeneous supply (workers) arrive randomly over time to get matched.
Customers and workers arrive with a randomly sampled patience time (also known as reneging
time in the literature), and are lost if forced to wait longer than that time to be matched. The
system dynamics depend on the matching policy, which determines when to match a particular
customer class with a particular worker class. Matches between classes use the head-of-line
customer and worker from each class. Since customer and worker arrival processes can be
very general counting processes, and the reneging times can be sampled from any �nite mean
distribution that is absolutely continuous, the state descriptor must track the age-in-system for
every customer and worker waiting in order to be Markovian, as well as the time elapsed since
the last arrival for every class. We develop a measure-valued �uid model that approximates the
evolution of the discrete-event stochastic matching model, and prove its solution is unique under
a �xed matching policy. For a sequence of matching models, we establish a tightness result for
the associated sequence of �uid-scaled state descriptors, and show that any distributional limit
point is a �uid model solution almost surely. When arrival rates are constant, we characterize
the invariant states of the �uid model solution, and show convergence to these invariant states
as time becomes large. Finally, again when arrival rates are constant, we establish another
tightness result for the sequence of �uid-scaled state descriptors distributed according to a
stationary distribution, and show that any subsequence converges to an invariant state. As a
consequence, the �uid and time limits can be interchanged, which justi�es regarding invariant
states as �rst order approximations to stationary distributions.

Keywords: service platforms; two-sided platform; reneging; �uid approximation; functional limit
theorems; measure-valued process

1 Introduction

Service platforms appear in many applications (e.g., ridesharing, online marketplaces, etc.) and
have to match demand (customers) and supply (workers) taking into account their heterogeneity,
the random arrival times, and the random impatience of customers and workers. The objective of
a platform is to consider a matching policy (i.e., when to make matches and between whom) to
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optimize the performance of the system. For example, the platform may want to maximize the
cumulative value of matches made, minimize the loss of customers and workers, minimize possible
holding costs or a combination of the aforementioned objectives. For this, a platform needs to know
the demand and supply waiting to be matched (i.e., queue-lengths), and how that evolves over time.

We model a service platform as a two-sided graph where an arbitrary number of customer and
worker types arrive randomly to each side in order to be matched, according to arrival rates that
may vary over time. Each customer and worker arrives with a patience time randomly sampled
from a type-dependent distribution with �nite mean, and is lost if not matched within the patience
time. A Markovian state descriptor must track the age-in-system for every customer and worker
waiting, and so is measure-valued. As a result, exact analysis of our model appears intractable.

Our focus in this work is to provide a �uid approximation for this system when matchings occur
between head-of-the-line (HL) customers and workers, to characterize the �uid invariant states
when arrival rates are constant, and to establish rigorous convergence results to support the �uid
approximation. The analytic tractability of the �uid approximation provides a framework that the
platform can use to choose the �correct� matching policy that optimizes the performance of the
system (but which is studied in the companion paper [6]).

The main contributions of this paper are:

(1) Non-policy-speci�c �uid limits. We provide a tightness result for a sequence of matching
models, that holds without the need to fully specify the matching policy (see Theorem 2).
Then, we prove that any subsequential limit is almost surely a �uid model solution (see
Theorem 3).

(2) Uniqueness of �uid limits. We establish that a �uid limit is unique under a �xed matching
policy (see Theorem 1).

(3) Convergence of stationary distributions. When arrival rates are constant, we show a tight-
ness result for a sequence of matching models operating in stationarity, and prove that any
subsequential limit is a �uid model invariant state (see Theorem 4).

(4) Interchange of Limits. Theorems 2 and 4, combined with results on stationary distribution
existence (Proposition 1), on characterization of �uid invariant states (Proposition 2), and on
convergence to �uid invariant states (Proposition 3), imply an interchange of limits (illustrated
in Figure 2) that justi�es regarding invariant states as �rst order approximations to stationary
distributions.

Our proofs heavily leverage the methodology developed in [29] and [30] for a single-class many-server
queue with reneging, and in [5] and [43] for a multiclass many-server queue with reneging. All four
aforementioned papers make clever use of a what is termed a �potential queue measure�, that stores
the amount of time that has passed since each customer's arrival time, up until the customer's
patience time. The potential queue measure greatly facilitates analysis because the measure does
not depend on the policy for serving customers. Similarly, we use a potential queue measure that
does not depend on the policy for matching customers and workers, which allows us to leverage many
results in [29], [30] and [43] to prove item (1) above. Di�erently, because matching is instantaneous
in our model (so that there is no equivalent of service time in the queueing framework), the long-
time behavior of our �uid model is easier to analyze than the �uid model relevant to the multiclass
G{GI{N �GI queue in [5] and [43], which is key to some of the proofs for items (3) and (4) above.
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Moreover, to prove item (2) above that a �uid model solution is unique under a speci�ed matching
policy, we do not need to assume that the hazard rates associated with the reneging distributions are
bounded, as is needed in the scheduling policies for the multiclass G{GI{N �GI queues analyzed
in [5] and [43].

Some Related Literature

Queueing systems with primitive inputs that follow distributions that are not exponential have
complicated state descriptors that motivate the use of measure-valued processes. In addition to
the papers mentioned in the previous paragraph, some other examples of papers that use measure-
valued state descriptors to study many server queueing systems with reneging customers are [5, 47,
51]. Other queueing situations in which measure-valued state descriptors are used include LIFO
queues [35], SRPT queues [7, 19, 23, 42], many-server retrial queues with nonpersistent customers
[28], processor-sharing queues in [44, 48], processor-sharing queues with impatient customers [21],
load-balancing algorithms [2, 3], and bandwidth-sharing networks [22, 45].

Our work is related to work that studies service platforms. These platforms �t into the sharing
economy; see [9, 16, 24, 25] for perspectives and research opportunities in this area through the lens
of operations management. From that perspective, our two-sided matching model with reneging
can be viewed as a model of a service platform. There are many works on two-sided matching
models, less on two-sided matching models with reneging. The works [1, 4, 8, 12, 13, 14, 15, 18,
27, 31, 33, 34, 36, 39, 40, 41, 46, 50] include reneging, but all assume that reneging times are either
deterministic or exponentially distributed. Like us, [13, 18, 33] allow for more general reneging
distributions; however, [13, 33] restricts to one demand and one supply type, and [18] focuses on
one speci�c policy class (an index policy class).

Organization of the Paper

The remainder of the paper is organized as follows. We end this section by summarizing our
mathematical notation. Section 2 speci�es our detailed discrete-event stochastic matching model.
We provide the �uid model equations in Section 3, and establish a uniqueness result (Theorem 1).
We provide a non-policy speci�c tightness result (Theorem 2) and a convergence result (Theorem 3)
in Section 4. Finally, in Section 5, under the assumption that arrival rates are constant, we provide
a convergence result for a sequence of matching models operating in stationarity (Theorem 4).

Notation

We use the following notational conventions. All vectors and matrices are denoted by bold letters.
Further, R is the set of real numbers, R� is the set of nonnegative real numbers, N is the set of strictly
positive integers, and Z� � NY t0u. The sets R and R� are endowed with the Euclidean topology,
and Z� with the discrete topology. Moreover, form P N and a vector x P Rm, }x}8 :� max1¤i¤m |xi|
is the maximum norm.

For a measurable space pS,Fq and a measurable set A P F , 1A is the indicator function of the
set A, which is one when its argument is a member of the set A and is zero otherwise. In addition,
when A is S, we use the shorthand notation 1 to mean 1S . Also, for A � F , σpAq denotes the
σ-algebra generated by A.
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Let H P p0,8s. Then, Ccpr0, Hqq (resp. Cbpr0, Hqq) denotes the set of continuous, compactly
supported (resp. bounded) functions f : r0, Hq Ñ R, and C1

c pr0, Hqq denotes the set of continuous,
compactly supported functions f : r0, Hq Ñ R for which the derivative f 1 exists for all x P r0, Hq
and t ¥ 0, and lies in Ccpr0, Hqq. Similarly, Ccpr0, Hq � R�q (resp. Cbpr0, Hq � R�q) denotes the
set of continuous, compactly supported (resp. bounded) functions φ : r0, Hq � R� Ñ R, and
C1,1
c pr0, Hq�R�q denotes the set of continuous, compactly supported functions φ : r0, Hq�R� Ñ R
for which the directional derivative limεÑ0

φpx�ε,t�εq�φpx,tq
ε exists for all x P r0, Hq and t ¥ 0, and lies

in Ccpr0, Hq,R�q. We shall abuse the notation by using φx�φt to denote this directional derivative,
whether the partial derivatives exist or not. Finally, L1pr0, Hqq (resp. L1

locpr0, Hqq) denotes the set
of Borel measurable functions on r0, Hq that are integrable (resp. locally integrable) with respect
to Lebesgue measure on r0, Hq.

Given a Polish space S, we use the notation CpSq (with no subscript) to denote the set of S valued
functions with domain R� that are continuous, and the notation DpSq to denote the set of S valued
functions with domain R� that are right continuous with �nite left limits (rcll). We endow CpSq
and DpSq with the usual Skorokhod J1-topology [10]. In contrast to the sets of functions de�ned in
the previous paragraph, we use the range rather than the domain as the argument. The domain is
always time, R�.

For L P r0,8s, let Mr0, Lq denote the set of �nite, non-negative Borel measures on r0, Lq
endowed with the topology of weak convergence, which is a Polish space. Given a measure ν P
Mr0, Lq and a Borel measurable function f : r0, Ls Ñ R that is integrable with respect to ν de�ne
xf, νy :�

³
r0,Lq fpxqνpdxq. Given x P r0, Hq, δx P Mr0, Lq is the Dirac measure with unit atom at

x, i.e., for all Borel measurable A � r0, Hq, x1A, δxy � 1Apxq.
Given a cumulative distribution function G de�ned on R� that is absolutely continuous with

respect to Lebesgue measure and having probability density function g, the right edge of its support
is given by

H � suptx P R� : Gpxq   1u P p0,8s

Let h denote the associated hazard function; i.e., hpxq � gpxq
1�Gpxq with x P r0, Hq. Then, h P

L1
locpr0, Hqq. To see this, note that by assumption G is absolutely continuous on R� and, since ln is

Lipschitz continuous on ra,8q for any a ¡ 0, it follows that � lnp1�Gpxqq, x P r0, Hq, is absolutely
continuous on r0, bs for any b   H.

Given a counting process A, i.e., a nondecreasing integer valued process such that Ap0q � 0,
Aptq   8 for all t ¥ 0 and limtÑ8Aptq � 8, the jump times peiqiPN are given by

ei � inftt ¥ 0 : Aptq ¥ iu, i P N.

Then peiqiPN is a nondecreasing sequence such that limiÑ8 ei � 8. If the counting process has
jumps of size one, peiqiPN is strictly increasing. The associated age process a, also known as the
backward recurrence time process, is such that given α P R�,

aptq �

#
α� t, t P r0, e1q,

t� supts   t : Aptq �Apsq ¡ 0u, t ¥ e1.

Then, for each t ¥ 0, aptq represents the age of (the time that has elapsed since) the most recent
jump event to occur at or before time t happened. When the jumps are of size one, the age process
uniquely determines the counting process. Otherwise, some information about the jump sizes is
required. With a slight abuse of language, we will say that a counting process A is a Markov
counting process if the process pa,Aq is a Markov process with respect to its own natural �ltration.
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2 Model description

There is a set of J demand bu�ers J :� t1, . . . , Ju (representing customer types) and a set of K
supply bu�ers K :� t1, . . . ,Ku (representing worker types) as shown in Figure 1. Customers and
workers arrive randomly over time to the system, either individually or in batches, and are placed in
the bu�er for their type to be matched. There, they wait in �rst come, �rst served (FCFS) order, so
that the head-of-the-line (HL) customer or worker of a given type is the one that has been waiting
the longest. Customers and workers arrive with a patience time of random length, and are lost
if not matched within their patience time. A matching policy speci�es when to match customers
and workers of di�erent types, and always matches the HL customer and worker within each type.
The set E � J�K denotes the set of compatible matches between demand and supply nodes, i.e.,
demand type j P J can be matched with supply type k P K if and only if pj, kq P E .

Figure 1: The two-sided matching model with general reneging distributions.

In what follows, we give a detailed model description. Throughout, we regard all random
elements as being de�ned on a common probability space pΩ,F ,Pq with expectation operator E.
Section 2.1 provides the model inputs. Section 2.2 speci�es the state descriptor and the system
dynamics. Section 2.3 de�nes an admissible matching policy.

2.1 The Model Inputs

The model inputs consist of the arrival processes and stochastic primitives, which we de�ne here.

2.1.1 The Arrival Processes

We assume that demand of type j P J and supply of type k P K arrive according to Markov counting
processes, denoted by AD

j and AS
k with age processes denoted by aDj and aSk respectively. The arrival

time of the lth type j customer and the arrival time of the hth type k worker can respectively be
expressed as

eDjl � inftt ¥ 0 : AD
j ptq ¥ lu, j P J, l P N and eSkh � inftt ¥ 0 : AS

k ptq ¥ hu, k P K, h P N.
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Customers and workers may arrive one at a time, in which case the jump sizes of the arrival
processes are one, or they may arrive in batches, in which case the jump sizes are positive integers.
The arrival processes AD and AS are assume to be mutually independent of one another, and so
are the coordinate processes. We further assume that for all αD P p0,8qJ , αS P p0,8qK and t ¥ 0,

max
jPJ

E
�
AD

j ptq | a
D
j p0q � αD

j

�
  8 and max

kPK
E
�
AS

k ptq | a
S
k p0q � αS

k

�
  8. (1)

2.1.2 The Stochastic Primitives

We denote the patience time of the lth type j customer and the patience time of the hth type k
worker by rDjl and r

S
kh, respectively. If an arriving customer or worker is not matched within their

patience time, then that customer or worker reneges (abandons the system without being matched).
Upon arrival, each type j P J customer independently samples from the distribution determined by
cumulative distribution function (cdf) GD

j to determine his patience time. Similarly, upon arrival,
each type k P K worker independently samples from the distribution determined by cdf GS

k to
determine his patience time. We refer to GD

j , j P J and GS
k , k P K as the reneging distributions

(also known as patience time distributions). Further, for each j P J, GD
jy (resp. for each k P K GS

ky)

denotes the conditional cdf associated with GD
j (resp. GS

k ) conditioned to exceed y P r0, HD
j q (resp.

y P r0, HS
k q), where H

D
j P r0,8s (resp. HS

k P r0,8s) is the right edge of the support of the customer
class j reneging distribution (resp. supply class k). We assume the patience times are absolutely
continuous random variables with density functions gDj for j P J and gSk for k P K that are mutually
independent of each other, and of the arrival processes AD and AS .

Finally, for each j P J and k P K, let
!
UD
jl

)
lPN

and
 
US
kh

(
hPN be i.i.d sequences of uniform p0, 1q

random variables that are mutually independent of one another, the arrival processes AD and AS ,

and the patience times
!
rDjl

)
lPN

, j P J, and
 
rSkh

(
hPN , k P K. These will be used to de�ne various

residual times associated with the initial condition.
We refer to the collection of sequences

!
UD
jl

)
lPN

, j P J,
 
US
kh

(
hPN , k P K,

!
rDjl

)
lPN

, j P J, and 
rSkh

(
hPN , k P K, as the stochastic primitives.

2.2 State descriptor and system dynamics

In the following, we �rst discuss the state space, then discuss the system dynamics that are in-
dependent of the matching decisions, and, �nally, provide the evolution equations for the system
processes that depend on the matching decisions.

2.2.1 System state

A state in our model is a vector y :�
�
αD,αS , qD, qS ,ηD,ηS

�
P Y0 where

Y0 :� RJ
� � RK

� � ZJ
� � ZK

� �
�
�J

j�1Mr0, HD
j q

�
�
�
�K

k�1Mr0, HS
k q
�
.

It is known that the set Y0 endowed with the topology of weak convergence is a Polish space; see
[11]. We now give an informal explanation of the state descriptor. Suppose the system is in state
y P Y0. For j P J and k P K, the quantities αD

j and αS
k denote the time that has elapsed since

the last type j batch of customers and last type k batch of workers arrived to the system. Further,
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for j P J and k P K, qDj and qSk denote the number of customers and workers at queues j and
k, respectively. For each j P J, the measure ηDj P Mr0, HD

j q stores the amount of time that has
passed between each type j customer's arrival time up until that customer's potential abandonment
time (the arrival time plus the sampled patience time). More speci�cally, for every type j customer
that has arrived by a given time, and whose potential abandonment time is after that time, ηDj
has a unit atom supported at the potential waiting time of that class j customer (the time that
has elapsed since that class j customer arrived). For each k P K, the measure ηSk P Mr0, HS

k q has
analogous interpretation. This is without regard for whether that customer or worker has been
matched, meaning these are the potential customers in queue. The FCFS matching assumption im-
plies that all potential customers that have waited longer than the customer at the head-of-the-line
have already been matched, and all potential customers that have waited less than that customer
are in queue.

The system state will be an element of Y0 for all time, and will additionally be such that
the number of customers in queue never exceeds the number of customers potentially in queue.
Speci�cally, we are interested in the subset of Y of Y0 consisting of all y P Y0 such that

qDj ¤ x1, ηDj y and q
S
k ¤ x1, ηSk y for each j P J, k P K. (2)

Note that in a slight abuse of notation we use ηD and ηS to represent a component of the system
state but in what follows we use ηD and ηS to represent a process whose value at time t ¥ 0 is a
component of the system state.

2.2.2 Potential queue measures and potential reneging processes

Here we de�ne the potential queue measures more formally. We begin with their initial value
pηDp0q,ηSp0qq P �J

j�1Mr0, HD
j q��

K
k�1Mr0, HS

k q. For each j P J and k P K, there are x1, ηDj p0qy P
Z� type j potential customers and x1, ηSk p0qy P Z� type k potential workers that arrived at or
prior to time zero whose potential abandonment time is after time zero. Let 0 ¤ wD

jl p0q   HD
j

(resp. 0 ¤ wS
khp0q   HS

k ) for l � �x1, ηDj p0qy � 1, . . . , 0 (resp. h � �x1, ηSk p0qy � 1, . . . , 0) be the
amount of time that has elapsed since type j potential initial customer l (type k potential initial
worker h) arrived. For each j P J and k P K, we assume that the sequences twD

jl p0qu
0
l��x1,ηDj p0qy�1

and twS
khp0qu

0
�x1,ηSk p0qy�1

are non-increasing in l and h, respectively, and set eDjl � �wD
jl p0q for

l � �x1, ηDj p0qy � 1, . . . , 0 and eSkh � �wS
khp0q for h � �x1, ηSk p0qy � 1, . . . , 0. Then, for j P J and

k P K,

ηDj p0q �
0̧

l��x1,ηDj p0qy�1

δwD
jl p0q

and ηSk p0q �
0̧

h��x1,ηSk p0qy�1

δwD
jl p0q

.

Next we de�ne the patience times for the customers and workers in system at time 0. For
l � �x1, ηDj p0qy � 1, . . . , 0 and h � �x1, ηSk p0qy � 1, . . . , 0, noting that any customer or worker
present at time 0 must have patience time exceeding the amount of time that has passed since his
or her arrival, the patience times of type j zero potential customer l and type k zero potential
worker h are given by

rDjl � inf
!
t ¡ 0 : GD

jwD
jl p0q

ptq ¡ UD
jl

)
� wD

jl p0q
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and
rSkh � inf

!
t ¡ 0 : GS

kwS
khp0q

ptq ¡ US
kh

)
� wS

khp0q,

recalling that UD
jl and US

kh are uniform p0, 1q random variables.

Finally, we de�ne pηDptq,ηSptqq for t ¡ 0. For this, we must de�ne the potential waiting times.
For each l � t�x1, ηDj p0qy � 1, . . . , 0u Y N and t ¥ 0, the potential waiting time of the lth type j
potential customer at time t ¥ 0 is given by

wD
jl ptq :� min

 
rt� eDjl s

�, rDjl
(
.

In an analogous way for each h � t�x1, ηSk p0qy� 1, . . . , 0uYN, we de�ne the potential waiting time
of the hth type k potential worker at time t ¥ 0 as

wS
khptq :� min

 
rt� eSkhs

�, rSkh
(
.

For any t ¥ 0, j P J and any Borel measurable B � r0, HD
j q, let

ηDj ptqpBq :�

AD
j ptq¸

l��x1,ηDj p0qy�1

δwD
jl ptq

pBq1t0¤t�eDjl rDjlu
, (3)

and, for any t ¥ 0, k P K and any Borel measurable B � r0, HS
k q,

ηSk ptqpBq :�

AS
k ptq¸

h��x1,ηSk p0qy�1

δwS
khptq

pBq1t0¤t�eSkh rSkhu
. (4)

Then, for each t ¥ 0 and j P J, x1, ηDj ptqy is the number of type j potential customers in the queue
that arrived by time t and whose potential waiting time is less than their patience time. Note that
at time t such customers may be in queue waiting to be matched or may have been matched and
departed the system. For each t ¥ 0 and k P K, x1, ηSk ptqy has an analogous meaning. By de�nition,
for all t ¥ 0,

x1, ηDj ptqy ¤ x1, ηDj p0qy �AD
j ptq for j P J, (5)

and
x1, ηSk ptqy ¤ x1, ηSk p0qy �AS

k ptq for k P K. (6)

Collections of marked point processes are used to characterize the dynamic evolution of the
potential queue processes ηD and ηS . To this end, for each j P J, k P K, measurable function
ϕ : r0, HD

j q �R� Ñ R�, and measurable function ψ : r0, HS
k q �R� Ñ R�, de�ne the marked point

processes SD
j pϕ, �q and SS

k pψ, �q for t ¥ 0,

SD
j pϕ, tq :�

AD
j ptq¸

l��x1,ηDj p0qy�1

¸
sPr0,ts

1
t
dwD

jl
dt

ps�q¡0,
dwD

jl
dt

ps�q�0u
ϕpwD

jl psq, sq, (7)

SS
k pψ, tq :�

AS
k ptq¸

h��x1,ηSk p0qy�1

¸
sPr0,ts

1
t
dwS

kh
dt

ps�q¡0,
dwS

kh
dt

ps�q�0u
ψpwS

khpsq, sq. (8)
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When the functions ϕ and ψ are replaced by the indicator of R�, we get the potential cumulative
reneging processes; i.e., for t ¥ 0, SD

j ptq :� SD
j p1, tq, j P J and SS

k ptq :� SS
k p1, tq, k P K. The

following balance equations hold for each j P J, k P K, and t ¥ 0,@
1, ηDj p0q

D
�AD

j ptq �
@
1, ηDj ptq

D
� SD

j ptq, (9)

and @
1, ηSk p0q

D
�AS

k ptq �
@
1, ηSk ptq

D
� SD

k ptq. (10)

The dynamic evolution of the potential queue measures are characterized using SD and SS , as
shown in the following lemma, whose validity follows by [29, Theorem 2.1].

Lemma 1. For each j P J, k P K, ϕ P C1,1
c pr0, HD

j q�R�q, ψ P C1,1
c pr0, HS

k q�R�q, f P C1
c pr0, H

D
j qq,

ζ P C1
c pr0, H

S
k qq, and t ¥ 0,

@
ϕp�, tq, ηDj ptq

D
�

@
ϕp�, tq, ηDj p0q

D
�

» t

0

@
ϕxp�, uq � ϕtp�, uq, η

D
j puq

D
du� SD

j pϕ, tq

�

» t

0
ϕp0, uqdAD

j puq,

(11)

@
ψp�, tq, ηSk ptq

D
�

@
ψp�, tq, ηSk p0q

D
�

» t

0

@
ψxp�, uq � ψtp�, uq, η

S
k puq

D
du� SS

k pψ, tq

�

» t

0
ψp0, uqdAS

k puq

(12)

@
f, ηDj ptq

D
�

@
f, ηDj p0q

D
�

» t

0

@
f 1, ηDj puq

D
du� SD

j pf, tq � fp0qAD
j ptq, (13)

@
ζ, ηSk ptq

D
�

@
ζ, ηSk p0q

D
�

» t

0

@
ζ 1, ηSk puq

D
du� SS

k pζ, tq � ζp0qAS
k ptq. (14)

2.2.3 Matching processes

For j P J, k P K, l � t�x1, ηDj p0qy � 1, . . . , 0u Y N, and h � t�x1, ηSk p0qy � 1, . . . , 0u Y N, let mjklh

denote the matching time of the lth type j customer with the hth type k worker. We set mjklh � 8
if the lth type j customer and the hth type k worker are not matched. Then, mjklh may be �nite or
in�nite for pj, kq P E , and mjklh is in�nite for all pj, kq R E . For �xed j and l (resp. k and h), mjklh is
�nite only for at most one pair (k,h) (resp. (j,l)); i.e., one customer (resp. worker) can be matched
with at most one worker (resp. customer). Speci�cally, we require the following inequalities:

¸
kPK

8̧

h��x1,ηSk p0qy�1

1tmjklh 8u ¤ 1 for each j P J and l P t�x1, ηDj p0qy � 1, . . . , 0u Y N,

and

¸
jPJ

8̧

l��x1,ηDj p0qy�1

1tmjklh 8u ¤ 1 for each k P K and h P t�x1, ηSk p0qy � 1, . . . , 0u Y N.
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We assume that for each j P J, k P K, l P t�x1, ηDj p0qy � 1, . . . , 0u Y N, and h P t�x1, ηSk p0qy �
1, . . . , 0u Y N, if mjklh   8, then

0   mjklh   min
�
eDjl � rDjl , e

S
kh � rSkh

�
, if l ¤ 0 and h ¤ 0, (15)

max
�
eDjl , e

S
kh

�
¤ mjklh   min

�
eDjl � rDjl , e

S
kh � rSkh

�
, if either l ¡ 0 or h ¡ 0. (16)

The inequalities in (15) enforce that a customer and a worker who are both in system at time zero
can only be matched after time zero and before either of them reneges. The inequalities in (16)
enforce that a customer and a worker, at least one of which arrived after time zero, can only be
matched once both have arrived to the system and strictly before either of them reneges the system.
For each j P J and l P N, the matching time of the lth type j customer can be expressed as follows,

mD
jl :�

#
mjklh, if k P K and h P t�x1, ηSk p0qy � 1, . . . , 0u Y N are such that mjklh   8,

8, otherwise.
,

Similarly, for each k P K and h P N, the matching time of the hth type k worker can be written as
follows,

mS
kh :�

#
mjklh, if j P J and l P t�x1, ηDj p0qy � 1, . . . , 0u Y N are such that mjklh   8,

8, otherwise.
.

We assume that matchings occur between HL customers, which requires that if �x1, ηDj p0qy ¤ l1  

l2   8 and �x1, ηSk p0qy ¤ h1   h2   8, then

mjl1 ¤ mjl2 , j P J, and mkh1 ¤ mkh2 , k P K. (17)

A matching process is a ZJ�K
� valued stochastic process M de�ned from the matching times

de�ned in the previous paragraph. The components of M track the cumulative number of matches
between type j P J customers and type k P K workers in p0, ts, as follows: for j P J, k P K, and
t ¥ 0,

Mjkptq :�

AD
j ptq¸

l��x1,ηDj p0qy�1

AS
k ptq¸

h��x1,ηSk p0qy�1

1tmjklh¤tu. (18)

Note that Mjkp0q � 0 for all pj, kq P E , and that Mjkptq � 0 for all t ¥ 0 if pj, kq R E .

2.2.4 Reneging, queue-length, and HL waiting time processes

For each j P J and k P K, the cumulative number of type j customers RD
j ptq and type k workers

RS
k ptq that renege by time t ¥ 0 are given by

RD
j ptq :�

AD
j ptq¸

l��x1,ηDj p0qy�1

¸
sPr0,ts

1
ts¤mD

jl ,
dwD

jl
dt

ps�q¡0,
dwD

jl
dt

ps�q�0u
(19)

and

RS
k ptq :�

AS
k ptq¸

h��x1,ηSk p0qy�1

¸
sPr0,ts

1
ts¤mS

kh,
dwS

kh
dt

ps�q¡0,
dwS

kh
dt

ps�q�0u
. (20)
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Note that type j P J customers and type k P K workers cannot be matched at the exact moment
their patience time expires.

The demand and supply queue lengths for each j P J and k P K at time t ¥ 0 are given
respectively by

QD
j ptq :� QD

j p0q �AD
j ptq �RD

j ptq �
Ķ

k�1

Mjkptq (21)

and

QS
k ptq :� QS

k p0q �AS
k ptq �RS

k ptq �
J̧

j�1

Mjkptq. (22)

The restrictions on the matching process in the previous subsection ensure that QD
j ptq ¥ 0 and

QS
k ptq ¥ 0 for all j P J, k P K, and t ¥ 0.
For each j P J and k P K, the waiting times of the HL customer and worker at time t ¥ 0 are

χD
j ptq :� inf

 
x P R� :

@
1r0,xs, η

D
j ptq

D
¥ QD

j ptq
(
,

and
χS
k ptq :� inf

 
x P R� :

@
1r0,xs, η

S
k ptq

D
¥ QS

k ptq
(
,

respectively. Then, for each j P J and t ¥ 0 such that QD
j ptq ¡ 0, it followsA

1r0,χD
j ptqq

, ηDj ptq
E
  QD

j ptq ¤
A
1r0,χD

j ptqs
, ηDj ptq

E
,

and for each k P K and t ¥ 0 such that QS
k ptq ¡ 0,A

1r0,χS
k ptqq

, ηSk ptq
E
  QS

k ptq ¤
A
1r0,χS

k ptqs
, ηSk ptq

E
.

The HL assumption (17) implies that any type j P J customer (type k P K worker) waiting in
queue at time t ¥ 0 has been waiting in the potential queue for less than or equal to χD

j ptq whereas
any type j P J customer (type k P K worker) in the potential queue at time t ¥ 0 with potential
waiting time strictly greater than χD

j ptq (χ
S
k ptq) has been matched. Then, χD

j ptq and χS
k ptq are

moving boundaries marking the waiting time at which potential customers and workers transition
from those in queue to those not in queue because they have been matched. Note that there can be

up to
A
1r0,χD

j ptqs
, ηDj ptq

E
�
A
1r0,χD

j ptqq
, ηDj ptq

E
type j P J customers in queue at time t ¥ 0 that have

been waiting for time χD
j ptq; Q

D
j ptq�

A
1r0,χD

j ptqq
, ηDj ptq

E
are in queue, and

A
1r0,χD

j ptqs
, ηDj ptq

E
�QD

j ptq

were matched before reneging. A similar statement holds for type k P K workers in queue at time
t ¥ 0.

Similar to [43, Inequalities 29 and 30], this implies the following upper and lower bounds for the
number of reneging customers and workers at time t ¥ 0:

RD
j ptq ¤

AD
j ptq¸

l��x1,ηDj p0qy�1

¸
sPp0,ts

1
ts¤χD

j ps�q,
dwD

jl
dt

ps�q¡0,
dwD

jl
dt

ps�q�0u
, (23)

RD
j ptq ¥

AD
j ptq¸

l��x1,ηDj p0qy�1

¸
sPp0,ts

1
ts χD

j ps�q,
dwD

jl
dt

ps�q¡0,
dwD

jl
dt

ps�q�0u
, (24)
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for each j P J, and

RS
k ptq ¤

AS
k ptq¸

h��x1,ηSk p0qy�1

¸
sPp0,ts

1
ts¤χS

k ps�q,
dwS

kh
dt

ps�q¡0,
dwS

kh
dt

ps�q�0u
, (25)

RS
k ptq ¥

AS
k ptq¸

h��x1,ηSk p0qy�1

¸
sPp0,ts

1
ts χS

k ps�q,
dwS

kh
dt

ps�q¡0,
dwS

kh
dt

ps�q�0u
, (26)

for each k P K. The bound on the left-hand side in (23) includes customers that have waited the
same amount of time as the HL customer (because s ¤ χD

j ps�q in the indicator function) whereas
the bound on the left-hand side in (24) only includes customers that have waited strictly less than
the HL customer (because s   χD

j ps�q in the indicator function), and similar holds true for the
bounds in (25) and (26). Note that if the arrival processes have jumps of size one (meaning
customers and workers do not arrive in batches), then (23) and (25) hold with equality.

2.3 Admissible matching policies

The dynamic equations and conditions speci�ed in Section 2.2 on the matching process M are
fundamental for an HL-matching model. For the analysis here, we consider matching processes that
render matching decisions based on past and current information, i.e., do not use information about
the future. For this, we note that the matching process may be such that the states that can be
achieved live in a strict subset of Y. For example, if the matching policy prioritizes matches between
type j P J customers and type k P K workers, then the matching policy will disallow states in which
both customer type j and worker type k are present, i.e., QD

j ptqQ
S
k ptq � 0 for all t ¥ 0. To account

for this, we introduce a subspace X of Y in the next de�nition.

De�nition 1. A matching policy is a pair pX, tPy : y P Xuq where X is a Polish subspace of Y
and tPy : y P Xu is a collection of probability measures on pΩ,Fq such that the following hold:

1. For each y P X, PypY P DpXq,Y p0q � y and Y satis�es (3)� (26)q � 1;

2. For any measurable B � DpXq, the mapping y Ñ PypY P Bq from X to r0, 1s is Borel
measurable.

Given a matching policy pX, tPy : y P Xuq and y P X, we let Ly denote the law of the state process
Y with Y p0q � y, i.e., LypBq � PypY P Bq for all Borel measurable B � DpXq.

For a matching policy pX, tPy : y P Xuq to be admissible, we require the associated matching
process to be nonanticipating in the sense that it is adapted to the �ltration determined by the his-
tory of the state process, which we de�ne precisely here. Given a matching policy pX, tPy : y P Xuq
and y P X, we let Y �

�
aD,aS ,QD,QS ,ηD,ηS

�
denote the state process that has law Ly and

de�ne
Ỹ ptq :�

�
aDptq,aSptq,QDpt�q,QSpt�q,ηDptq,ηSptq

�
, for each t ¥ 0, (27)

where
�
QDp0�q,QSp0�q

�
�

�
QDp0q,QSp0q

�
. We further de�ne the �ltration tGy

t ut¥0 such that

Gy
t � σ

�!
Ỹ psq, 0 ¤ s ¤ t

)	
, for each t ¥ 0.
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Then, for each t ¥ 0, the σ-algebra Gy
t includes information about customers and workers waiting

to be matched immediately before time t, and customers and workers arriving or reneging (actual
or virtual) at time t. This is the information that should naturally be used to determine if and
which customers and workers to match at time t.

De�nition 2. A matching policy pX, tPy : y P Xuq is said to be admissible if for each y P X, the
matching process M given in (18) for the state process with Y with law Ly is

 
Gy
t

(
t¥0

-adapted.

2.4 Initial Conditions

Here we introduce random initial conditions. For this we recall that all random elements are de�ned
on the common probability space pΩ,F ,Pq. Let pX, tPy : y P Xuq be a matching policy and de�ne

Ξ0 :� tY0 : PpY0 P Xq � 1 and Y0 is independent of the stochastic primitivesu .

Note that Ξ0 depends on the matching policy through its dependence on the subspace X. Given
Y0 P Ξ0, we let ξ denote the law of Y0, i.e., ξpBq � PpY0 P Bq for all Borel measurable B � X, and,
with a slight abuse of notation, we will sometimes write ξ P Ξ0. Given ξ P Ξ0, we de�ne the Borel
probability measure Lξ on DpXq such that for each Borel measurable B � DpXq satis�es

Lξ pBq �

»
X
LypBqξpdyq. (28)

Then Lξ denotes the law of the state process such the initial condition has distribution ξ. We let Eξ

denote the expectation operator with respect to Lξ. In our analysis, we restrict attention to random
initial conditions for which the expected number of potential customers and potential workers in
system at time zero are �nite. In particular, we restrict attention to ξ P Ξ0 such that

max
jPJ

Eξ

�
x1, ηDj p0qy

�
  8 and max

kPK
Eξ

�
x1, ηSk p0qy

�
  8. (29)

We also restrict attention to initial conditions such that the expected number of exogenous arrivals
in to the system in the time interval p0, ts is �nite for all t ¥ 0. That is, we restrict attention to
ξ P Ξ0 such that for all t ¥ 0,

max
jPJ

Eξ

�
AD

j ptq
�
  8 and max

kPK
Eξ

�
AS

k ptq
�
  8. (30)

Let
Ξ :� tξ P Ξ0 : (29) and (30) holdu.

Due to (1), δy P Ξ for all y P X.
For ξ P Ξ, due to (5), (6), (28), (29) and (30), the processes in (7) and (8) that arise when starting

from the initial condition ξ are bounded in expectation for every t ¥ 0 when ϕ and ψ are bounded

functions. In particular, for all ξ P Ξ, j P J, t ¥ 0, and bounded measurable ϕ :
�
0, HD

j

	
Ñ R,

Eξ

�
|SD

j pϕ, tq|
�
¤ }ϕ}8Eξ

�@
1, ηDj p0q

D
�AD

j ptq
�
  8

and for all k P K, t ¥ 0, and bounded measurable ψ :
�
0, HS

k

�
Ñ R,

Eξ

�
|SS

k pψ, tq|
�
¤ }ψ}8Eξ

�@
1, ηSk p0q

D
�AS

k ptq
�
  8.

Furthermore, the following lemma presents dynamic evolution equations in expectation, and it is a
consequence of [30, Proposition 2.2], noting the �niteness conditions in (29) and (30).
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Lemma 2. Suppose that ξ P Ξ. For j P J, any bounded measurable function f : r0, HD
j q Ñ R, and

t ¥ 0,

Eξ

�@
f, ηDj ptq

D�
� Eξ

�» HD
j

0
fpx� tq

1�GD
j px� tq

1�GD
j pxq

ηDj p0qpdxq

�

�Eξ

�» t

0
fpt� uqp1�GD

j pt� uqqdAD
j puq

�
,

and, for k P K, any bounded Borel measurable function f : r0, HS
j q Ñ R and t ¥ 0,

Eξ

�@
f, ηSk ptq

D�
� Eξ

�» HS
k

0
fpx� tq

1�GS
k px� tq

1�GS
k pxq

ηSk p0qpdxq

�

�Eξ

�» t

0
fpt� uqp1�GS

k pt� uqqdAS
k puq

�
.

3 A �uid model

In this section, we present a �uid model which can be seen as an approximation of the stochastic
model introduced in Section 2. Section 3.1 provides the �uid model equations and de�nes a �uid
model solution. Section 3.2 provides conditions for uniqueness of �uid model solutions.

3.1 Fluid model solutions

Recall that HD
j and HS

k are the right edges of the support of the cumulative reneging distribution
functions for any j P J and k P K. A �uid model solution takes values in

Y0 :� RJ
� � RK

� �
�
�J

j�1Mr0, HD
j q

�
�
�
�K

j�1Mr0, HS
j q
�
.

Roughly speaking, a �uid model solution is represented by a vector pQ
D
,Q

S
,ηD,ηSq P CpY0q that

is the analogue of the state descriptor. The �rst functions Q
D

and Q
S
represent the �uid queue

lengths and the measure-valued functions ηD and ηS represent the �uid potential queue measures
(the analogues of (3) and (4)). We consider a subset Y of Y0 in which, analogous to (2), the �uid

queue lengths cannot exceed the �uid potential queues. Speci�cally, if pQ
D
,Q

S
,ηD,ηSq P CpYq,

then for all t ¥ 0

Q
D
j ptq ¤

@
1, ηDj ptq

D
, for all j P J, and QS

k ptq ¤
@
1, ηSk ptq

D
, for all k P K.

A �uid model solution pQ
D
,Q

S
,ηD,ηSq P CpYq satis�es �niteness conditions such that for all

t ¥ 0 » t

0

@
hDj , η

D
j puq

D
du   8, for all j P J, and

» t

0

@
hSk , η

S
k puq

D
du   8, for all k P K, (31)

and has initial potential queue measures with no atoms; i.e.,@
1txu, η

D
j p0q

D
� 0 for all x P r0, HD

j q, j P J and
@
1txu, η

S
k p0q

D
� 0 for all x P r0, HS

Kq, k P K. (32)
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The �uid analogues of the cumulative reneging processes (19) and (20) are, for t ¥ 0 and each j P J
and k P K,

R
D
j ptq �

» t

0

» Q
D
j puq

0
hDj

�
pFD

j,uq
�1pyq

	
dydu, and R

S
k ptq �

» t

0

» Q
S
k puq

0
hSk

�
pFS

k,uq
�1pyq

	
dydu, (33)

where for each j P J, k P K, x P R�, y P R�, and u ¥ 0, we de�ne

FD
j,upxq :�

@
1r0,xs, η

D
j puq

D
, and FS

k,upxq :�
@
1r0,xs, η

S
k puq

D
,

and

pFD
j,uq

�1pyq :� inftx P R� : FD
j,upxq ¥ yu, and pFS

k,uq
�1pyq :� inftx P R� : FS

k,upxq ¥ yu,

noting that infH � 8. The condition (31) ensures that the cumulative amount of �uid reneging in
(33) is �nite for all time.

The input to the �uid model are componentwise non-decreasing functions A
D
P CpRJ

�q and

A
S
P CpRK

� q with A
D
p0q � 0 and A

S
p0q � 0 that we term arrival functions. For any continuous

and bounded function f P CbpR�q the following integral equations hold for each j P J, k P K, and
t ¥ 0,

@
f, ηDj ptq

D
�

» HD
j

0
fpx� tq

1�GD
j px� tq

1�GD
j pxq

ηDj p0qpdxq �

» t

0
fpt� uqp1�GD

j pt� uqqdA
D
j puq, (34)

and

@
f, ηSk ptq

D
�

» HS
k

0
fpx� tq

1�GS
k px� tq

1�GS
k pxq

ηSk p0qpdxq �

» t

0
fpt� uqp1�GS

k pt� uqqdA
S
k puq. (35)

The equations (34) and (35) parallel the dynamic evolution equations presented for the stochastic
model in Lemma 2 (see equations (11)-(14) and marked point process de�nitions (7) and (8)).
Instead of (34) and (35), we could use similar integral equations as in (11) and (12) in Lemma 1.
However, both are equivalent as we state in the following remark.

Remark 1. By [32, Theorem 4.1] (see also [43, Remark 1]), if A
D

and A
S
are arrival functions

and pηD,ηSq satis�es (31), then (34) and (35) hold if and only if the following hold: for all j P J,
k P K, ϕ P C1,1

c pr0, HD
j q � R�q, ψ P C1,1

c pr0, HS
k q � R�q, and t ¥ 0,

@
ϕp�, tq, ηDj ptq

D
�

@
ϕp�, 0q, ηDj p0q

D
�

» t

0

@
ϕxp�, uq � ϕtp�, uq, η

D
j puq

D
du

�

» t

0

@
hsjp�qϕp�, uq, η

D
j puq

D
du�

» t

0
ϕp0, uqdA

D
j puq,

@
ψp�, tq, ηSk ptq

D
�

@
ψp�, 0q, ηDk p0q

D
�

» t

0

@
ψxp�, uq � ψtp�, uq, η

S
k puq

D
du

�

» t

0

@
hSk p�qψp�, uq, η

S
k puq

D
du�

» t

0
ψp0, uqdA

S
k puq.
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The speci�cation of a �uid model solution for given arrival functions A
D
and A

S
and an initial

condition requires the speci�cation of a matching function. The matching function can be thought
of as the �uid analogue to the matching policy for the stochastic system given in (18), and satisfying
restrictions (16) and (17).

De�nition 3. A matching function M P CpRJ�K
� q is a matrix of componentwise non-decreasing

functions such that M jkp0q � 0 for all j P J and k P K.

For a given matching function M , M jkptq is interpreted as the amount of type j customer �uid and
type k worker �uid matched by time t, for j P J, k P K, and t ¥ 0. Then, the �uid queue-lengths
evolve as follows: for all j P J , k P K and t ¥ 0,

Q
D
j ptq � Q

D
j p0q �A

D
j ptq �R

D
j ptq �

¸
kPK

M jkptq, (36)

and,
Q

S
k ptq � Q

S
k p0q �A

S
k ptq �R

S
k ptq �

¸
jPJ
M jkptq. (37)

The equations (36) and (37) are the �uid analogues of the queue-length evolution equations (21)
and (22) in the stochastic model.

De�nition 4. Let A
D

and A
S
be arrival functions. A �uid model solution for pA

D
,A

S
q is

pQ
D
,Q

S
,ηD,ηSq P CpYq that satis�es conditions (31) and (32), the integral equations (34) and

(35), and is such that there exists a matching function M for which (36) and (37) hold, with R
D

and R
S
given by (33).

There is an alternative, potentially more intuitive, representation of the reneging process, given
in the following remark.

Remark 2. Suppose that A
D

and A
S
are arrival functions and pQ

D
,Q

S
,ηD,ηSq P CpYq satis�es

(31) and (32). Then, ηD
j ptq and ηS

k ptq have no atoms for all j P J, k P K, t ¥ 0, and the following
equations hold: for all j P J, k P K, and t ¥ 0,

R
D
j ptq �

» t

0

» HD
j

0
hDj pxq1tηDj puqr0,xs Q

D
j puqu

ηDj puqpdxqdu (38)

and

R
S
k ptq �

» t

0

» HS
k

0
hSk pxq1tηSk puqr0,xs Q

S
k puqu

ηSk puqpdxqdu. (39)

The inner integrals in (38) and (39) represent the instantaneous reneging rate, which is determined
by the hazard rate function and �uid age. Then, integrating over the instantaneous reneging rate
in r0, ts gives the cumulative reneging up to time t.

A �uid model solution for arrival functions A
D

and A
S
that arise as functional law of large

number limits of the arrival processesAD andAS in the stochastic model provides an approximation
for the mean queue-lengths at each time t ¥ 0. Fluid model solutions are more tractable than the
original stochastic model, yet they are still somewhat complicated because they involve measure-
valued functions. Even so, one could apply numerical methods to �nd the �uid model solutions as
in [37] and [38].
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3.2 Existence and uniqueness

A fundamental question is if a solution of the �uid model exists and if it is unique. Our �rst result
provides conditions for uniqueness when a �uid model solution exists.

Theorem 1. Let A
D

and A
S
be arrival functions and let M be a matching function. Suppose

pQ
D,1

,Q
S,1
,ηD,1,ηS,1q and pQ

D,2
,Q

S,2
,ηD,2,ηS,2q are both �uid model solutions for

�
A

D
,A

S
	

that satisfy (36) and (37) for the matching function M , and

pQ
D,1

p0q,Q
S,1
p0q,ηD,1p0q,ηS,1p0qq � pQ

D,2
p0q,Q

S,2
p0q,ηD,2p0q,ηS,2p0qq.

Then,

pQ
D,1

,Q
S,1
,ηD,1,ηS,1q � pQ

D,2
,Q

S,2
,ηD,2,ηS,2q

Proof. By (34) and (35), we directly have that ηD,1 � ηD,2 and ηS,1 � ηS,2, and so, to ease
the notation in what follows, we de�ne pFD

j,tq
�1 and pFS

k,tq
�1 as in the display following (33) for all

j P J, k P K, and t ¥ 0, without adding superscripts 1 and 2.
We shall argue by contradiction that the �uid queue lengths are also identical. Fix a j P J.

Assume that there exists t� such that Q
D,1
j pt�q ¡ Q

D,2
j pt�q and de�ne u � supt0 ¤ s   t� :

Q
D,1
j psq ¤ Q

D,2
j psqu _ 0, where by convention sup∅ � �8. Due to continuity, Q

D,1
j puq � Q

D,2
j puq

and Q
D,1
j psq ¡ Q

D,2
j psq for s P pu, t�s. If u � 0, then de�ne Q

D,1
j p0�q � Q

D,1
j p0q and the same hold

for all the functions. From (33), we have that

R
D,1
j pt�q �R

D,1
j puq �

» t�

u

» Q
D,1
j psq

0
hDj

�
pFD

j,sq
�1pyq

	
dyds

¥

» t�

u

» Q
D,2
j psq

0
hDj

�
pFD

j,sq
�1pyq

	
dyds

� R
D,2
j pt�q �R

D,2
j puq.

By (36), we obtain for s ¥ 0,

Q
D,1
j psq �R

D,1
j psq � Q

D,2
j psq �R

D,2
j psq.

By the continuity of R
D,i
j and the last two relations, we have that

Q
D,1
j pt�q �Q

D,2
j pt�q � R

D,2
j pt�q �R

D,1
j pt�q ¤ R

D,2
j puq �R

D,1
j puq � Q

D,1
j puq �Q

D,2
j puq � 0.

That is,
Q

D,1
j pt�q ¤ Q

D,2
j pt�q,

which is a contradiction. Hence Q
D,1
j ptq ¤ Q

D,2
j ptq for each t ¥ 0. Using exactly the symmetric

arguments, we have that Q
D,1
j ptq ¥ Q

D,2
j ptq for each t ¥ 0, and hence Q

D,1
j ptq � Q

D,2
j ptq for each

t ¥ 0. The uniqueness for the �uid supply queue lengths shares the same machinery.
Having de�ned the �uid model and studied its properties, we move in the next section to show

how a �uid model arises. In particular, the existence of a �uid model solution follows from Theorem 3
below.
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4 Fluid limit points

In this section, we rigorously show that a �uid model solution arises as a limit point of a se-
quence of �uid-scaled state descriptors. Consider a family of systems indexed by n P N, that
are all de�ned on a common probability space pΩ,F ,Pq, and that share the patience time se-
quences trDjl ulPN, j P J, and trSkhuhPN, k P K. However, the arrival processes, admissible match-
ing policies and initial conditions depend on n P N. Then, for each n P N, there are arrival
processes AD,n and AS,n, an admissible matching policy

�
Xn, tPn

y : y P Xnu
�
and an initial condi-

tion Y np0q P Ξn, such that the state process Y n with initial condition Y np0q has the associated
matching process Mn (see De�nition 2 and Section 2.4). The �uid-scaled processes for the nth
system are as follows: for Hn � AD,n,AS,n,QD,n,QS,n,ηD,n,ηS,n,RD,n,RS,n,Mn,SD,n,SS,n,
let H

n
� Hn{n. The only processes not scaled by n are the processes tracking the time elapsed

since the last arrival, so that aD,n � aD,n and aS,n � aS,n. Then, the �uid-scaled state process
is Y

n
� paD,n,aS,n,Q

D,n
,Q

S,n
,ηD,n,ηS,nq for n P N. To avoid cluttering the notation for each

n P N, we will use P and E instead of Pn
ξn and En

ξn throughout.
The results proved in this section (see Theorems 2 and 3 below) hold under the assumptions

stated in the paragraphs that follow. These assumptions parallel Assumptions 1-5 in [43], but are
modi�ed from their multiclass many-server queue with reneging setting to our matching setting
(which involves ignoring any assumptions on their service measure, and replacing assumptions on
their entry-into-service process with similar ones on our matching process). The assumptions are
consistent with those required in [29], where the single class many-server queue with reneging setting
is studied, with the same caveats. Another di�erence with the aforementioned papers is that we
require our �uid model solutions to be continuous (see De�nition 4), and so enforce that the family
of �uid-scaled matching process is C-tight.

The �rst three assumptions below are used to prove that the sequence of �uid-scaled state
descriptors is tight. These assumptions ensure (1) that the arrival processes are convergent under
�uid-scaling, (2) that the oscillations of the matching process can be controlled, and (3) that the
initial conditions converge to a �good� state.

Assumption 1. There are processes A
D
P DpRJ

�q and A
S
P DpRK

� q such that for each j P J and
k P K,

1. limnÑ8A
D,n
j � A

D
j and limnÑ8A

S,n
k � A

S
k , P-almost surely,

2. limnÑ8 E
�
A

D,n
j ptq

�
� E

�
A

D
j ptq

�
  8 and limnÑ8 E

�
A

D,n
k ptq

�
� E

�
A

S
k ptq

�
  8 for all

t ¥ 0.

We remark that A
D
and A

S
as in Assumption 1 are necessarily componentwise non-decreasing and

satisfy A
D
j p0q � 0 for all j P J and A

S
k p0q � 0 for all k P K, P-almost surely. Hence, A

D
and A

S

are arrival functions (as de�ned in Section 3) P-almost surely.

Assumption 2. We assume that for all n P N either M
n
jk satis�es the second condition (K.2) of

Kurtz' criteria for each j P J and k P K or for all 0 ¤ s ¤ t   8,

max
jPJ,kPK

pM
n
jkptq �M

n
jkpsqq ¤

¸
jPJ
pA

D,n
j ptq �A

D,n
j psqq �

¸
kPK

pA
S,n
k ptq �A

S,n
k psqq. (40)
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Recall Kurtz' Criteria for tightness (see, e.g., [20, Theorem 3.8.6 and Remark 3.8.7]). A sequence
of processes

 
HN

(
NPN with sample paths in DpRq is relatively compact if and only if the following

two properties hold:

(K.1) For all rational t ¥ 0, limMÑ8 supN P
�
|HN ptq| ¡M

�
� 0.

(K.2) For all rational t ¡ 0, there exists q ¡ 0 such that limεÑ0 supN E
�
|HN pt� εq �HN ptq|q

�
� 0.

Assumption 3. There is a random element pQ̃Dp0q, Q̃Sp0q, η̃Dp0q, η̃Sp0qq P Y, P-almost surely,
such that for each j P J and k P K,

1. limnÑ8Q
D,n
j p0q � Q̃D

j p0q and limnÑ8Q
S,n
k p0q � Q̃S

k p0q, P-almost surely,

2. limnÑ8 E
�
Q

D,n
j p0q

�
� E

�
Q̃D

j p0q
�
  8 and limnÑ8 E

�
Q

S,n
k p0q

�
� E

�
Q̃S

k p0q
�
  8,

3. ηD,n
j p0q

w
Ñ η̃Dj p0q and η

S,n
k p0q

w
Ñ η̃Sk p0q, as nÑ8, P-almost surely,

4. limnÑ8 E
�A

1, ηD,n
j p0q

E�
� E

�A
1, η̃Dj p0q

E�
  8 and limnÑ8 E

�A
1, ηS,nk p0q

E�
� E

�@
1, η̃Sk p0q

D�
 

8.

The �rst main result of this section is related to the tightness of the �uid-scaled state descriptor.

Theorem 2. Suppose that Assumptions 1�3 are satis�ed. Then,
!
pQ

D,n
,Q

S,n
,ηD,n,ηS,nq

)
nPN

is

tight.

Given the tightness result, the next two assumptions are used to prove that any subsequential
limit is a �uid model solution P-almost surely.

Assumption 4. For each j P J and k P K, there exist LD
j   HD

j and LS
k   HS

k such that hDj and

hSk are either bounded or lower-semicontinuous on pLD
j , H

D
j q and pL

S
k , H

S
k q, respectively.

Assumption 5. Assumptions 1-3 hold, and the following hold for each j P J and k P K,

1. A
D
j and A

S
k are continuous P-almost surely, i.e., A

D
j and A

S
k are arrival functions P-almost

surely,

2. η̃Dj p0q and η̃
S
k p0q do not charge points P-almost surely, i.e., for any x P R�,

A
1txu, η̃

D
j p0q

E
� 0

and
@
1txu, η̃

S
k p0q

D
� 0, P-almost surely,

3.
 
M

n
jk

(
nPN is C-tight.

Theorem 3. If Assumptions 4 and 5 hold, then any distributional limit point tpQ
D
,Q

S
,ηD,ηSqunPN

of tpQ
D,n

,Q
S,n
,ηD,n,ηS,nqunPN is P-almost surely a �uid model solution for pA

D
,A

S
q such that

pQ
D
p0q,Q

S
p0q,ηDp0q,ηSp0qq is equal in distribution to pQ̃Dp0q, Q̃Sp0q, η̃Dp0q, η̃Sp0qq given in As-

sumption 3.

In the remainder of this section, we present the proofs of Theorems 2 and 3. Section 4.1 identi�es
the compensator term that can be used to de�ne martingales associated with the potential reneging
marked point processes SD,n and SS,n for each n P N, and provides some preliminary results. Then,
Section 4.2 contains the proof of Theorem 2, and Section 4.3 contains the proof of Theorem 3.
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4.1 Preliminaries: Martingales and radon measures

The development in this section heavily leverages the presentation of the martingales associated
with the potential reneging marked point processes in [43, Section 4.1] and is therefore kept concise,
with proof details omitted.

Fix n P N. We start the analysis by de�ning a �ltration tFn
t ut¥0 such that for t ¥ 0

Fn
t � σ

�
Y np0q,

�
aD,npsq, 0 ¤ s ¤ t

�
,
�
aS,npsq, 0 ¤ s ¤ t

�
,
�
wD,npsq, 0 ¤ s ¤ t

�
,
�
wS,npsq, 0 ¤ s ¤ t

��
,

where aD,n,aS,n, wD,n, and wS,n are de�ned for the nth system as in Section 2. Note that Fn
t � Gn

t

for each t ¥ 0, where Gn
t is given in De�nition 2. Further, for each j P J, k P K, bounded measurable

function ϕ : r0, HD
j q �R� Ñ R, bounded measurable function ψ : r0, HS

k q �R� Ñ R, and t ¥ 0, let

AD,n
j pϕ, tq �

» t

0

A
ϕp�, sqhDj psq, η

D,n
j psq

E
ds, (41)

AS,n
k pψ, tq �

» t

0

A
ψp�, sqhSk psq, η

S,n
k psq

E
ds, (42)

BD,n
j pϕ, tq � SD,n

j pϕ, tq �AD,n
j pϕ, tq, (43)

BS,n
k pψ, tq � SS,n

k pψ, tq �AS,n
k pψ, tq. (44)

The following almost surely bounded and measurable functions will help us to bound the reneging
processes. For j P J, y P r0, HD

j q, and t ¥ 0, let

θD,n
j py, tq � 1

r0,χD,n
j pt�qq

pyq and ΘD,n
j py, tq � 1

r0,χD,n
j pt�qs

pyq. (45)

For k P K, y P r0, HS
k q, and t ¥ 0, let

θS,nk py, tq � 1
r0,χS,n

k pt�qq
pyq and ΘS,n

k py, tq � 1
r0,χS,n

k pt�qs
pyq. (46)

De�nitions (45) and (46) and (23)�(26) lead to the following bounds for the reneging processes:

SD,n
j pθD,n

j , tq ¤ RD,n
j ptq ¤ SD,n

j pΘD,n
j , tq and SS,n

k pθS,nk , tq ¤ RS,n
k ptq ¤ SS,n

k pΘS,n
j , tq. (47)

Recall the independence of the initial conditions from the primitive processes and that the
matching processMn is tGn

t ut¥0- adapted by De�nition 2 for each n P N. By adapting the arguments
used to prove [32, Corollary 5.5], Part 1 of [29, Proposition 5.1], and [29, Lemma 5.4] exactly as is
mentioned in [43, Lemma 4], the following lemma holds.

Lemma 3. Let n P N. For each j P J, k P K, bounded measurable function ϕ : r0, HD
j q � R� Ñ R,

such that tÑ ϕpwD,n
jl ptq, tq is left continuous on r0,8q for each l P

!
�
A
1, ηD,n

j p0q
E
� 1, . . . , 0

)
YN,

and bounded measurable function ψ : r0, HS
k q � R� Ñ R such that tÑ ψpwS,n

kl ptq, tq is left continu-

ous on r0,8q for each l P
!
�
A
1, ηS,nk p0q

E
� 1, . . . , 0

)
Y N, the processes AD,n

j pϕ, �q and AS,n
k pψ, �q

are the tFtu
n
t¥0-compensators of SD,n

j pϕ, �q and SS,n
k pψ, �q, respectively. Further, AD,n

j pΘD,n
j , �q and

AS,n
k pΘS,n

k , �q are the tFtu
n
t¥0-compensators of SD,n

j pΘD,n
j , �q and SS,n

j pΘS,n
j , �q. In particular, the

processes BD,n
j pϕ, �q, BS,n

k pψ, �q, BD,n
j pΘD,n

j , �q, and BS,n
k pΘS,n

k , �q are local tFn
t ut¥0-martingales.
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For n P N a local tFn
t ut¥0-martingale Ln, we denote by

@
L
nD

the quadratic variation process of
the �uid-scaled process L

n
� Ln{n. The following result is the analogue of [43, Lemma 5].

Lemma 4. Suppose that Assumptions 1 and 3 hold. For each j P J, k P K, t ¥ 0, bounded
measurable function ϕ : r0, HD

j q � R� Ñ R such that u ÞÑ ϕpwD,n
ji puq, uq is left continuous on

r0,8q for each i P
!
�
A
1, ηD,n

j p0q
E
� 1, . . . , 0

)
Y N and n P N, and bounded measurable function

ψ : r0, HS
k q � R� Ñ R such that u ÞÑ ψpwS,n

ki puq, uq is left continuous on r0,8q for each i P!
�
A
1, ηS,nk p0q

E
� 1, . . . , 0

)
Y N and n P N,

lim sup
nÑ8

E
�
H

n
ptq

�
  8,

where Hnp�q � AD,n
j pϕ, �q, AS,n

k pψ, �q, SD,n
j pϕ, �q, SS,n

k pψ, �q, SD,n
j pΘD,n

j , �q, SS,n
k pΘS,n

k , �q, AD,n
j pΘD,n

j , �q,

and AS,n
k pΘS,n

k , �q. Moreover, for each j P J, k P K and t ¥ 0,

lim sup
nÑ8

E
�
R

D,n
j ptq

�
  8 and lim sup

nÑ8
E
�
R

S,n
k ptq

�
  8.

Furthermore, for L
n
p�q � BD,n

j pϕ, �q, Bs,n
k pψ, �q, BD,n

j pΘD,n
j , �q, and BS,n

k pΘS,n
k , �q, for j P J, k P K,

and n P N, we have that for all t ¥ 0

lim
nÑ8

E
�@
L
nD
ptq

�
� 0,

and hence L
n d
Ñ 0, as nÑ8.

We next provide alternative representations for the compensators of SD,n
j pθD,n

j , �q, SS,n
k pθS,nk , �q,

SD,n
j pΘD,n

j , �q and SS,n
k pΘS,n

k , �q, for j P J, k P K, and n P N. For n P N, x P R�, and t ¥ 0, de�ne

FD,n
j,t pxq �

A
1r0,xs, η

D,n
j ptq

E
, j P J, and FS,n

k,t pxq �
A
1r0,xs, η

S,n
k ptq

E
, k P K.

Also for n P N and t ¥ 0 de�ne

χ̃D,n
j ptq :� inf

!
x P r0, HD

j q : F
D,n
j,t pxq ¥

A
1
r0,χD,n

j pt�qq
, ηD,n

j ptq
E)

, j P J,

and
χ̃S,n
k ptq :� inf

!
x P r0, HS,n

k q : FS,n
k,t pxq ¥

A
1
r0,χS,n

k pt�qq
, ηS,nk ptq

E)
, k P K.

The following result is the analogue of [43, Lemma 6].

Lemma 5. For each n P N, j P J, k P K, t ¥ 0, x P r0, HD
j q, and y P r0, H

S
k q, we have that

A
1r0,xsh

D
j , η

D,n
j ptq

E
�

» FD,n
j,t pxq

0
hDj

��
FD,n
j,t

	�1
psq



ds.

A
1r0,ysh

S
k , η

S,n
k ptq

E
�

» FS,n
k,t pyq

0
hSk

��
FS,n
k,t

	�1
psq



ds.
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In particular, for each n P N, j P J, k P K, and t ¥ 0,

AD,n
j pθD,n

j , tq �

» t

0

» FD,n
j,t pχ̃D,n

j puqq

0
hDj

��
FD,n
j,u

	�1
psq



dsdu,

AD,n
j pΘD,n

j , tq �

» t

0

» FD,n
j,t pχD,n

j pu�qq

0
hDj

��
FD,n
j,u

	�1
psq



dsdu,

AS,n
k pθS,nj , tq �

» t

0

» FS,n
k,t pχ̃

S,n
k puqq

0
hSk

��
FS,n
k,u

	�1
psq



dsdu,

AS,n
k pΘS,n

j , tq �

» t

0

» FS,n
k,t pχ

S,n
k pu�qq

0
hSk

��
FS,n
k,u

	�1
psq



dsdu.

For each n P N, j P J, k P K, and t ¥ 0, the measures SD,n
j p�, tq and SD,n

k p�, tq are �nite

Radon measures on r0, HD
j q � R� and r0, HS

k q � R�, respectively. The next lemma shows that the
corresponding compensators are bounded and its validity follows by the de�nition of the potential
measures, (41), and (42), as in [43, Lemma 7].

Lemma 6. For each n P N, j P J, k P K, 0   m   HD
j , 0   u   HS

k , t ¥ 0, bounded
measurable ϕ : r0, Hs

j q � R� Ñ R, such that supppϕq � r0,ms � R�, and bounded measurable

ψ : r0, HS
k q � R� Ñ R such that supppψq � r0, us � R�, we have that

���AD,n
j pϕ, tq

��� ¤ }ϕ}8

�A
1, ηD,n

j p0q
E
�AD,n

j ptq
	 » m

0
hDj pxqdx,

���AS,n
k pψ, tq

��� ¤ }ψ}8

�A
1, ηS,nk p0q

E
�AS,n

k ptq
	 » u

0
hSk pxqdx.

We remark that Lemmas 3, 5, and 6 all hold for �xed n P N, and, in particular, hold for the
system model presented in Section 2. In contrast, Lemma 4 is an asymptotic result.

4.2 Proof of Theorem 2

Theorem 2 follows by Lemmas 7 and 8 below.

Lemma 7. Suppose that Assumptions 1�3 hold. For any j P J, k P K, fj P C1
c pr0, H

D
j qq,

hk P C1
c pr0, H

S
k qq, ϕj P Cbpr0, HD

j q�R�q, ψk P Cbpr0, HS
k q�R�q, the sequences tA

D,n
j unPN, tA

S,n
k unPN,

tR
D,n
j unPN, tR

S,n
k unPN, tS

D,n
j unPN, tS

S,n
k unPN, tM

n
jkunPN,

!A
1, ηD,n

j p�q
E)

nPN
,
!A

1, ηS,nk p�q
E)

nPN
,!A

fj , η
D,n
j p�q

E)
nPN

,
!A
hk, η

S,n
k p�q

E)
nPN

, tQ
D,n
j unPN, tQ

S,n
k unPN,

!
SD,n
j pϕj , �q

)
nPN

,
!
SS,n
k pψk, �q

)
nPN

,!
AD,n

j pϕj , �q
)
nPN

, and
!
AS,n

k pψk, �q
)
nPN

, are relatively compact in DpR�q, and are therefore tight.

If Assumption 5 also holds, then each of these processes is C-tight.

Proof. Fix j P J, k P K, fj P C1
c pr0, H

D
j qq, hk P C1

c pr0, H
S
k qq, ϕj P Cbpr0, HD

j q � R�q, ψk P

Cbpr0, HS
k q � R�q.

The arrival processes
!
A

D,n
j

)
nPN

and
!
A

S,n
j

)
nPN

are relatively compact by the �rst condition of

Assumption 1. Relative compactness of
!
S
D,n
j

)
nPN

,
!
S
S,n
k

)
nPN

,
!
AD,n

j pϕj , �q
)
nPN

,
!
AS,n

k pψk, �q
)
nPN

,
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!
SD,n
j pϕj , �q

)
nPN

,
!
SS,n
k pψk, �q

)
nPN

,
!A

1, ηD,n
j p�q

E)
nPN

, and
!A

1, ηS,nk p�q
E)

nPN
follows using Lemma 4

and the same arguments as in [29, Lemma 6.3]. For the reneging process
!
R

D,n
j

)
nPN

, observe by (23)

that R
D,n
j ptq ¤ A

D,n
j ptq for each t ¥ 0 and n P N. Furthermore, for each n P N and 0 ¤ s ¤ t   8,

we have that
|R

D,n
j ptq �R

D,n
j psq| ¤ |S

D,n
j ptq � S

D,n
j psq|.

Now, relative compactness of
!
R

D,n
j

)
nPN

follows by relative compactness of
!
S
D,n
j

)
nPN

, and by

exactly the same arguments
!
R

S,n
k

)
nPN

is relatively compact.

The matching process is relatively compact by Assumption 2, the fact thatM
n
jkptq ¤ minpQ

D,n
j p0q�

A
D,n
j ptq, Q

S,n
k p0q � A

S,n
k ptqq for each t ¥ 0 and n P N, and relative compactness of the arrival pro-

cesses. By (21), observe that for n P N and 0 ¤ s ¤ t   8,

|Q
D,n
j ptq �Q

D,n
j psq| ¤ |A

D,n
j ptq �A

D,n
j psq| � |R

D,n
j ptq �R

D,n
j psq| �

¸
kPK

|M
n
jkptq �M

n
jkpsq|.

Hence,
!
Q

D,n
j

)
nPN

is relatively compact by relative compactness of the arrival, reneging, and match-

ing processes. Using (21), relative compactness of
!
Q

S,n
k

)
nPN

also follows.

Next,
!A
fj , η

D,n
j p�q

E)
nPN

and
!A
ϕk, η

S,n
k p�q

E)
nPN

are relatively compact by applying Lemma 1

and following arguments similar to those in [29, Lemma 6.4].

Finally, the sequences
!
AD,n

j pϕj , �q
)
nPN

and
!
AS,n

k pψk, �q
)
nPN

are C-tight because each process

in the sequence is continuous. The sequences
!
R

D,n
j

)
nPN

and
!
R

S,n
k

)
nPN

are C-tight because in

the nth system each process in the sequence has jumps of size 1{n due to the continuity of the
patience time distributions. If Assumption 5 holds, then parts 1 and 2 of Assumption 5 guarantee!
A

D,n
j

)
nPN

,
!
A

S,n
k

)
nPN

,
!A

1, ηD,n
j p�q

E)
nPN

, and
!A

1, ηS,nk p�q
E)

nPN
are C-tight. Part 3 of Assump-

tion 5 guarantees
 
M

n
jk

(
nPN is C-tight. Then

!
Q

D,n
j

)
nPN

and
!
Q

S,n
k

)
nPN

are C-tight from this and

(21) and (22). C-tightness of
!
SD,n
j pϕj , �q

)
nPN

and
!
SS,n
k pψk, �q

)
nPN

follows when ϕj and ψk are

continuous, and so
!
S
D,n
j

)
nPN

and
!
S
S,n
k

)
nPN

are C-tight (since the constant function 1 is contin-

uous). Then, from (13) and (14) in Lemma 1, since fj and hk are continuous,
!A
fj , η

D,n
j p�q

E)
nPN

,

and
!A
hk, η

S,n
k p�q

E)
nPN

are C-tight.

Lemma 8. Suppose that Assumptions 1�3 hold. For each j P J and k P K the sequences tηD,n
j unPN,

tηS,nk unPN, tA
D,n
j unPN, tA

S,n
k unPN, tS

D,n
j unPN, and tS

S,n
k unPN, are relatively compact in DpMr0, HD

j qq,

DpMr0, HS
k qq, DpMpr0, HD

j q�R�qq, DpMpr0, HS
k q�R�qq, DpMpr0, HD

j q�R�qq, and DpMpr0, HS
k q�

R�qq, respectively.

Proof. Lemma 8 follows by Jabukbowski's criteria (see, e.g., [26, Theorem 4.6]) and using the
same arguments as in [43, Lemma 9].
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4.3 Proof of Theorem 3

For n P N, let

V
n
�

�
A

D,n
,A

S,n
,Q

D,n
,Q

S,n
,ηD,n,ηS,n,R

D,n
,R

S,n
,M

n
,SD,n

,SS,n
,AD,n

,AS,n
	
. (48)

We use the following lemma to prove Theorem 3.

Lemma 9. Suppose that Assumptions 4 and 5 hold, and that

V �
�
A

D
,A

S
,Q

D
,Q

S
,ηD,ηS ,R

D
,R

S
,M ,SD

,SS
,AD

,AS
	
.

is a distributional limit point of
 
V

n(
nPN, where V

n
is given in (48) for each n P N. Then, the

following hold almost surely:

1. for each j P J, k P K, T ¡ 0, u P r0, HD
j q, and m P r0, HS

k q, there exists LD
j pu, T q   8,

LS
k pm,T q   8 such that for each ℓD P L1

locr0, H
D
j q and ℓ

S P L1
locr0, H

S
k q» T

0

@
ℓD, ηDj psq

D
ds ¤ LD

j pu, T q

»
r0,HD

j q

��ℓDpxq�� dx,
» T

0

@
ℓS , ηSk psq

D
ds ¤ LS

k pm,T q

»
r0,HS

k q

��ℓSpxq�� dx;
2. for all j P J, k P K, ϕ P Cbpr0, H

D
j q � R�q, ψ P Cbpr0, H

S
k q � R�q, and t ¥ 0,

SD
j pϕ, tq � AD

j pϕ, tq �

» t

0

@
ϕp�, uqhDj p�q, η

D
j puq

D
du   8,

SS
k pψ, tq � AS

k pψ, tq �

» t

0

@
ψp�, uqhSk p�q, η

S
k puq

D
du   8,

and, in particular, (31) holds;

3. for all j P J, k P K, t ¥ 0, and x P R�,
A
1txu, η

D
j ptq

E
� 0 and

@
1txu, η

S
k ptq

D
� 0, and, in

particular, (32) holds;

4. R
D
and R

S
satisfy (33);

5. pQ
D
,Q

S
,ηD,ηSq P CpYq;

6. M P CpRJ�K
� q is a matching function;

7.
�
A

D
,A

S
,Q

D
,Q

S
,ηD,ηS ,R

D
,R

S
,M ,AD

,AS
	
satisfy (34)-(35) and (36)-(37).

Proof. The proof of parts 1, 2, 3, and 4 follows analogously to the proof of [43, Lemma 10, parts
1,2,6,7] for the reneging measure η in that paper (and ignoring the service measure ν in that paper).
Part 5 follows from the following:

� The restriction (2) for each system n in the sequence;

24



� The C-tightness of the sequences tQ
D,n
j unPN, j P J and tQ

S,n
k unPN, k P K established in

Lemma 7;

� The fact that ηjptq and ηkptq do not charge points for each t ¥ 0 and j P J and k P K by part
3 above.

Part 6 follows from part 3 of Assumption 5 and the fact that Mn
jk are non-decreasing for each j P J,

k P K, and n P N from their de�nition in (18). To obtain part 7, we note the following:

� Arguments very similar to those used to establish [29, (3.11) for Theorem 7.1 (see page 51)]
also show that the equations (34) and (35) hold, using Remark 1;

� The relations (36)-(37) follow by (21)-(22), and the convergence of the �uid-scaled processes.

Proof of Theorem 3. Let pQ
D
,Q

S
,ηD,ηSq be a distributional limit point of tpQ

D,n
,Q

S,n
,ηD,n,ηS,nqunPN.

Then there exists N1 � tn1u � N such that

pQ
D,n1

,Q
S,n1

,ηD,n1 ,ηS,n1q ñ pQ
D
,Q

S
,ηD,ηSq, as n1 Ñ8.

For each n P N, let V n
be as given in (48) and consider the subsequence tV

n1
un1PN1 . Let Ṽ be

a limit point of tV
n1
un1PN1 . Since tV

n1
un1PN1 is tight from Lemma 7 and Lemma 8, there exists a

further subsequence N2 � tn2u such that V
n2
ñ Ṽ as n2 Ñ 8. Since pQ

D,n2
,Q

S,n2
,ηD,n2 ,ηS,n2q

are coordinates of V
n2

for each n2, it follows that pQ̃D, Q̃S , η̃D, η̃Sq is equal in distribution to

pQ
D
,Q

S
,ηD,ηSq. Furthermore, by Lemma 9, pQ̃D, Q̃S , η̃D, η̃Sq is almost surely a �uid model

solution. Hence the same is true for pQ
D
,Q

S
,ηD,ηSq.

5 Stationarity

Here, we study the behavior of the stochastic model in stationarity. To ensure the existence of a
stationary distribution, we make the following assumption.

Assumption 6. The components of the arrival processes AD and AS are delayed renewal pro-
cesses with absolutely continuous interarrival distributions that have �nite means and the admissible
matching policy pX, tPy : y P Xuq is such that tPy : y P Xu is a time homogeneous Feller Markov
process.

As a consequence of Assumption 6, (1) holds. We also make the following assumption on the
reneging distributions.

Assumption 7. The reneging distributions satisfy the following conditions:

1.
³8
0 p1�GD

j pxqqdx � 1{θDj P p0,8q, j P J, and
³8
0 p1�GS

k pxqqdx � 1{θSk P p0,8q, k P K;

2. GD
j , j P J, and GS

k , k P K are strictly increasing.
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Part 1 of Assumption 7 ensures that the reneging distributions have �nite positive mean and

Part 2 of Assumption 7 ensures that the inverse functions
�
GD

j

	�1
: r0, 1q Ñ r0, HD

j q and
�
GS

k

��1
:

r0, 1q Ñ r0, HS
k q are well-de�ned for each j P J and k P K. When Part 1 of Assumption 7 holds the

excess life distributions of the reneging distributions are as follows:

GD
e,jpxq �

» x

0
θDj p1�GD

j puqqdu, for j P J and x P R�

and

GS
e,kpxq �

» x

0
θSk p1�GS

k puqqdu, for k P K and x P R�.

Under Assumptions 6 and 7, in Section 5.1, we show that the stochastic model admits at least
one stationary distribution (see Proposition 1). Next, in Sections 5.2 and 5.3, we show that �xed
points, also called invariant states, of the �uid model with suitable arrival functions are valid
�rst order approximations for the stationary distributions of the stochastic system. Here suitable
arrival functions are those with component functions that are absolutely continuous with constant
densities. In Section 5.2, we restate two results from [6] that concern the invariant states of such a
�uid model. The �rst (Proposition 2) gives a characterization of the invariant states. The second
(Proposition 3) concerns the behavior of �uid model solutions as time becomes large and provides
su�cient conditions for convergence to an invariant state. Then, in Section 5.3, we consider a
sequence of stochastic systems in stationarity under �uid scaling. Under mild asymptotic conditions,
we prove convergence of this sequence to an invariant state of the �uid model (see Theorem 4).
The combination of these results establishes an interchange of limits result that justi�es regarding
invariant states as �rst order approximations to stationary distributions. This is illustrated in Figure
2 at the beginning of Section 5.3 after establishing the necessary notation.

5.1 Existence of a Stationary Distribution

In this section, we determine conditions under which the stochastic model admits a stationary
distribution, although we make no claim about uniqueness of such a distribution.

Proposition 1. Suppose that Assumption 6 and Part 1 of Assumption 7 hold. There exists ξ P Ξ
such that the state process Y is stationary when Y p0q has distribution ξ. In particular, ξ is such
that for all t ¥ 0

Eξ

�
AD

j ptq
�
� λDj t and Eξ

�@
1, ηDj p0q

D�
� λDj {θ

D
j , for each j P J, (49)

Eξ

�
AS

k ptq
�
� λSk t and Eξ

�@
1, ηSk p0q

D�
� λSk {θ

S
k , for each k P K. (50)

Proof. Fix y P X. Let Y denote the state process with law Ly. For any Borel subset B of X, let
L0pBq � PypY p0q P Bq and for t ¡ 0 let

LtpBq :�
1

t

» t

0
PypY psq P Bqds.

Then Lt is a Borel probability measure on X for each t ¥ 0. From Assumption 6, the state process

Y is a time homogeneous Feller Markov process. Also, since y P X, maxjPJ

A
1, ηDj p0q

E
  8 and

maxkPK
@
1, ηSk p0q

D
  8 since y P X � Y. Then, upon recalling (1), we can argue very similarly
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to the proof of [30, Lemma 4.8] (ignoring the service measure) to �nd that the family of measures
tLtut¥0 is tight. Finally, the Krylov�Bogoliubov theorem (see [17, Corollary 3.1.2]) implies that any
limit point ξ of tLtut¥0 is a stationary distribution. The equations in (49) and (50) follow since the
marginal distributions of the arrival processes and total mass of the potential queue measures must
be stationary processes when the the initial condition is ξ and the total mass of the potential queue
measures is equal in distribution to that of an in�nite server queue.

5.2 Invariant States and Long Time Behavior of Fluid Model Solutions.

We restrict attention to �uid model solutions given in De�nition 4 for which the arrival functions
A

D
and A

S
are linear. Speci�cally, we suppose that for some λD P p0,8qJ and λS P p0,8qK we

have that for each j P J, k P K, and t ¥ 0,

A
D
j ptq � λDj t and A

S
k ptq � λSk t. (51)

With this, we de�ne invariant states as follows.

De�nition 5. Let λD P p0,8qJ and λS P p0,8qK . A tuple pqD,�, qS,�,ηD,�,ηS,�q P Y is an

invariant state for pλD,λSq if the constant function pQ
D
,Q

S
,ηD,ηSq given by

pQ
D
ptq,Q

S
ptq,ηDptq,ηSptqq � pqD,�, qS,�,ηD,�,ηS,�q, for all t ¥ 0 (52)

is a �uid model solution for
�
A

D
,A

S
	
given in (51). The invariant manifold for pλD,λSq is

the set of all invariant states for pλD,λSq, which we denote by Iλ.

To build some intuition, �x λD P p0,8qJ and λS P p0,8qK and suppose that an invariant
state pqD,�, qS,�,ηD,�,ηS,�q for pλD,λSq exists. We begin by looking at the invariant potential
queue measures since their evolution is independent of the matching function. By substituting the
components of ηD,� (resp. ηS,�) into dynamic equation (34) (resp. (35)) and letting t tend to in�nity,
one can show that the term corresponding to the initial condition tends to zero and conclude that
for each j P J (resp. k P K), ηD,�

j (resp. ηS,�k ) is absolutely continuous with density λDj p1 � GD
j p�qq

(resp. λSk p1�GS
k p�qq).

Next, we look at the invariant �uid queue masses, which depend on the matching function M .
By (33), for each j P J (resp. k P K), RD

j (resp. R
S
k ) is absolutely continuous with a constant

density function. This together with (36) (resp. (37)) implies that for each j P J (resp. k P K),
M

D
j :�

°
kPKM jk (resp. M

S
k :�

°
jPJM jk) is absolutely continuous with constant density function

mD
j P r0, λdj s (resp. m

S
k P r0, λ

S
k s). It follows that M jk, j P J and k P K, are absolutely continuous,

although their density functions aren't necessarily constant. However, it is straightforward to check
that M can be replaced with a matching function that has coordinate functions that are absolutely
continuous with constant density. Let

M :�

#
m P RJ�K

� :
¸
kPK

mjk ¤ λDj , j P J and
¸
jPJ
mjk ¤ λSk , k P K, and mjk � 0 for all pj, kq R E

+
.

These observations implies that in order to characterize invariant states it su�ces to restrict atten-
tion to matching functions M such that Mptq �mt for all t ¥ 0, for some m PM.

The following results are proved in [6], and re-stated here for the reader's convenience.
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Proposition 2 (Proposition 3 in [6]). Let λD P p0,8qJ and λS P p0,8qK and suppose that
Assumption 7 holds. A tuple pqD,�, qS,�,ηD,�,ηS,�q P Y is in the invariant manifold Iλ if and
only if it satis�es the following relations for some m PM: For j P J, k P K, and x P R�,

ηD,�
j pdxq � λDj p1�GD

j pxqqdx, (53)

ηS,�k pdxq � λSk p1�GS
k pxqqdx, (54)

qD,�
j pmq �

$'&
'%

λD
j

θDj
, if

°
kPKmjk � 0,

λD
j

θDj
GD

e,j

�
pGD

j q
�1
�
1�

°
kPK mjk

λD
j

		
, if

°
kPKmjk P p0, λ

D
j s,

(55)

qS,�k pmq �

$'&
'%

λS
j

θSj
, if

°
jPJmjk � 0,

λS
j

θSj
GS

e,k

�
pGS

k q
�1
�
1�

°
jPJ mjk

λS
k

		
, if

°
jPJmjk P p0, λ

S
k s.

(56)

When a matching policy arising from some m PM is �xed, a �uid model solution approaches a
unique invariant point, assuming �good� initial conditions.

Proposition 3 (Theorem 2 in [6]). For each j P J and k P K, assume hDj and hSk are bounded

functions. Suppose that Assumption 7 is satis�ed, A
D

and A
S
are arrival functions that satisfy

(51), and pQ
D
,Q

S
,ηD,ηSq P CpYq is a �uid model solution for pA

D
,A

S
q such that ηD

j p0q, j P J,
and ηS

k p0q, k P K, do not charge points and the matching function M is such that Mptq � mt,
t ¥ 0 for some m PM. Then

lim
tÑ8

�
Q

D
ptq,Q

S
ptq,ηDptq,ηSptq

	
�

�
qD,�pmq, qS,�pmq,ηD,�,ηS,�

�
.

Remark 3. The requirement in Proposition 3 that the matching function has constant matching
rate is restrictive, and is of interest to relax. However, that is beyond the scope of the present paper.

5.3 Convergence of �uid scaled stationary states to the invariant manifold

In this section, we consider a sequence of stationary stochastic systems indexed by n P N.

Assumption 8. For each n P N, there is a stochastic system indexed by n such that the arrival
processes AD,n and AS,n and admissible matching policy pXn, tPn

y : y P Xnuq satisfy Assumption 6,
while the stochastic primitives do not depend on n and the reneging distributions satisfy Assump-
tion 7.

If Assumption 8 holds, then, by Proposition 1, a stationary distribution ςn P Ξn exists for
each n P N and we let Y np8q � paD,np8q,aS,np8q,QD,np8q,QS,np8q,ηD,np8q,ηS,np8qq denote a
stationary state for the nth system that has distribution ςn. We apply �uid scaling to this sequence
of stochastic stationary states and provide conditions under which the �uid scaled sequence of
stationary states converges to an invariant state, as shown in Theorem 4 below. As a consequence
under suitable conditions that in particular imply ergodicity for the stochastic systems, the �uid
(nÑ8) and stationary (tÑ8) limits can be interchanged as illustrated in Figure 2.
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Figure 2: When Assumption 9 holds, the arrival functions A
D
and A

S
for the �uid model are such

that A
D
j ptq � λSj t, j P J, and A

S
k ptq � λSk t, k P K, for all t ¥ 0, and the sequence of matching

functions is well behaved (see condition in Theorem 4), Propositions 1 and 3 and Theorems 3 and
4, ensure that when the limits exists, the limits tÑ8 and nÑ8 can be taken in either order, as
illustrated in the �gure, where m PM.

In order to prove Theorem 4 below, we consider a sequence of systems indexed by n P N as in Sec-
tion 4 such that the initial condition Y np0q for the nth system has distribution ςn, i.e., has a station-
ary distribution. Henceforth for each n P N, Y np�q �

�
aD,np�q,aS,np�q,QD,np�q,QS,np�q,ηD,np�q,ηS,np�q

�
denotes the state process with initial condition Y np0q that has distribution ςn, i.e., Y np0q has a
stationary distribution so that Y n is a stationary process. We aim to apply Theorem 3 to the

sequence of
!�

Q
D,n

,Q
S,n
,ηD,n,ηS,n

	)
nPN

of �uid scaled stationary processes. To this end, we

require the sequence of arrival processes to satisfy the following assumption.

Assumption 9. Suppose that Assumption 8 holds and for some λD P p0,8qJ and λS P p0,8qK

we have

lim
nÑ8

λD,n

n
� λD and lim

nÑ8

λS,n

n
� λS ,

where for each n P N, 1{λD,n
j denotes the mean interarrival time of AD,n

j , j P J, and 1{λS,nk denotes

the mean interarrival time of AD,n
k , k P K.

When Assumption 9 holds, it follows that Assumption 1 and Part 1 of Assumption 5 hold for the
arrival functions A

D
and A

S
such that A

D
j ptq � λDj t, j P J, and AS

k ptq � λSk t, k P K, for all t ¥ 0.
In preparation for proving Theorem 4, we establish a tightness result. Our proofs leverage

results for a many-server queue with reneging in [30], which were also leveraged in [49], to prove
convergence of stationary distributions. The key observation is that the potential queue measure in
[30] does not depend on the service process, and so results on that measure can be carried over to
this paper since the potential queue measures here do not depend on the matching process. As in
Section 4 for each n P N, we will use P and E in place of Pn

ςn and En
ςn respectively to simplify the

notation.

Lemma 10. Suppose Assumption 9 holds (which implies that Assumptions 6, 7 and 8 hold). Then,!�
Q

D,n
p8q,Q

S,n
p8q,ηD,np8q,ηS,np8q

	)
nPN

is tight. In addition, as nÑ8,

�
ηD,np8q,ηS,np8q

� d
Ñ

�
ηD,�,ηS,�

�
, (57)
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and, for each j P J and k P K,

lim
nÑ8

E
�
x1, ηD,n

j p8qy
�
�
λDj

θDj
� x1, ηD,�

j y and lim
nÑ8

E
�
x1, ηS,nk p8qy

�
�
λSk
θSk

� x1, ηS,�k y. (58)

Finally, if tnlulPN is a strictly increasing subsequence of N and�
Q

D,nlp8q,Q
S,nlp8q,ηD,nlp8q,ηS,nlp8q

	
d
Ñ

�
Q

D
p8q,Q

S
p8q,ηD,�,ηS,�

	
, as lÑ8,

then
lim
lÑ8

E
�
Q

D,nl

j p8q
�
� E

�
QD

j p8q
�

and lim
lÑ8

E
�
Q

S,nl

k p8q
�
� E

�
Q

S
k p8q

�
. (59)

Proof. The same arguments used to prove the tightness of the scaled potential queue measure

in [30, Theorem 6.2] establish that the families
!
ηD,n
j p8q

)
nPN

and
!
ηS,nk p8q

)
nPN

are tight since

the potential queue measures are independent of the matching policy. The argument to see that
(57) holds is identical to the argument in the proof of [30, Theorem 3.3, the paragraph surrounding
(6.15)] that shows the measure η̃� satis�es (6.15). Then (58) follows from (57), (49), (50) and the
de�nitions of ηD,� and ηS,�.

The tightness of
!
Q

D,n
j p8q

)
nPN

, j P J, follows by �rst observing that (2) implies

E
�
Q

D,n
j p8q

�
¤ E

�A
1, ηD,n

j p8q
E�

.

Hence, for each j P J,

sup
nPN

E
�
Q

D,n
j p8q

�
¤ sup

nPN

λD,n
j

nθj
  8,

by recalling from Assumption 9 that limnÑ8 λ
D,n
j {n � λDj . Further, by Markov's inequality, for

each j P J, we �nd that

lim
cÑ8

P
�
Q

D,n
j p8q ¡ c

	
¤ lim

cÑ8

E
�
Q

D,n
j p8q

�
c

¤ lim
cÑ8

λD,n
j

n

1

c
� 0,

which shows the desired result. The tightness of
!
Q

S,n
k p8q

)
nPN

, k P K, follows by the exact same

argument. Tightness of
!�

Q
D,n

p8q,Q
S,n
p8q,ηD,np8q,ηS,np8q

	)
nPN

now follows. Finally, (59)

follows from the dominated convergence theorem.

In what follows, d
� denotes equality in distribution and d

Ñ denotes convergence in distribution.
Also, for each n P N, let Mn denote the matching process given by (21) and (22) for the stationary
process Y n with initial condition Y np0q that has stationary initial distribution ςn.

Theorem 4. For each j P J and k P K, assume hDj and hSk are bounded functions. Suppose that
Assumptions 4 and 9 hold (which implies that Assumptions 6, 7 and 8 hold) and P-almost surely

lim
nÑ8

M
n
jk �M jk for each j P J and k P K, (60)

where for some m PM, M jkptq � mjkt for all t ¥ 0, j P J and k P K. Then, as nÑ8,�
Q

D,n
p8q,Q

S,n
p8q,ηD,np8q,ηS,np8q

	
d
Ñ

�
qD,�pmq, qS,�pmq,ηD,�,ηS,�

�
P Iλ.
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Proof. We begin by verifying that the conditions in Theorem 3 hold along subsequences of!�
Q

D,n
,Q

S,n
,ηD,n,ηS,n

	)
nPN

such that the sequence of initial conditions is convergent. For this,

recall that Assumption 9 is su�cient to ensure that Assumption 1 and Part 1 of Assumption 5 are
satis�ed. In addition, by (60), Part 3 of Assumption 5 holds, which implies that Assumption 2 holds
as well. Also, for each n P N,�

Q
D,n

p0q,Q
S,n
p0q,ηD,np0q,ηS,np0q

	
d
�

�
Q

D,n
p8q,Q

S,n
p8q,ηD,np8q,ηS,np8q

	
. (61)

Hence, by (61) and Lemma 10, there exists a strictly increasing subsequence tnlulPN � N and�
Q

D
p8q,Q

S
p8q,ηD,�,ηS,�

	
P Y such that

�
Q

D,nlp0q,Q
S,nlp0q,ηD,nlp0q,ηS,nlp0q

	
d
Ñ

�
Q

D
p8q,Q

S
p8q,ηD,�,ηS,�

	
, as lÑ8. (62)

Without loss of generality, we may assume that this convergence is P-almost sure. Then, also by (61)

and Lemma 10,
!�

Q
D,nlp0q,Q

S,nlp0q,ηD,nlp0q,ηS,nlp0q
	)

lPN
satis�es Assumption 3 and

�
ηD,�,ηS,�

�
satis�es Part 2 of Assumption 5. In summary, Assumption 5 holds. Thus, when considering that
Assumption 4 holds by the statement of Theorem 4, Theorem 3 implies that

pQ
D,nl ,Q

S,nl ,ηD,nl ,ηS,nlq
d
Ñ pQ

D
,Q

S
,ηD,ηSq, as lÑ8,

where the limit point
�
Q

D
,Q

S
,ηD,ηS

	
is P-almost surely a �uid model solution for (A

D
, A

S
)

such that
pQ

D
p0q,Q

S
p0q,ηDp0q,ηSp0qq

d
�

�
Q

D
p8q,Q

S
p8q,ηD,�,ηS,�

	
. (63)

Moreover, due to (60), the matching function M satis�es Mptq � mt with m P M for each t ¥ 0,
P-almost surely. Then, by Proposition 3, P-almost surely,

lim
tÑ8

pQ
D
ptq,Q

S
ptq,ηDptq,ηSptqq � pqD,�pmq, qS,�pmq,ηD,�,ηS,�q. (64)

However, by stationarity, for each t ¥ 0,

pQ
D
ptq,Q

S
ptq,ηDptq,ηSptqq

d
�

�
Q

D
p8q,Q

S
p8q,ηD,�,ηS,�

	
. (65)

Thus, combining (64) and (65) we see that�
Q

D
p8q,Q

S
p8q,ηD,�,ηS,�

	
d
� pqD,�pmq, qS,�pmq,ηD,�,ηS,�q.

Combining this with (61) and (62), we see that�
Q

D,nlp8q,Q
S,nlp8q,ηD,nlp8q,ηS,nlp8q

	
d
Ñ pqD,�pmq, qS,�pmq,ηD,�,ηS,�q, as lÑ8.

Since
!�

Q
D,n

p8q,Q
S,n
p8q,ηD,np8q,ηS,np8q

	)
nPN

is tight, the proof is complete.
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