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ABSTRACT

We consider a single server queue with renewal arrivals and
i.i.d. service times, in which the server employs the Shortest
Remaining Processing Time (SRPT) policy. We provide a
fluid model (or formal law of large numbers approximation)
for this system. The foremost payoff of our fluid model is a
fluid level approximation for the state-dependent response
time of a job of arbitrary size, that is, the amount of time
it spends in the system, given an arbitrary system configu-
ration at the time of its arrival.

1. INTRODUCTION

Interest in the SRPT policy stretches back to the first op-
timality result due to Schrage [4], who showed that SRPT
minimizes the number of jobs in the system at any point
in time. Expressions for the mean response time for a sin-
gle server M/G/1/SRPT queue were earlier developed by
Schrage and Miller [5]. This expression depends on the en-
tire service time distribution through nested integrals and
thus is somewhat difficult to work with, particularly if one
wishes to make comparisons with other policies. Recently,
there has been renewed interest in the SRPT policy. To
cite but one work, Bansal and Harchol-Balter [1] are inter-
ested in the issue of fairness for SRPT. There has also been
a recent body of work on the tail behavior of single server
queues under SRPT; see for example Nuyens et al. [3]. They
discuss the advisability of implementing SRPT using large
deviations techniques. In particular, they show that SRPT
is effective in the heavy-tailed service time setting, but may
not be effective in the light-tailed service time setting.
In this paper, we discuss fluid limits (functional law of

large numbers approximations) for single server SRPT queues,
as well as implications for analyzing state-dependent re-
sponse times. That is, we obtain from our fluid model a
fluid level approximation of the amount of time a job of a
given size spends in the system, given an arbitrary system
configuration at the time of its arrival. This paper is an
extended abstract of results in [2]. In [2], a more thorough
introduction is provided, as well as all proofs and a detailed
analysis of the fluid model behavior. There is also a rigorous
justification of the fluid model as an approximation to the
underlying stochastic model. Here we briefly summarize the
stochastic and fluid models and develop some examples that
highlight the implications of the results in [2].

2. STOCHASTIC MODEL

Consider a single server queue operating under the SRPT

scheduling policy. The SRPT scheduling policy gives pre-
emptive priority to the job in the system with the shortest
remaining processing time. Note that to implement this pol-
icy, it is assumed that the service times of jobs are known
upon arrival. We assume that the arrival process is a delayed
renewal process, with rate α. Service times are independent
and identically distributed, with distribution ν. We assume
that ν is continuous with unbounded support and has mean
1/α. In particular, we are assuming that the queue is criti-
cally loaded. In [2], we significantly relax these conditions,
namely we examine queues with arbitrary loads, as well as
allowing for ν to have atoms and bounded support.

3. FLUID MODEL

Let M denote the set of finite nonnegative Borel measures
on R+. For ξ ∈ M and a Borel measurable function g on R+,
we define 〈g, ξ〉 = ∫

R+
g(x)ξ(dx), when the integral exists.

Also, let χ(x) = x, for x ∈ R+. Given a measure-valued
function ζ of time taking values in M, for t ≥ 0 let

l(t) = sup{x ∈ R+ : 〈1[0,x), ζ(t)〉 = 0},
which is the infimum of the support of ζ(t). We refer to l(·)
as the left edge of the measure-valued function ζ(·).
We now define our fluid model. To do so, we need the

fluid analog, ξ, of the initial condition. Note that the initial
condition must contain the remaining service time for each
job initially in the system. The fluid analog ξ is a an element
ofM that describes the initial mass associated with jobs that
have a particular remaining service time. Here for simplicity
we assume that ξ is absolutely continuous with respect to
Lebesgue measure and also that 〈χ, ξ〉 < ∞.

Definition 3.1. A measure-valued function ζ is a critical
fluid model solution if each of the following hold:

(C1) ζ(·) is right continuous;

(C2) for all t ∈ [0,∞), 〈χ, ζ(t)〉 = 〈χ, ξ〉;
(C3) for all t ∈ [0,∞) and for all continuous, nonnegative,

bounded, real functions g, 〈g, ζ(t)〉 = 〈g1[l(t),∞), ξ +
αtν〉.

Condition (C1) reflects the right continuous nature of the
the state descriptor for the stochastic model. Condition
(C2) reflects the work conserving nature of SRPT. Condition
(C3) is specific to SRPT. It implies that, for each t ∈ [0,∞),
ζ(t) has no support below l(t) and agrees with the measure
ξ + αtν at and above l(t). If we intuitively regard the fluid
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model as a deterministic system that receives αt units of
mass during each time interval (0, t] which, as it arrives, is
instantaneously distributed over R+ according to the distri-
bution ν, and is processed according to the SRPT discipline,
then (C3) can be interpreted as follows. Mass arriving be-
low level l(t) at time t is instantaneously flushed out of the
system, while mass arriving above l(t) by time t receives no
processing by time t. Hence, the mass that is at l(t) at time
t is being processed at time t. This reflects the fact that in
an SRPT queue, jobs with the shortest remaining processing
time are served first.
For x ∈ R+, let

s(x) =
〈χ1[0,x], ξ〉

1− α〈χ1[0,x], ν〉 ,

and let s−1
r (·) be the right continuous inverse of s(·). The

following result characterizes the left edge dynamics of fluid
model solutions.

Theorem 3.2. If ζ is a fluid model solution, then l(t) =
s−1

r (t) for all t ∈ [0,∞).

In light of Theorem 3.2, s(x) can be viewed as the fluid
analog of the waiting time for a job of size x that is in the
system at time 0. Furthermore, since service times become
negligible on fluid scale, the fluid analog of the waiting time
is synonymous with the fluid analog of the response time.
Therefore, s(·) can also be viewed as the fluid analog of the
response time.

4. EXAMPLES AND DISCUSSION

Example 4.1. Suppose that ν is an exponential distribu-
tion with rate α. Then, for x ∈ R+,

s(x) = 〈χ1[0,x], ξ〉 eαx

αx+ 1
.

Example 4.2. Suppose that ν has Pareto density f(x) =

(k + 1)bk+1x−(k+2) for x ≥ b, where b, k > 0 are such that
k/(k + 1)b = α. Then, for x ≥ b,

s(x) = 〈χ1[0,x], ξ〉
(x

b

)k

.

Example 4.3. Suppose that ν has Weibull density f(x) =

aλaxa−1e−(λx)a

for x ≥ 0, where λ, a > 0 are such that
λ/Γ(1 + 1

a
) = α. Then, for x ∈ R+,

s(x) = 〈χ1[0,x], ξ〉
Γ(1 + 1

a
)

λ
e(λx)a

.

Finally, we give an example where s(x) cannot be given
explicitly, but must be numerically computed.

Example 4.4. Suppose that ν has lognormal density f(x) =

(1/
√
2πσx)e−(ln(x)−µ)2/(2σ2) for x ≥ 0, where µ, σ > 0 are

such that e−(µ+σ2/2) = α. Then for x ∈ R+,

s(x) =
〈χ1[0,x], ξ〉

1− e−(µ+σ2/2)
∫ x

0
1√
2πσ

e−(ln(u)−µ)2/(2σ2)du
.

Note that when the service time distributions have an ex-
ponentially decaying tail, the behavior, as demonstrated by
the approximate response time, s(x), is quite different from
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Figure 1: s(x) for exponential and Pareto distribu-

tions

the case when the service time distributions have subexpo-
nential tails. In the first case, we see that s(x) grows expo-
nentially in the job size, x, while for the Pareto distribution
the growth is polynomial. This is consistent with the obser-
vation in Nuyens et al. [3] that SRPT (as a member of the
class of policies they call SMART policies) may exhibit poor
performance for large jobs in a light tailed service setting,
while it performs much better for large jobs in the heavy
tailed setting. Suppose that we let α = 1 and take for the
initial measure ξ = ν. For the Pareto distribution, set k = 1
and b = 1/2. The fact that large jobs are not treated well
under the exponential distribution is shown clearly in Fig-
ure 1. For the Pareto distribution, the fluid analog of the
response time is proportional to the job size.
Given an initial job distribution, it can be seen from the

examples that it is easy to calculate a fluid model that de-
scribes the dynamics of the system for all job sizes. In other
words, conditional on the initial job distribution, we pro-
vide detailed dynamics. As such, our work can be seen as a
complement to much of the existing work on SRPT, which
is concerned with steady-state behavior or tail asymptotics
of the waiting time distribution.
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