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2 INDEPENDENT AND DEPENDENT PERCOLATION

Preface

Percolation is a simple and wonderful model. It is easy to define and yet it
exhibits a variety of fascinating phenomena. It is therefore a source of many deep
and beautiful mathematical questions.

Independent percolation is the simplest model to undergo a phase transition.
Moreover, it has wide application as a model of a random medium. Since its in-
troduction in 1957, independent percolation has been used to describe problems
ranging from the distrbution of oil in a porous medium to the distribution of mat-
ter in the galaxy. Certain dependent versions of the percolation model, namely
the integer random cluster models, are equivalent to some of the basic models of
equilibrium statistical mechanics, namely the Ising and Potts magnets.

In the past fifteen years, there has been tremendous progress in the mathematical
study of percolation: Stochastic geometric methods have been developed to estab-
lish many of the properties of the phase transitions in independent and dependent
percolation. These notes review many of these developments.

These notes are based on lectures delivered by one of us (J.T.C.) at the Institute
for Advanced Study/Park City Mathematics Institute during the summer of 1996.
The first four chapters of the notes draw heavily on lectures given by J.T.C. at
the Institute for Mathematics and its Applications Summer School at Ohio State
during the summer of 1993, and the first two chapters of these in turn draw on
lectures given by J.T.C. and L. Chayes at the Les Houches Summer School in 1984.
Much of chapters 5 and 7 of these notes is based (in parts, almost verbatim) on
papers of Borgs, Chayes Kesten and Spencer [BCKS] and Borgs and Chayes [BC],
respectively. Finally, chapter 6 is based on our understanding of a preliminary
manuscript of Reimer; much of the proof in this form was presented by J.T.C. in
the Kac Seminars in Utrecht in the summer of 1995.

The contributions of C. Borgs deserve special mention. First, many parts of these
notes were based on collaborative efforts between J. T.C. and C. Borgs. In addition,
many of the new proofs presented here were derived in collaboration with him. We
are indebted to him for these and numerous other contributions.
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CHAPTER 1

THE BASICS OF PERCOLATION

We begin these notes with an overview of the percolation model and the tools
we will use in our study.

1.1 Relevant Quantities and Expected Behavior

1.1.1 The Model.

The percolation model was introduced in 1957 by Broadbent and Hammersley
[BH] to describe the distribution of fluid in a porous medium. There are two basic
versions of the model: site or bond percolation, in which the random variables
live on either the sites or the bonds of a lattice. In these notes, we will usually
discuss bond percolation, although essentially everything we will derive holds for
site percolation as well.

Let L4 denote a regular d-dimensional site lattice, such as the hypercubic lattice
74 Let By be the set of bonds between the nearest neighbors of L;. Then 2 =
{0,1}B = [Tycp, {0, 1} can be regarded as the set of configurations of lattice bonds.
Given a configuration w € {2 and a bond b, b is said to be open or occupied if wy = 1.
Conversely, b is said to be closed or vacant if wy = 0. In the basic version of bond
percolation, each bond is open independently of the others with some probability
p. Specifically, given 0 < p < 1, u; is a measure on {0,1} with u;(1) = p and
ps(0) = 1 — p. The probability measure P, for bond percolation is the Bernoulli
product measure:

Py=I] m (1.1)

beB,

Let F be the o-field of subsets of €} generated by the finite-dimensional cylinder
sets. That is, F is generated by sets of the form {w : w = w' on B}, where ' € Q
is a configuration and B is a finite subset of B;. The probability space of bond
percolation is therefore (Q,F, P,).

There are several obvious ways in which to generalize the above percolation
model. First, B; need not consist solely of bonds between nearest neighbors; it may
include bonds of finite or even infinite range. Second, the probability of a bond
being occupied need not be constant over all bonds. That is, p may be a function
of b so that ps(1) = pp. This occurs in random systems and also in uniform systems
when By includes bonds of infinite range. Finally, the site lattice L4, and hence
the resulting bond lattice By, need not be regular. For example, Ly could be a
Poisson distribution of points, in which case the resulting bond lattice is a so-called
Vornoi tesselation. We could vary the model even further by doing away with
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the lattice entirely: the continuum percolation model may be defined on a Poisson
distribution of disks or (hyper)spheres. All of these are still independent percolation
models (independent because the p;’s are independently distributed), and most of
the results we will discuss hold for these models as well. However, in our discussion,
we will usually focus on the nearest-neighbor hypercubic bond lattice with uniform
occupation probability p.

If, on the other hand, we modify the model so that (1.1) is no longer a product
measure—i.e. if the p;’s are no longer independently distributed—then the behavior
of the model changes in a fundamental and usually uncontrollable way. However, in
special cases, we are still able to make some rigorous statements. One special case,
that of the random cluster measure, is the subject of Chapter 7.

FIGURE 1.1. A realization of independent bond percolation on the square lattice.

1.1.2 The Percolation Phase Transition.
A configuration w € 2 will be identified with the subset of By which is occupied
n w:

S(w)={beB; :wp =1}.

S(w) consists of disjoint connected components of occupied bonds. We concern
ourselves with the typical connectivity properties of S(w). For each x € Lyg, let
C(x) = C(x;w) be the set of sites connected to & through occupied bonds. The first
question to ask is whether a connected cluster is typically infinite.

Let |C(x)| denote the number of sites in C(x). Let @ < y, read as  is connected
to y, be the event that C(x) = C(y). Let @ < oo, read as x is in an infinite cluster,
be the event that |C(x)| = oco. The quantity

P (p) = Pp(0 < o)

is called the percolation probability or infinite cluster density. If Po(p) > 0 (resp.
P.(p) = 0), then we say that percolation does (resp. does not) occur. It is not
difficult to see that if percolation exists for p, then percolation also exists for any
p' > p. So there is a critical threshold which separates the regions where percolation
does and does not occur. We say there is a phase transition. It is signalled by the
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nonanalyticity in P (p), the so-called order parameter of the phase transition. We
denote that critical probability or percolation threshold by p.:

pe = inf{p: P(p) > 0}.

We often call the region with p < p. the subcritical regime or low-density phase,
and the region with p > p. the supercritical regime or high-density phase.

REMARKS. (i) If the origin has zero probability of being in an infinite cluster
(that is, if Po(p) = 0), then there are no infinite clusters anywhere on the lattice
with probability 1. Indeed, if P.(p) = 0, then

Py(3x € La, [C(2)l = 00) £ Y Py([C(x)| = o0)

= Z P (p)

€Ly
= 07

where the second step follows from translation invariance.

(ii) If the origin has positive probability of being in an infinite cluster, then there
is an infinite cluster somewhere on the lattice with probability 1. This is due to
Kolmogorov’s 0-1 law and the fact that {3z € Ly, |C(x)| = oo} is a tail event. The
tail o-field, Fo., is defined as one would expect:

Fw:ﬂU(H /“Lb)v

B b¢B

where the intersection runs over all finite subsets of By and where o(v) is the o-field
associated with v.

(iii) If Po(p) > 0, then there is exactly one infinite cluster—provided that the
model obeys certain weak conditions to be discussed in more detail in Chapter 4.
Unlike the previous two remarks, this is not at all obvious. Indeed, the proof of
uniqueness of the infinite cluster is one of the major achievements of percolation
theory. In 1981, Newman and Schulman [NS1] proved that with probability one, the
number of infinite clusters is either zero, one, or infinity. Then, in 1987, Aizenman,
Kesten, and Newman [AKN] showed that the infinite cluster must be unique. In
1989, Burton and Keane [BuK] gave a far easier and more general proof of this
uniqueness. We will review the Newman and Schulman and Burton and Keane
proofs in Chapter 4.

(iv) The percolation threshold is decreasing in dimension. If there is percolation
on the lattice By C By, then obviously there is percolation on Byyq. We sometimes
write p.(d) to indicate the explicit dimensional dependence.

(v) For finite-range models in one dimension, the phase transition occurs at the
trivial value: p.(1) = 1. This is easy to see, since any density of vacant bonds will
disconnect a one-dimensional lattice.

Having made Remark (v), one might wonder if the phase transition occurs at
a nontrivial point in any dimension. Indeed it does, as we show below using self-
avoiding walk bounds and a Peierls’ argument.
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THEOREM 1.1. If d > 2,0 < p.(d) < 1.

PROOF OF 0 < pc(d). Here, we will find a p’ > 0 such that P (p) = 0 for all
p < p'. To this end, we consider lattice self-avoiding walks (SAW’s). Let o(n) be
the number of SAW’s on L, starting at 0 of length n. Let N(n) be the random
number of such paths that are occupied. Obviously, the probability of such a path
being occupied is p™. Hence,

But, if the origin is part of an infinite cluster, then there must be an occupied SAW
of any length emanating from it. Hence, for any n,

Peo(p) = P(|C(0)] = o0)
< Py(N(n) 2 1)
< Ep(N(n))
=p"o(n). (1.2)

It suffices to give a crude bound on o(n). Let ¢(d) denote the coordination
number, i.e. the number of bonds incident to a site. (For example, ¢(d) = 2d on
Z%.) Now consider constructing a SAW of length n. First we must choose a bond
from the origin; there are ¢(d) such choices. Then there are only ¢(d)—1 choices for
the next bond, since we cannot re-use the previous one. Continuing in this manner,
we obtain the bound

o(n) < e(d) (c(d) = 1)" 7,

which in turn gives us a bound on the percolation probability:

Poc(p) < pe(d) lim [p(e(d) —1)]" 7.

n—oo

Thus if p < (¢(d) —1)71, then P(p) =0. O

REMARK. Although the above bound suffices to prove the theorem, it is worth
noting that it is easy to derive a better lower bound on p. than (¢(d) — 1)~!. This
follows from the subadditive estimate

o(m+n) < o(m)o(n).

The right hand side above is the number of paths created by “pasting” a SAW of size
n to the end of the SAW of size m, which produces, among other things, all SAW’s
of size m 4+ n. By taking logarithms and using a standard subadditivity argument,
we have that the limit of log(o(n))/n exists. (See the proof of Proposition 2.6 for
an explicit subadditivity argument.) Thus we may define the connectivity constant
of the lattice:

A=Ad)= lim {/o(n). (1.3)

n—oo
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Using this and (1.2), it follows that Py (p) = 0if p < A(d)™'. That is, A\(d)™! < p..

Note, however, that even this bound is still far short of being sharp.

In order to prove p.(d) < 1, we must first discuss the notion of duality. We begin
with d = 2. Every planar graph G has a planar dual G* defined as follows:

(1) the vertices of G* are the centers of the faces of G, and
(2) the bonds of G* are lines between those vertices of G whose corresponding
faces in G have a common edge in their boundaries.

Notice that each bond b* € G* intersects exactly one bond b € G, which we will
refer to as the dual bond of b*. We can construct the dual percolation model by
declaring that b* is occupied whenever b is vacant and vice versa. Notice the follow-
ing geometric fact: Every (occupied) finite connected cluster C' C G is surrounded
by a (occupied) dual circuit ¥ C G*. For a concrete example, consider Z?, which is

self-dual: (Zz)* =(Z+ %)2
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FIGURE 1.2. Independent bond percolation on Z?* with density p is dual to bond
percolation on (Z + %)2 with density 1 — p. Note that C(x) is finite if and only if x
is contained in the interior of a dual circuit.

The notion of duality is also useful in higher dimensions. There, bonds are dual
to (d — 1)-cells, and each finite bond cluster on G is surrounded by a dual (d — 1)-
dimensional closed hypersurface.

Using the notion of duality, it is now easy to prove the second half of Theorem 1.1.

PROOF OF pc(d) < 1. Since p.(d+1) < p.(d), it suffices to show that p.(2) < 1.
So, for d = 2, we must find a p’ < 1 such that Py (p) > 0 for p > p'. We will use a
technique known as a Peierls’ estimate. Let p(n) be the number of closed circuits
on the dual lattice B} of length n that enclose 0. Given a dual circuit +, let A, be
the event that v is occupied. Recall that a dual circuit in B} is occupied if every
bond in B, that intersects the circuit is vacant. Thus P(A,) = (1 — p)", where n is
the length of ~.

If the origin is not in an infinite cluster, then there must be an occupied dual
circuit v surrounding the origin and conversely. Hence, denoting by Int(+y) the set
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of points in the original lattice surrounded by the dual circuit ~, we have

1~ Pa(p) = Pp(0 5 o0)
= Pp( U Av)

Int(~)30

< > P4y

Int(~)30

=Y p(n)(1=p)".

To bound p(n), consider creating a dual closed circuit of length n surrounding
0. Begin the circuit on a point of the form (£*,0*) with 0 < k < n. (This can
always be done since the circuit must cross such a point if it is to surround 0 and
have length n). Obviously, there are n choices for our starting point. Then, the
next n — 1 steps that we take must form a SAW. Of course, this does not guarantee
that we will end up with a circuit, but it does give us an upper bound on p(n):
p(n) <no(n—1). We have

1—Pu(p) <Y no(n—1)(1—p)". (1.4)

Recalling (1.3), the sum in (1.4) must converge for p > 1 — A(2)~!, and hence must
be strictly less than 1 for p still larger. Hence, Poo(p) > 0 for p sufficiently close to
1. Od

REMARK. Although it seems that the above proof requires that the sum in (1.4)
be strictly less than 1, convergence of the sum is actually sufficient to establish
Po(p) > 0. Indeed, if the sum converges, then it follows that, for some ny,

Z no(n—1)(1—p)" <6 < 1.

n>ng

Hence, with probability greater than 1 — ¢, there are no occupied dual circuits sur-
rounding 0 of length greater than ny. But if all bonds inside all such circuits were
occupied (which costs no more than clp”"g), then with overwhelming conditional
probability, the origin would be connected to infinity. If the absence of certain occu-
pied dual circuits and the presence of certain occupied bonds were always positively
correlated, then we could conclude that

Poo(p) > (1 — 8)é1p™"0 > 0.

That this positive correlation is true follows from the FKG inequality, which will
be introduced later in this chapter. Thus p.(2) < 1 — A(2)7".
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1.1.3 Quantities of Interest.

In this subsection, we briefly introduce some of the fundamental quantities in
percolation theory. We have already seen P (p), the percolation probability. It is
also referred to as the order parameter, since it becomes nonzero at the point at
which long-range order appears. Po(p) is analogous to the magnetization in spin
models, as will be discussed in some detail in Chapter 7.

A number of other quantities of interest are defined in terms of moments of the
cluster size distribution. The expected cluster size is

x(p) = E,(IC0)])- (1.5)

It is analogous to the susceptibility in spin models. Notice that

X(p) =Y nPy(|C] =n)+ o0 Pu(p)

n=1

so that x(p) = oo if Pxo(p) > 0. Using a Peierls’ argument, it is easy to show that
X(p) < oo for sufficiently small p. Thus, just as P (p) is used to define the critical
value pc, x(p) gives us another critical value:

e = inf{p: x(p) = oo}. (1.6)

One of the fundamental results of percolation theory is that 7. = p. on most
lattices of interest. In 1980, Kesten [K1] proved the result for the square bond
lattice in d = 2. Then, in 1986-7, Menshikov, Molchanov, and Sidorenko [MMS]
and Aizenman and Barsky [AB] independently proved the result for translation
invariant lattices in general dimension. That translation invariance is a necessary
condition had been shown earlier by Chayes and Chayes [CC2] who constructed a
counterexample on a wedge which opened logarithmically slowly. (See Section 4.1
for a sketch of the Aizenman and Barsky proof and Section 7.5 for a more detailed
discussion of the Chayes and Chayes wedges.)

v=alnx
S

—

//

A

il

FIGURE 1.3. 7. < p. for bond percolation on logarithmically opening subsets of
the square lattice provided that the constant a is sufficiently small.

We will also have occasion to consider the expected size of finite clusters. Let

Pa(p) = Pp(IC(0)] = n) (L.7)
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and
Psu(p) = Pp(|C(0)] = n). (1.8)

It is known that, in the subcritical regime (i.e. when p < p.),
Po(p) ~ e—(p)n

where f(n) ~ e~ means ¢ = —lim, . g(n) " log f(n). In the supercritical
regime,
Palp) ~ e

which follows from the results of [CCN2], [KZ] and [ADS]. The form of the constant
B(p) for two-dimensional percolation was determined in [ACC], where it was shown
that this constant is related to the shape of large clusters (the so-called Wulff
construction for percolation). The asymptotic behavior of P,(p) implies that the
mean size of finite clusters is finite for p # p.:

XM (p) = Ey([C(0)], [C(0)] < 00) < oo (1.9)

A final quantity related to the cluster size distribution is the number of clusters
per vertex:

k(p) = E,(IC(0)[ ). (1.10)

Although 0 < k < 1 for all p, derivatives of x(p) diverge at p.; one of these deriva-
tives is analogous to the specific heat in spin models.

Next we consider the connectivity function, which is the analogue of the two-point
correlation function in spin models. For @,y € Ly, we define 7(x,y; p) by

T(z,y;p) = Ppy(x < y).

As we will see later (in Proposition 2.6), for « and y along a coordinate axis, 7(x, y; p)
decays exponentially in |z — y:

(2, y; p) ~ e~ 1ETII/E@) (1.11)

with £(p) < oo whenever p < p.. In the supercritical regime, 7(x,y;p) is not as
interesting since £(p) = oo:

T(x,y;p) 2 Pp(|C(x)] = o0, [C(y)| = o0)
> Pp(|C(x)] = 00)Py([C(y)| = o)

= P2 (p),

where the first step uses uniqueness of the infinite cluster and the second uses the
FKG inequality (which we will discuss later in this chapter). In this regime, we
instead consider two versions of the truncated connectivity function and note their
asymptotic behaviors:

7_tlrun(

x,y;p) = (2, y;p) — PL(p)
~ o~ le=ul/E (p)
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Tﬁn(:zj,y;p) = Py(z < y +» o0) (1.12)

~ e~ le=yl/EM (p)

While these functions are not the same, their asymptotic behaviors are the same;
specifically £irun(p) = &an(p) < oo for p # p. [CCGKS]. The decay rates {p),
Erun(p) and Ean(p) < oo are called correlation lengths. They are fundamental
quantities which will be considered in some detail in later chapters.

1.1.4 Scaling Theory.

Although the functional dependence of the quantities introduced above depends
on details of the model (e.g. the lattice structure), it is widely believed that in the
neighborhood of the critical point, the functions are independent of these details
and depend only on the spatial dimension—and, of course, the fact that this is
percolation (rather than some other model, such as the Ising magnet). This ro-
bustness is thought to be a general feature of statistical mechanical models with
second-order phase transitions. It is known as universality. The univerality class
of a model is presumably determined only by general symmetry properties and the
spatial dimension. Models in the same universality class are supposed to have the
same critical behavior as characterized by the so-called critical exponents. These
exponents describe the purported power law behavior of the relevant quantities
either approaching or at the critical point.

The approach exponents «, 3.~ and v are defined by

K" (p) ~ [p—p| 717 as p\, P (1.13)
Po(p) % |p = pel” as p N\ pe (1.14)
X(p) = p—pe| ™" as p /" pe (1.15)
&p) = |p—pe|™" asp /" pe. (1.16)

P.(p) Uip) [(p)

/ /

e

FIGURE 1.4. The expected behaviors of P, v, and ¢ near p..

One can also define analogues of the exponents v and v for approach from above
Pc:

X" (p) ~ p = pe| ™ as p\, pe (1.17)
&™p)~ lp—pe ™ as p\, pe - (1.18)
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It widely believed that v/ = v and v/ = v; both have been proven in two dimensions,
the first in [K4] and the second in [CCGKS].
The exponents 6 and n are defined by behaviors at p,:

Psn(pe) mn=t/? (1.19)

and

1
T(z,y;pe) & o = gd—2+n (1.20)

What i1s and what is not known rigorously? The first question is whether the
system actually has a second-order transition. The defining characteristic is di-
vergence of the correlation length: &(p) / oo as p ,/ p., which is known in all
dimensions (see [CC1] and use the fact that 7. = p.). It is usually the case that
the order parameter, P, (p) is also continuous, i.e. we expect lim,\_,, Poo(p) = 0.
This is known to be true for the nearest-neighbor model in d = 2 [R2], and widely
expected—though not known—for finite-range models in higher dimensions. Note,
however, that there is a long-range model which has lim,\ ;. P~ (p) > 0 [ACCN2],
although lim, ~,. {(p) = oo [IN].

What about the existence of critical exponents such as

1Og Poo(p) ?

lim
e log |p — pel
Here we must distinguish what is known in low and high dimension. Most models
are expected to have an upper critical dimension, d., beyond which the exponents do
not change, but instead assume the values they would have in a so-called mean-field
model (e.g. on the Cayley tree). The upper critical dimension is thought to be d. = 6
for percolation. Hara and Slade [HS] proved both the existence of critical exponents
and the fact that the exponents assume their mean-field values for percolation in
sufficiently high dimension. Existence of critical exponents in low dimension is one
of the major open problems in percolation theory.
Finally, scaling theory established relations among many of the relevant quanti-
ties and therefore among their exponents. Some of the expected scaling relations
are

a+20+v=2,
v=v(2-n)
and
plé—1)=7.
There are also relations involving exponents and the dimension d such as

dv =2 — a.

Relations involving the dimension are known as hyperscaling relations; they are
expected to hold whenever d < d.. Kesten [K4] has proved many of the relations
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among relevant quantities (basically all those not involving ) in d = 2; assuming
the existence of the critical exponents, his results imply many of the scaling relations
ind=2.

We will return to critical exponents and scaling relations in Chapters 3 and 5. In
Chapter 3, we will prove several inequalities on critical exponents (assuming they
exist), including a hyperscaling inequality on v and so-called mean-field inequalities
for # and v, proving that they are always bounded by their mean-field values. In
Chapter 5, we will discuss recent results on the critical regime of two-dimensional
percolation which rely on the scaling relations of Kesten [K4] and other newly
derived scaling relations.

1.2 Basic Techniques

The basic technique of most rigorous work in percolation is the use of correlation
inequalities relating, for example, the probability of the intersection of events to
the probabilities of the individual events. The simplest correlation inequality is an
equality: the factoring of the probabilities of independent events. The two stan-
dard nontrivial correlation inequalities of percolation are the Harris-FKG (Fortuin-
Kasteleyn-Ginibre) and BK (van den Berg-Kesten) inequalities. These are discussed
below, although we postpone a proof of the BK inequality until Chapter 6. In
Chapter 7, we discuss also the BC (Borgs-Chayes) decoupling inequalities, which
are variants of the FKG inequality that can sometimes substitute for independence
and the BK inequality in dependent models.

1.2.1 (FKG) Increasing and Decreasing Events.
There is a natural partial order on the set Q. Letting w,w’ € ., we say that
w = wif

wp ng Vb € By.

DEFINITION: We say that the function (r.v.) f:Q — R is an (FKG) increasing
function if it is nondecreasing with respect to this partial order:

flw) > f(W") Yw = '

We say that the event A € F is an increasing event if its indicator function is
nondecreasing. Finally, a function ¢ (resp. an event B) is decreasing if —g (resp.
2\ B) is increasing,.

Informally, increasing events and functions are those that are “helped by the
addition of bonds”. More formally, we have the following result:

PROPOSITION 1.2. Let f be an increasing function and let A be an increasing
event. Then, for p; < pa,

Ep,(f) < Ep,(f)

and

PP1(A) S PP2(A)'
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This result is easy to prove and we shall do so shortly. But first we pause to list
a few examples of increasing events:

{IC(0)] = o0} = {0 = oo},

{z €Cy)} = {z <y},
{1C(0)| = n},

{L\/\/\ } .
nL
The last example is the event that there is a long-way crossing by occupied bonds
between oppposite faces of an nL x L rectangle. This “rectangle crossing” event
will come up in the next chapter. In addition to the above examples, we wish to
add a single “non-example”: Notice that

{Ic(0) = n}

is neither increasing nor decreasing; instead, it is the intersection of increasing and

and

decreasing events.
Now, we return to the proposition above. In the proof, we will use the notation
w(b) rather than wy.

~ Proor or PROPOSITION 1.2. We define Q =1[0,1]% and define the probability
P on () to be the product of Lebesgue measures; this probability picks uniformly
from [0, 1] for each bond independently. We now define random variables w,: 2 — :

anlt) =y ={ o 2

Considering the law of w, for 0 < p < 1, we see that P(w, € D) = P,(D). So,
we have obtained the bond percolation process on g for all densities on the same
probability space. That is, the processes have been coupled. This coupling easily
yieldsv for P1 Z P2,

wp1(@) t wp2(@)
for all @ € Q. So, for any increasing function f : Q@ — R,
Fwp, (@) = f(wp,(@)).
Hence,
By, (f) = E(f(wp,))
E(f(wp,))
EP2(f)‘

This is the desired result for functions. For an event A, use the result for the

Y

indicator function of A. O

REMARK. This coupling in the proof above was used already by Hammersley
[Ham?2] in the 1960’s to simultaneously generate percolation configurations at all
p € [0,1]. It was also used extensively by Chayes, Chayes and Newman [CCN1] in
their analysis of invasion percolation.
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1.2.2 Correlation Inequalities.
The FKG Inequality.

The most widely used correlation inequality is the FKG inequality which says
that increasing events are positively correlated. The percolation form of the FKG
inequality was proved already in 1960 by Harris [Har]. In 1972, it was formulated
and proved for a large class of measures by Fortuin, Kasteleyn and Ginibre [FKG].

THEOREM 1.3. (HARRIS-FKG INEQUALITY) If A, B are increasing events, then

P(AN B) = P,(A)P,(B).

REMARKS. (i) Obviously, the inequality is also true if A and B are both decreas-
ing. It reverses direction if one is increasing and the other is decreasing.
(ii) Any measure which satisfies this inequality is called an FKG measure.

PrOOF OF THEOREM 1.3. We will prove this only for events that depend on
the values of a finite number of bonds. The extension to events that depend on an
infinite number of bonds (such as {|C(0)| = oo}) is straightfoward. (See for example
[Grim2].) In this proof, we will write E and P for E, and P,.

It suffices to prove that, if f and ¢ are increasing functions depending on a finite
number of bonds, then

E(fg) > E(f)E(g). (1.21)

(1.21) can then be applied to the indicator functions of A and B. The proof of
(1.21) is via induction on the number, n, of bonds on which f and ¢ depend.

First, suppose n = 1; that is, suppose f and ¢ depend only on the value of w at
a single bond b. So, we think of f and ¢ as functions on {0,1}. Let w,v € {0,1}.
Then

(f(w) = f(v))g(w) = g(v)) 20

since the increasing nature of f and ¢ implies that both factors above are of the
same sign. We have

w,ve{0,1}

=2[E(fg) — E(f)E(9)].

So (1.21) is true when n = 1.

Now, suppose (1.21) is true for n = k and let f and ¢ be increasing functions
of the values on the k£ + 1 bonds b(1),... ,b(k 4+ 1). Let E now denote expectation
with respect to the values on those k + 1 bonds. Further, let

F = E(fle(b(1)),... ,w(b(k)))

and

G = B(glo(W(1).... ,w(b(k))).
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Notice that F' and G depend only on the first £ bond values.

We may evaluate the expectation E on the left hand side of (1.21) in two steps:
first taking the expectation with the bond values b(1), - -- b(k) fixed, and then taking
the expectation with respect to pp(1), ... , tp(x). Since f and g are increasing in the

value of the bond b(k + 1),

E(fg) = E(E(fglw(b(1)),... ,w(b(k)))
> E(FG).

Now since F' and GG depend on only k& bond values, the induction hypothesis tells
us that

E(FG)> E(F)E(G)

E
E(f)E(g).
Hence E(fg) = E(f)E(g). O

The BK Inequality.

We now have an inequality that bounds the probability of the intersection of
the two events below by the product of their probabilities. Often, we need a com-
plementary inequality which says that the probability of something involving two
events 1s bounded above by the product of their probabilities. Obviously, such an
inequality cannot be true for the intersection of two events. It turns out that it is
true for the disjoint occurence of the two events, which we define below.

DEFINITION: The event A is said to occur on the set S in the configuration w
if if A occurs using only bonds in 5, independent of the values of the bonds in S°.
We denote the collection of all such w by A|s:

Als ={w : Vo, =won S =& € A}.

Two events Ay, Ay € Q are said to occur disjointly, denoted by A; o As, if there are
two disjoint sets on which they occur:

A0 Ay = {w : 451,95 C By, S1NS,y :Q), w € A1|51 ﬂA2|S2}.

EXAMPLE: Consider the events A = {# < y} and B = {u < v}. It may be
that both of these events occur, but on disjoint sets of bonds:

\/\/\—/y
= Ao B.
u/\/lv
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Alternatively, these two events may occur and may share some common set of bonds:

X y

C(ANB)\ (40B).

THEOREM 1.4. (BK INEQUALITY) For all A,B € F depending on a finite
number of bonds,

Py(Ao B) < P)(A)P,(B).

REMARKS. (i) If A is increasing and B is decreasing, then Ao B = AN B. Soin
this case the BK inequality reduces to the FKG inequality.

(ii) The condition that A and B depend on only a finite number of bonds can be
relaxed in essentially all examples of interest. See e.g. [Grim?2].

The BK inequality was first proved in 1985 by van den Berg and Kesten [BK] for
the case in which A and B are both increasing (or both decreasing) events. Then
van den Berg and Fiebig [BF] extended it to the case in which A and B are both
intersections of increasing and decreasing events. There was subsequently a great
deal of work attempting to expand the validity of the inequality to a larger class of
events. Finally, a general proof by Reimer [Re] in 1995 confirmed the belief that
the inequality holds for all events. This proof will be the subject of Chapter 6.
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CHAPTER 11

RESCALING AND FINITE-SIZE SCALING IN PERCOLATION

2.1 Rescaling and Characterization of Phases (d = 2)

In the last chapter, we saw that we could establish the existence of nontrivial
high- and low-density phases via Peierls’ and SAW arguments. But this only worked
when the bond densities were sufficiently large or small. The philosophy in rescaling
or real-space renormalization is that, when viewed on a large enough length scale,
any noncritical system acts as if it is in a regime of extremely high or low density,
often called a Peierls’ regime. In particular, except at the critical point, the large-
scale analogue of a bond or dual bond is very probable or very improbable.

What is the large scale analogue of a bond? Consider a two-dimensional rectangle
of height L and length nL. Say that a left-right crossing occurs if there is an open
path connecting the left side of the rectangle to the right side of the rectangle. Let
R, 1(p) be the probability that there is a left-right crossing of the rectangle at bond
density p. That is,

R, 1(p) =P, {L\/\/\ } :

nL
For simplicity, we write Ry ;, = Ry, since in the case n = 1, the rectangle is actually

a square of side length L.

In this subsection, we will show that, whenever p > p., R, r(p) tends to 1
exponentially in the scale L—i.e., it acts as if it is in a Peierls’ regime. We will then
use this to give a characterization of the high-density phase of two-dimensional
percolation. Then, in the next subsection, we will show how the dual of R, 1(p)
can be used to define an alternative to the conventional correlation length, £(p), in
the low-density phase of percolation in any dimension.

2.1.1 Two Lemmas.

We begin with two lemmas which allow us to rescale the bond variables. The
first, often known as the RSW lemma, allows us to get from a square of side L
to a 2L x L rectangle. It is a strictly two-dimensional lemma. The second, often
called the rescaling or ACCFR lemma, shows us how to change the basic scale L.
The ACCFR lemma is easily generalizable to higher dimensions, provided that we
consider not bonds, but dual (d — 1)-cells—see remark (iii) following the statement
of Lemma 2.3.

LEMMA 2.1.  (RUssO-SEYMOUR-WELSH [R1], [SeW]) Let d = 2. There is a
continuous, increasing function F : [0,1] — [0, 1] such that F(0) =0, F(1) =1 and

Ry 1(p) = F(RL(p)).
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REMARKS. (i) In simple terms, the RSW lemma says that if the probability of
crossing a square is sufficiently large, then the probability of crossing a 2L x L
rectangle—the hard way—is also reasonably large.

(ii) The proof of the RSW lemma is complicated to write down and very particular
to two dimensions. We will not go over it here. The reader is referred to [R1] or
Grimmett [Grim2] for a complete argument. However, there is an easy and useful
proposition which is used three times in the proof of the RSW lemma and which is
worth seeing. We note, however, that this proposition is not used in the remainder
of these notes.

PROPOSITION 2.2. (THE SQUARE ROOT PROPOSITION) Suppose A; and A,
are increasing events and P(A;) = P(Ay). Then

P(A1)>1—+/1—-P(4, UA,).

PROOF. (A1 U A2)° = A N AS. Hence,

1= P(4; U 4) = P(45 N 45)
> P(A5)P(45)
— (1 P(A4))).

where we have used the FKG inequality in the second step and the assumption

P(A;) = P(A;) in the final step. O

LEMMA 2.3. (A1zenmaN, CHAYES, CHAYES, FROHLICH, Russo [ACCFR])
Suppose d = 2. Let ¢ = % and A € (0,1). If

Ryp(p) 21— cA,

then
R2’2L(p) Z 1-— C/\2.

COROLLARY 2.4. If Ry 1(p) > 1 — ¢, then Ry 511 (p) > 1 — A",

REMARKS. (i) The corollary tells us that if the crossing probability is large
enough, then, looked at on larger length scales, it tends to the trivial high-density
fixed point (p = 1) exponentially fast.

(ii) How do we know whether the crossing probability is large enough to satisfy
the hypothesis of the ACCFR lemma? The hypothesis obviously is not satisfied
for p < p.. For p > p., we will show that liminf;_.. Rr(p) = 1. Then the
RSW lemma allows us to get from an L x L box to a 2L x L box to show that
liminf; .. Rz 1(p) = 1. Hence, we will be able to find an L to satisfy the ACCFR
lemma.

(iii) The analogous lemma holds if we replace Ry j by R, ; with any n > 2
provided cis chosen accordingly; that is, if Ry, ,(p) > 1—cA, then Ry, 21(p) > 1—cA?.
More interestingly, an analogous lemma also holds in higher dimensions (with a
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different value of ¢) for long-way crossings of (d — 1)-dimensional hypersurfaces.
Note, however, that the lemma does not hold for bond crossings in d > 2; this is
because the intersections required in the proof can be ensured only for objects of
codimension 1.

Proor oF LEMMA 2.3. We have

Ryp(p) > P, (L\”:@%f )

4L

> Rs.1.(p)’ Ri(p)?

> Ry 1(p)*

> (1—cA)?

> 1~ de), (2.1)

where the second inequality follows from the FKG inequality, the third comes from
the fact that any crossing of a 2L x L rectangle can be decomposed into two separate
crossing of disjoint L x L rectangles, and the fourth is the assumption of the lemma.

But

Ropr(p) > Py [ 2L 7777777777 or ZL\/- : (2.2)

4L 4L

so that, by independence of the two crossings above,

1= Rya1(p) <P [y 7

= (1= Ry1(p))*
(40/\)2
= c\?

IA

Y

where have used the estimate (2.1) in the second to last step, and the fact that
c= % in the final step. O

Notice that the key estimate in the proof above is the choice in (2.2) which leads
to the squaring of the probability.

2.1.2 Characterization of the High-Density Phase.
The following theorem shows that square crossings give a characterization of the
entire high-density phase of two-dimensional percolation.

THEOREM 2.5. Ind =2, p > p. if and only if liminf; .. Rr(p) = 1.

PROOF. Assume liminf; .. Rr(p) = 1. Then, by RSW, there exists an Ly such

that
c

Rory(p) 21— - (2.3)

(&
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with ¢ = %. By the corollary to the ACCFR lemma, this in turn implies

C
RZ,ZkLO(p) Z 1-— e? (24:)

Note that our choice of A = 1/e in the ACCFR Lemma was arbitrary; any A < 1
would suffice. Using the FKG inequality and the above estimate, it is now easy to
construct an infinite cluster from the origin. Indeed,

~———
Pw(p) = Py 4L0§§
LO
0 21, SL,
> ple H Ry 911,
k=1
(- 5)
k=1

This proves the “if” part of the theorem.

Now assume that p > p.. Let us first show that Rz(p) > 0. We will want to
consider the probability that the origin connects to the boundary of a box of side L
centered at the origin. We decompose this event by recording exactly which portion
of the boundary connects to the origin. For this purpose, we define the face ¢ of

0By, denoted by F;(0By,), as
FZ(aBL) = {l‘ € 0By, : T = sign(i) L}

fori e {1,-1,...,d,—d}. Ind =2,

P,(0 < 0By)
= P,(0 «» Fy(0By) or 0 «» F_1(0By,) or 0 «» F5,(0By,) or 0 «» F_4(0By,))
<4P,(0 « F(JBy)), (2.5)

where we have used subadditivity of the measure and rotation invariance in the last
step. Since P,(0 < 0Bp) > P (p), (2.5) implies that

P,(0 «< Fy1(0Br)) >

1
> —P.
4
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Pasting together a connection from the origin to face 1 and a connection from the
origin to face —1 gives a horizontal crossing of the L x L square. Therefore
Ri(p) > PP(O — F1(0Br) N 0+ F_41(0B1))
> P)(0 o Fi(9B))?
1
> —p?
> 0. (2.6)

Next we want to show that as L gets larger, Ry (p) actually tends to 1. We do
this with a coarse-grained version of the above argument. Let € > 0. Since p > p.,
there is an infinite cluster with probability 1, and hence there exists an N large
enough such that

P,(0By <> 0)>1—€. (2.7)
Take L > N and construct a coarse-grained analogue of P,(0 « 0By, ) by replacing
the vertex at the origin with a box of size N. That is, consider P,(0By < 0By,).
We have

P,(0By «+» 0B,) = P,(0BN «» F;(0B) forall: =1,-1,2,-2)

> P,(0By «» F1(0B))! (2.8)

by the FKG inequality and rotational invariance. Since
P,(0By +» o0) > P,(0BN «» 0By,
(2.7) implies
P,(0By +» 0B) <€

which, together with (2.8), gives the bound

P,(0By + F|(0By)) < €'/*, (2.9)

Let Ay, 1 denote the event that there exists an open circuit in the annulus By, \

Bxn. We have
T
Py(Apse) =2 Py | F k

N

3L

> (Rs,1(p))*

(o)

3L A
> ((Ren(p)’ Relp)

> (F(Ri(p)))® Reu(p)!

> (e (mr2)

=a>0, (2.10)
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where we have used FKG and rotational invariance to get the second and fourth
inequalities, RSW for the fifth, and (2.6) for the sixth. The fact that ¢ > 0 uniformly
in L follows from p > p.. In order to obtain a lower bound on P,(An 1), we partition
B\ By into a sequence of nonoverlapping annuli: 4y = B3y \ By, A2 = Bon\ Bsn,
and so on. Notice that there are n = n(L) = |(log L — log N)/log 3| independent
annuli in By, \ By. If any one of these annuli contains an open circuit, then so does
By, \ By. Hence,
n(L)

Py(An.1) = P | Asiminsin)-

=1

Using BK on the complements and (2.10) gives
1—Py(An) < (1—a)"®, (2.11)
Now let 6 > 0. Then, by (2.11), there exists Ly such that for every L > Ly
P,(An 1) >1-6. (2.12)

Finally, we note that the L x L square crossing can be ensured by having two
crossings from the inner N x N square to opposing faces of the L x L square, together
with a circuit in the annulus Ay 1. Thus

RL(p) Z Pp(aBN — Fl(aBL), 8BN — F_l(aBL), AN,L)
> (1—€/M)2(1-¢)
where the final inequality comes from FKG, (2.9), and (2.12). Choosing € and ¢
appropriately makes this bound as close to 1 as desired. [

It is worth noting that we can substitute the estimate of the above proof into the
RSW and ACCFR lemmas to show that, in fact, Rz(p) tends to 1 exponentially
fast. By the ACCFR lemma, we need only ensure that

15

R _
2,.(p) > T

which, by the RSW lemma, in turn requires

15

Rulp) > F~' (7).

where F' is the function defined in the RSW lemma.

2.2 Finite-Size Scaling and the Correlation Length

We have just shown that on large enough length scales, the system appears to be
in a Peierls’ regime. But what is “large enough”? According to our analysis above,
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“large enough” means large enough to satisfy the conditions of the rescaling lemma.
Thus, for two dimensions, we define

Li(p) =min{L >1: Rop(p)>1— g}, (2.13)

or in general

Ly(p;n,e) =min{L > 1: Ry, 1.(p) > 1 — €}, (2.14)

where ¢,e > 0 and n are chosen to satisfy the conditions of the ACCFR rescaling
lemma. The choice of 1/e in equation (2.13) is simply for computational conve-
nience. For L > L}(p), we are effectively in a high-density Peierls’ regime, in the
sense that our effective bond density tends exponentially to 1. Thus, in some sense,
L§(p) is the high-density length scale beyond which the system acts noncritically.

One of the fundamental, but rather vague and certainly unproven, assumptions
of scaling theory is that there is only one length scale in the system: the correlation
length—or, for p > p., the dual correlation length. Thus we would expect that
L{(p) should be equivalent, in some appropriate sense, to the two-dimensional high-
density (dual) correlation length. This was, in fact, the original motivation for the
definition of a finite-size scaling correlation length by Frohlich, Chayes and Chayes
[CCF]. [CCF] called L§(p) a finite-size scaling length because it is equivalent to the
dual correlation length and it is determined by the scaling of the probabilities of
events which occur in finite volumes. The notion of a finite-size scaling correlation
length was later used by Chayes, Chayes, Fisher and Spencer [CCFS1] in their
analysis of the correlation length exponent (see Section 3.1), by Kesten [K4] in
his analysis of critical scaling relations, and by Borgs, Chayes, Kesten and Spencer
[BCKS] in their analysis of the critical regime. The [BCKS] work will be the subject
of Chapter 5, where we will discuss these notions in more detail.

For the purposes of this chapter, let us simply note that it is easier to make these
notions precise in the subcritical regime of percolation than in the supercritical
regime. Thus, we will first show that the fundamental correlation length for p <
pe—i.e. the inverse decay rate of 7(x,y;p)—is well-defined. Then we will define
an analogue of L{(p) below p. and shows that, up to logarithms, this analogue
is equivalent to the fundamental correlation length. These results will hold for
percolation in all dimensions.

2.2.1 The Fundamental Correlation Length for p < p..
The first question to address is existence of the fundamental correlation length.

Recall
T(z,y;p) = Ppy(x < y).

We will define the correlation length in terms of the on-axis connectivity. To this
end, let e; be the unit vector in the 7! direction.

PROPOSITION 2.6. (EXISTENCE OF A FUNDAMENTAL CORRELATION LENGTH)

The limit
. log7(0,ney;p) 1
lim = ——
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exists.

Proor. Fix m < n. We have
7(0,ney)

Py(0 < meq < neq)

7(
7(

I\/ Y

0, meq) T(mey, ney)

= 7(0,me1) 7(0,(n —m)ey), (2.15)
where the second inequality is an application of FKG and the final equality follows
from translation invariance. Whenever a quantity obeys an inequality of the form
(2.15), we will say that it is subadditive. (Note, however, that technically 7(0, neq;p)
is supermultiplicative, and only —log(7(0,ne;;p)) is subadditive.)

The subadditive inequality (2.15) is enough to prove existence of the limit.
Choose k,, such that

L log(7(0, kneq)) — Lminf log(7(0,ney)) :: _l‘

Fix a nonnegative integer m. Define
Uy, =max{l:lm <k,} and r,=k,—{,m.
Iterating (2.15), we have

7(0, kner) > 7(0,0pmeq ) 7(0, rpeq)
> T(O,mel)[" 7(0,7rpe1).

Taking logarithms and dividing both sides by k,, gives

log(7(0, kner)) _ Cumlog(7(0,meqr))  log(7(0,rner))
> + .
kn kn m kn

Noting that ¢,,m/k, tends to 1 and the remainder term tends to 0, we have

(2.16)

Since m is chosen arbitrarily, we may take lim sup of (2.16) to obtain

Ly 108(7(0,mer)) _é O

m— o0 m

From (2.16), we immediately have the a priori bound:
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COROLLARY 2.7. (THE A PRIORI BOUND)

(0, mer; p) < exp(———) (2.17)

¢(p)

Next one would like to know that £(p) is not trivial (i.e., that &(p) # o0). In
order to prove this, we will use an inequality which is often called the Lieb-Simon
inequality after Lieb [L] and Simon [S] who proved the analogue of it for Ising sys-
tems in 1980. A percolation version of it was proved by much earlier by Hammersley

[Ham1].

THEOREM 2.8. (HAMMERSLEY-LIEB-SIMON INEQUALITY) Let B be a box cen-
tered at the origin and OB its boundary. For « € 0B, let 7'(0,2;p) < 7(0,2;p)
denote the probability of a connection between 0 and x using only occupied bonds

within B. Then
7(0,2p) < Y 7(0,25p) T(x, 2 p). (2.18)
z€O0B

PROOF. Let CB(0) C C(0) denote the connected component of the origin within
B. Let

T(0,z) ={0 < =}
and
T'(0,2) = {0 < z in B},

so that 7(0,z;p) = P,(7(0,2)) and 7'(0,2;p) = P,(1'(0,z2)). If = ¢ B, then, in
order for the origin to connect to z, there must be an « € 9B such that + € C?(0)
and a path from z to z in the complement of C5(0).

/7

A

FIGURE 2.1. Notice the path from x € CB(0) to z in the complement of C5(0).

Therefore, we can write
T(0,2) = {w : o € B such that w € T'(0,2) o T(x, 2)}

or, equivalently,
T(0,z) = U T'(0,2) 0 T(x,2).
rEOB
Using the BK inequality, we have
Pp(T'(0,2) o T(x, 2)) < Py(T'(0,2)) Pp(T(x, 2))
and therefore,

7(0,23p) < Y 7(0,25p)7(2, zp). O
rEIB
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THEOREM 2.9. If p < pc, then £(p) < oc.
PRrOOF. Notice that, for every w,
W) =Y 1y (w)
rEZ4
where 14 is the indicator function of the event A. Taking expected values gives
x(p) = Ep(IC(0))) = > 7(0,x;p). (2.19)
r €78

Since p. = 7, choosing p < p. implies that y(p) < oo, and thus that the series on
the right hand side of (2.19) converges. Now

S 0,2 < Y 7(0,2),
rEIB r€EOB

which, by (2.19), is bounded by the tail of a convergent series. Hence, for B suffi-
ciently large,
Z 7'(0,2) < 1.

Define o > 0 by

Then, for « € 0B,
W(z) =e7'(0,2)

is a normalized set of weights.
Now pick z far from B and rewrite the HLS inequality (2.18) as

T(0.zp) < e Y Wi D). (2.20)
rEOB
Translation invariance implies that
r(z,zp) < Y Wy —2)7(y,zp) (2.21)
y€OB(x)

where B(z) is the box B translated by x. Rewriting (2.20) by inserting (2.21) in
place of 7(x,z;p) gives

7(0,z;p) < e” Z Wiz Z Wiy —a)7(y,z;p)-
z€JB(0) yEOB(x)

This substitution can be iterated n = Ldiaf(B)J times and still guarantee that z is

in the complement of all of the translates of B.

O‘XO i— Z

e | @
y.I‘T .
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FIGURE 2.2. Notice that the n'! iterate of the process creates a point at most
n diam(B) units from the origin.

After iterating this n times, we have
7(0, 2 p)

§exp<tﬁ|(zgﬂ> Z W) Z W(zg) -+ Z Wixn)r(xn,2)

z1€9B(0) z2€OB(0) z,€0B(0)
—alz]
< —_ .
=P (Ldiam(B)J>

The final inequality follows from the facts that 7(x,,z) < 1 and that the weights
are normalized. Choose 2z = key. Taking logarithms, dividing by k, and letting k
tend to infinity, we obtain

1 «

&p) ~ dam(B) ~

REMARK. Notice that we do not actually use the prime of the HLS inequality
(2.18) in the proof of Theorem 2.9. We bound 7' from above by 7 and use the fact
that for p < pc, >, 7(0,2) is convergent. Hammersley [Haml] proved a version
of (2.18) without the prime for percolation, as did Simon [S] for the Ising magnet.
Lieb [L] added the prime to Simon’s Ising magnet inequality; this version was used
to prove that £(p) diverges continuously in the Ising model. The crucial point in
the proof was that 7' is the probability of an event which occurs in a finite box. For
percolation, we can prove continuity of £(p) by other finite-size considerations. We
follow closely the proof of Proposition 2.11 in [CC1].

THEOREM 2.10. lim {(p) = oo.
P—Pc

PROOF. First we sketch a proof that £7!(p) is left continuous, i.e.

}iir(l)éf_l(p—e) = (p)

for all p. To this end, we define yet another connectivity function, 77(0, x), as the
probability that 0 is connected to x by a path of occupied bonds that lies entirely in
the “tunnel” {z : =T < @9,-++ , 24 < T}. Let ((671)T(p) denote the corresponding
inverse correlation length. It is straightforward to show that:
(i) VT, (61T (p) is continuous and decreasing in p, and
(i) Y, (6)7(p) \ € (p) as T/ o0,
(See [CC1], remark 3 following the proof of Theorem 5.1, for an analogous proof
for SAWs.) So £7!(p) is a decreasing limit of a sequence of continuous, decreasing
functions and is therefore left continuous.

Next we show that £71(p) approaches zero continuously (which, of course, does
not follow from left continuity). This is done by a variant of the argument used
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by Russo [R2] to show continuity of P (p) at p. in d = 2. Suppose that, for some
po, £ H(po) > 0. We must show that, for e sufficiently small, £~1(py +€) > 0. To
this end, note that £~!(py) > 0 implies there is some Lg so that the probability
that a hypersheet of dual (d — 1)-cells separates the left from the right faces of a
Lo x2Lg x2Lg x -+ x 2Lg box exceeds 1 — ¢(d)/e, where ¢(d) is the constant in the
d-dimensional ACCFR rescaling lemma. But, since the box is finite, this probability
is an analytic (indeed, a polynomial) function of p, so there is an e small enough
so that the probability of the hypersurface crossing event still exceeds 1 —¢(d)/e at
p = po + €. But now we can paste these rectangles together with ACCFR rescaling
(see e. g. the proof of Theorem 2.11) to show that {~1(py + €) > 0, as desired.

Thus we have that ¢ 71 (p) approaches zero continuously. Now, given Theorem 2.9,
we need only show that £ ~!(p.) = 0. Suppose the opposite: £~!(p.) > 0. Then, by
the construction discussed above, we can rescale hypersurfaces in boxes at density
pe+e€. Intersecting these hypersurfaces, we can create closed surfaces in hyperannuli
with probability tending to one exponentially in the size of the hyperannuli. These
closed surfaces can then be used to obtain a finite upper bound on y(p. + €), a
contradiction. [

2.2.2 The Finite-Size Scaling Correlation Length.

Just as we can define a two-dimensional finite-size scaling length, L§(p), for p > p.
as the smallest length above which renormalized bonds will rescale, we can define a
finite-size scaling correlation length, Lo(p), for p < p. as the smallest length above
which renormalized dual bonds (or hypersurfaces) will rescale. Since, as noted in
remark (iii) following Lemma 2.3, in d > 2, dual hypersurfaces rescale (i.e. satisfy an
ACCFR rescaling lemma), whereas bonds do not, the finite-size scaling correlation
length so defined will make sense in all dimensions.

In d dimensions, let R,, 1(p) denote the probability of an occupied bond crossing
in the e; direction of an nL x L x L x --- x L box. Similarly, let R}, ;(p) be the
probability that an L x nL x nL x --- x nL box is spanned (the hard way) by an
unbroken hypersurface of dual (d—1)-cells, so that, in particular, Ry, =1-Rynnr-
Schematically,

Ry =P [Lr™ <L,

where the dotted line represents the dual hypersurface. Following [CCF], we define
the finite-size scaling correlation length Lo(p) for p < p. as

Lo(p) = min{L > 1: RS ;(p) > 1—~}, (2.22)
’ e
or, in general,
Lolpin,e) = minfL > 1: B ,(p) > 1— ¢}

=min{L > 1: Ry/p nr(p) < €}. (2.23)

Here, ¢ is the dimension-dependent constant in the rescaling lemma, e.g. ¢ = % in

d = 2 (see Lemma 2.3 and remark (iii), following it). In general ¢ and n are chosen
to satisfy the hypothesis of the d-dimensional ACCFR rescaling lemma. The next

theorem show that, up to logarithms, £(p) and Lo(p) coincide.
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THEOREM 2.11. (CHAYES, CHAYES AND FROHLICH [CCF]) Let p < p.. There
exist nonzero, finite, dimension-dependent constants ¢y and ¢y such that

c1log Lo(p) + c2 1 1
Lo~ E0) - L)

REMARKS. (i) The theorem implies that if {(p) and Lo(p) both diverge with
power laws as p / p., then their critical exponents must coincide. See equation
(1.16).

(ii) Recently, K. Alexander has shown that, in d = 2, one may take ¢; = 0 in the
above theorem.

(iii) The theorem also holds for Lo(p; n, €) rather than Lo(p) if n and € are chosen
to satisfy the hypothesis of the d-dimensional ACCFR Lemma. Now, however, ¢;
and c¢s depend on n and e.

(iv) Analogous results for p > p, and d = 2 are discussed in Chapter 5.

PrROOF OF THEOREM 2.11. We begin by proving the lower bound on 1/£. To
this end, let L = 2¥Ly. By d-dimensional ACCFR rescaling and the definition of
Ly, we have

5 2> 1— cexp(—2%) =1 — cexp(—L/Ly). (2.24)

Now, by obvious bounds and the FKG inequality,

1 —7(0,Ley) = P(0 +» Ley)

~ N
\ ~.
ZPp ! 7
0, L
< Y
’_)-.\\/
>p |l e 0
Py )
A’
2d
> (R3 1)

which, together with (2.24), gives the estimate

7(0,Ley) <1-— (R;,L>2d
<1—(1—cexp(—L/L))*
<exp(—L/Lo).

Taking logarithms, dividing by —L, and letting L tend to infinity, we get

1
>_7
_LO

| =

which proves the lower bound.
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Next we prove the upper bound on 1/£. We have

) 0 2(L, -1)
1_R2,L0—1 :Pp ,'—' 0
Ly-1
¥ 12(Ly - 1)
=P, U Yy
x’y
LO = ]
< D)D) rlay)
rEF_1 yeEM
< (2L ey (221 (2.25)

where the second step is a result of duality, the third step follows from subadditivity
of the measure and relaxing the constraint that the connection occur within the box,
and the final step is an application of the a priori bound (2.17). Now recall that,
by definition, Lo is the smallest L such that R ;(p) > 1 — ¢. Hence,

€

c
2,L0—1 — 67
which, by (2.25), implies that
c
S <1 _R*
- 2,Lo—1
_ Ly—1
< (2L0)2(d l)exp (_%)

and therefore I )
C 0 —

Rewriting this gives an upper bound of

l < Q(d— 1)10g LO + ‘10g <m>‘
£ = Lo—1 '

Obviously, the values of the constants ¢; and ¢y depend on the choice of n and e,
but otherwise the proof is essentially identical for any n and e which satisfy the
hypothesis of the rescaling lemma. [



3.1 A BOUND ON THE CORRELATION LENGTH 33

CHAPTER 1II

CRITICAL EXPONENT INEQUALITIES

In the last chapter, we saw that for p # p., the system can be characterized by
the existence of a length scale beyond which connectivities decay exponentially. At
many multiples of this scale, the system is essentially in a Peierls’ regime—either
low or high density. What characterizes a system with a second-order transition
is that at the transition point, the model has no length scale—the system is said
to be critical or scale-invariant. In Chapter 5, we will discuss new theorems which
quantitatively describe the nature of critical regime in percolation. Here we will
focus on the exponents which describe the approach to the critical regime. In
particular, we will prove bounds on the exponents v, § and =, provided these
exponents exist.

3.1 A Bound on the Correlation Length

In Theorem 2.10, we saw that percolation has a second order transition in the
sense that £(p) diverges continuously as p increases to p.. Now we will show more—
we will get a lower bound on the rate of divergence, which therefore gives us a bound
on the exponent v, provided it exists. First, we need a probabilistic lemma.

LeEMMA 3.1. (CHAYES, CHAYES, FISHER, SPENCER [CCFS1]) Let A be an
event which depends only on bonds in a finite set A. Take p € (0,1). Then

\dpd—;"”\ < a(p)V/IA]

where a(p) = 1/+/p(1 — p) and |A| denotes the number of bonds in A.

Proor. We have

Py(A)= Y Pplw)la(w)

WEQA

= Y P p L)
WEQA

where Q4 = {0,1}* and n(w) is the number of occupied bonds in the configuration
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w € Q2. Differentiating this expression gives

dP,(A)
dp
= Z <n(w)p"(w)—1(1 — p)IAI—n(w> —(|A] - n(w))pn(w)(l _ p)|/\|—n(w)—1> La(w)
n(w) A —n(w)
i wgsz:A ( P 1—p > Fol)Lale)
Note that
n(w) [A]=n(w) _ n(w) — p|A]
p l—p p(1—p)
_ nlw) = Ey(n)
p(1—p)
and hence,
dsz(?A) - p(1 1_ p) Z Py(w)(n(w) — Ep(n)) 14(w).
We therefore have the bound
‘dpgg(oA) ‘ = p(1 1_ ») Z Py(w)[n(w) — Ey(n)] .

WEQA

Using the Cauchy-Schwarz inequality and the fact that n is binomial (|A|,p), we
finally obtain

dp,(4) 1 B o 3
1
_p(l—p) Varp(n)
Vi
1
N p(l—p)\/m’

the desired bound. O

Finite-Size Scaling Events and Correlation Lengths

Lemma 3.1 tells us that the change in P,(A) due to a change in the bond density
is no worse than a square-root-of-volume fluctuation. Next, we will see how this
square-root-of-volume fluctuation leads to a lower bound on v. To this end, consider
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the o-algebra of events which depend only on bonds in a finite box A, with |[A| = L¢.
We denote this algebra by F; and say that A; € Fp is a finite-size scaling event.
Given a sequence Ay € Fp and a constant ¢ > 0, we define the finite-size scaling
correlation length

Erss(p) = Erss(p; A, é) = max{L > 1: P,(A) > ¢}. (3.1)

Notice that if limy .o Py(Ar) = 0, then {pss(p) < oo.

We will see in the proof of Corollary 3.3 below that our percolation finite-size
scaling correlation length (2.22) is bounded below by a length of the form (3.1).
However, the definition above applies under much more general conditions. For
example, it is possible to construct a finite-size scaling length of the form (3.1) for
dilute and random Ising ferromagnets, and to show that this length is equivalent
to the fundamental correlation length defined as the so-called quenched average of
the two-point correlation function [CCEFS2]. The Thouless length, which is used
extensively in the physics literature as a correlation length in disordered electronic
systems, is also of the form (3.1), although in this case, it is not yet possible to
show that this length is equivalent to a more fundamental correlation length. In
any case, the generality of the definition (3.1) means that the following theorem is
applicable to many disordered systems in addition to bond percolation.

THEOREM 3.2. ([CCFS1]) Let A;, € Fr, ¢ > 0 and {pss(p) = Erpss(p; AL, ¢).
Suppose there exists Ly such that for all L > Ly, P, (Ar) > 2¢. Then

{rss(p) = c(p)(pe —p) ¢, (3.2)

I

where ¢(p) is bounded away from 0 in a neighborhood of p..
COROLLARY 3.3. If£(p) is the correlation length defined in Proposition 2.6, then

f e o (Ep)

>
p/pe |log(pe —p)| —

2
—. 3.3
: (33

REMARK. If the exponent v defined in (1.16) exists, then the corollary implies
that it satisfies v > %.

PROOF OF COROLLARY 3.3. Recall that Rj ;(p) is the probability that an L x
2L x --- x 2L box is spanned by an unbroken hypersurface of dual (d — 1)-cells.
Take ¢ to be the constant such that Rj ; > 1 — c¢/e implies the rescaling of such
surfaces (see the remark (iii) following Lemma 2.3). By duality, R} ;, =1 — Ry1 5
where R%,zL is the probability of a short-way bond crossing of an L x 2L x - - - % 2L
box. Recalling the definition (2.22), we have

Lo(p) =min{L > 1: RS (p) > 1— -}
’ [

y. (3.4)

=min{L > 1: R%’QL(p) <

o0
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In particular,

Lo(p) =1 <max{L > 1: Ry ,;(p) > g} (3.5)

Thus, if we could show that Ry 57, was monotone decreasing in L, we could conclude
that .
Lo(p) = maX{L >1: R%,ZL(p) > g}(‘|‘1)

where a¢ = b(41) means a equals b or b+ 1. This would then imply that Lo(p) is
of the form of the finite-size scaling correlation length defined in (3.1) with Ay, the
event of a short-way occupied bond crossing of an L x 2L x - -+ x 2L box and ¢ = ¢/e.
Unfortunately, however, we do not know whether R 191 1s monotone in L, so we
require an additional argument. Roughly speaking, the argument says that although
R%,zL = P(A1) is not necessarily monotone, it is essentially monotone in the sense

that
P(Ar) < P(Ar,) for all L > 2L, . (3.6)

First, let us show that this is enough to bound Lg(p) from below by a length of the
form (3.1), and then let us show that (3.6) is actually satisfied. By equation (3.4),
we have P(Ar,) < é. Putting this together with (3.6), we conclude that

P(Ap) < P(Ar,)<¢ for all L > 2L,.
But by the definition (3.1) of {rss(p), we have
P(Asts) > c.
Putting together the last two equations with (3.5), we conclude

Lo(p) — 1 < épss(p) < 2Lo(p),

as desired.

Now, to complete the argument, let us verify equation (3.6). To this end, we
claim that a rescaling argument along the lines of the proof of the ACCFR lemma
gives the general result

P(Azp4r) < C(d)P(AL)* (3.7)

for all nonnegative & < 2L. Indeed, let QQn as denote the probability of a bond
crossing in the e; direction of an N x M x M --- x M box, so that P(Ar) =
R%,zL = (r,2r. For any nonnegative & < 2L, the fact that Q) n s is decreasing in
N and increasing in M implies

Qor+k2020+%) < Q2081 -

Observing that a bond crossing of a 2L 8L x8L - - - x8L box implies two independent
bond crossings of L x 8L x 8L --- x 8L boxes, we have

Qor+r2020+k) < QZL,SL' (3.8)
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Notice that this last step is analogous to equation (2.2) in the proof of the rescaling
lemma. Now doing a surface patching argument along the lines of equation (2.1),

1—Qrsr > (1= Qran)VeYD > 1-/Cd)Qp2r, (3.9)

where /C(d) is an integer patching constant. Equations (38) and (3.9) imply the
general rescaling relation (3.7). To show that (3.7) implies (3.6), we iterate (3.7) ¢
times, obtaining

we obtain

P(Aye i) < [C(d)P(AL)? ' P(AL) (3.10)

forall ¢ > 1 and 0 < k < 2°L. Now, by choosing ¢ in the definition of Ly small
enough, we may assume that C(d)P(Ar,) < 1. Substituting this into (3.10) gives

P(Ayipy14) < P(AL,) (3.11)

for all ¢ > 1 and 0 < k < 2°Ly. But this is equivalent to the desired bound (3.6).

Finally, we must show that the probability of the finite-size scaling event, R% oL =
P(Ar), satisfies the hypothesis of Theorem 3.2. First, note that there is a constant
a > 0 such that

R%,ZL(pC) > a

uniformly in L. Otherwise, Lo(p) would not diverge as p /" p., and hence, by
Theorem 2.11, neither would £(p), a contradiction. Moreover, by choosing a smaller
¢ if necessary, we may take a = 2¢, so that the hypothesis is of the theorem is
satisfied. (In order to take a = 2¢, we must actually define Lo(p) = Lo(p;¢) for
different values of the constant ¢ and show that these are equivalent in the sense
of Theorem 2.11, but this is no problem.) Thus, by Theorem 3.2, Ly(p) obeys the
inequality (3.2). But, by Theorem 2.11, up to logarithms, £(p) is bounded above
and below by Ly, so that £(p) satisfies (3.3). O

ProOF OF THEOREM 3.2. By Lemma 3.1,

dP,(Ar)
dp

< a(p)V/A] = a(p)L®.

Thus

dPy(AL)

dp < (pe — p)a(p)L®
" p < (pc — p)a(p)

|Pp(AL) - Ppc(AL)| =

/pc de(AL)dp‘ - /pc
P dp Iy

where

This in turn implies

Py(AL) > Py (AL) — (pe — p)a(p)L?

~ ~ 4
> 2¢ — (pe — p)a(p)L= ,
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where the second step holds for L > L; by the assumption of the theorem. Taking

d
p=pc— —=L"> 3.12
i) )
gives
P,(AL) > ¢.

Since pss(p) is defined as the largest L such that P,(Ay) > ¢, it follows that

&l

alp)\ _z2
{rss(p) 2 L= (%) (pc—p) 7",
where the equality is a consequence of (3.12). The desired result now follows from
the fact that a(p) is bounded away from 0 near p.. 0O

How sharp is the result v > 2/d? For two-dimensional percolation, it is widely
believed that v = 4/3, which compares rather favorably with the bound v > 1.
The result is actually much sharper for some other disordered systems. As men-
tioned previously, it was shown in [CCFS2] that v > 2/d also applies to dilute and
random Ising ferromagnets. For dilute magnets in three dimensions, the bound
v > 2/3 is actually quite close to the best known values (see [CCFS1]| and the
references therein). For disordered electronic systems, the bound is, in some sense,
even sharper. In 1986, when v > 2/d was first derived, the accepted value of v
for disordered electronic systems in three dimensions was roughly half of the lower
bound. The bound showed that there were problems in the physical theory used to
interpret experimental data on disordered electronic systems (again, see [CCFS1]
and the references therein).

3.2 Mean-Field Bounds

We can also get inequalities on other exponents (i.e., v, #, ¢), but in contrast to
our inequality v > 2/d, the inequalities on these other exponents are independent of
the dimension. For several statistical mechanical models, it is known that when the
dimension becomes high enough, the models become simpler in the sense that they
have the same critical exponents as one finds on the Cayley tree or on the complete
graph. It turns out that many critical exponents always have values either above
or below their high-dimensional constant values. For example, v > 1 and $ <1 for

all d. These bounds are called mean-field bounds.

3.2.1 Pivotal Bonds and Russo’s Formula.

First we introduce the notion of the pivotal, or articulation, bonds. Roughly
speaking, a bond b is pivotal for an event A in configuration w if changing the value
of w at b (but at no other bond) changes whether the event A occurs. In other
words, pivotal bonds are essential for the event. Formally:

DEFINITION: Let b € By, w € Q, and define w1 or w~ to be configurations
agreeing with w on By \ {b} with b occupied or vacant, respectively. We say that b
is pivotal for A in w if

1A(wb’+) — 1A(wb’+) 75 0.
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The set of bonds which are pivotal for A in w will be denoted by ¢A(w), and its
size by |6 A(w)|. The event b € 6 A, sometimes denoted by ¢, A, is determined by the
o-algebra on the complement of b.

EXAMPLE: Consider the following configuration in T'(x,y) = {z < y}:

X

The bonds in the two circuits are not pivotal for T'(z,y) in w, but the bonds in the
path joining the circuits are pivotal.

Not surprisingly, it turns out that the change in probability of an increasing
event as a function of bond density is related to the expected number of pivotal
bonds. The relation expressing this is known as Russo’s formula [R2], although it
was actually proved first by Margulis [Ma]. A nice discussion of Russo’s formula
and related issues may be found in the paper by Friedgut and Kalai [FrK]. The
proof given below is due to Chayes and Chayes [CC1].

LEMMA 3.4. (Russo’s FORMULA [Mal, [R2]) Let A be an increasing event
which depends only on a finite number of bonds. Then
dPy(4)
dp

= E,(|0A]).

REMARK. This can easily be extended to an inequality on the right derivative
when A depends on an infinite number of bonds (see [CC4]):

AP,(4) _ . Ppie(A) = Py(A)
dp o e\\0 &

> E,(|5A]). (3.13)

PROOF. Let A be the finite set on which A depends. Let py be the probability
that bond b i1s open. We have

dP,(A) 0
= —P,(A)|p,=p-
b ol

Fix b € A and define Q,\; = {0, 1328 We have
Py(A)= Y Pp(w") (pola(w" ) + (1 = pp)ta(w” 7)),
WP EQ A

which implies that

OP,(4) _
apb B

ST ) (Lalwh ) — 14" ).

WP EQ A
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Since A is increasing, we have

La(wh ) = 14wh7) = 1{be&A}(wb)-

Thus
OP,(A)

apb

Z Py(w")lgesay(w’) = Py(b € 64),
wbEQA\b

and 4P.(A
% = Py(beé4)=Ey(j6A]). O
P beA

3.2.2 A Bound on the Percolation Probability.

Here we will show how the infinite cluster can be decomposed into a backbone
and dangling ends. We will then use this decomposition to prove a differential
inequality on the percolation probability, which in turn implies a mean-field bound
on the exponent 3. In the next chapter, we will show how a generalization of
this differential inequality can be used to prove absence of an intermediate phase
in percolation. The differential inequality here was proved by Chayes and Chayes
([CC3], [CC4]); its generalization was proved by Aizenman and Barsky [AB].

THEOREM 3.5. ([CC3], [CC4]) Let p € (0,1). Then

dP

.

Taking p > p., dividing by P, and integrating, we immediately have:

Py < P + pPw (3.14)

COROLLARY 3.6. For p > pc,
Pc P — Pc
Pyo(p) — ?Poo(pc) > :

b

REMARK. Assuming P (p.) = 0, which is known to be true in d = 2 [R2] and
is widely believed to be true in all dimensions, and the existence of the exponent 3
defined in (1.14), the corollary implies that 5 < 1.

In order to prove the theorem, we introduce the notion of the backbone of the
infinite cluster and the concept of a spineless infinite cluster.

DEFINITIONS: A vertex x € Z% is said to belong to the backbone of the infinite
cluster if it is connected to infinity by two (bond) disjoint paths of occupied bonds.
A spineless infinite cluster is an infinite cluster with no backbone (e.g. an infinite
cluster consisting exclusively of the positive z-axis). We use the following notation
for these objects:

Poc(0) = {0 > o0}
Peo(p) = Pp(Po(0))

Boo(0) = {0 < oo along two bond disjoint occupied paths}
Beo(p) = Pp(B(0))

S(0) = {0 «» oo and the cluster is spineless}

Soo(p) = Pp(S(0))
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It turns out that we do not have to worry about spineless clusters because con-
figurations containing them are of measure zero:

LEMMA 3.7. ([CC4]) Forp > pc, Seo(p) = 0.

We will not bother to prove this here except to say that the proof shows that if
Soo(p) > 0, then P, is discontinuous at p. This contradicts a result of [AKN] which
says that P (p) is continuous for all p > p.. The reader is referred to [CC4] for the
complete argument. Given the absence of spineless clusters, we can now prove the
differential inequality:

ProOOF OF THEOREM 3.5. If the origin is in the infinite cluster, then it is either
in the backbone or not. If it is not in the backbone, we say that it is in a dangling
end of the infinite cluster. Writing the event that the origin is in the infinite cluster
as the disjoint union of the backbone and the dangling end events,

Poc(0) = Boo(0) U (Peo(0) \ Bac(0)),
and taking probabilities, we have
Peo(p) = Boo(p) + Pp(Poc(0) \ Boo(0)). (3.15)
Now by the obvious observation
Boo(0) = Poc(0) 0 Pac(0)
and the BK inequality, we have

Beo(p) < PL(p).

Hence, we have reduced the problem to obtaining the desired bound on the dangling
end term.
Since Soo = 0 by Lemma 3.7, it follows that, with probability one, the dangling
end event Poo(0) \ Boo(0) implies the existence of a unique bond b € B; such that
(i) b has an endpoint in the backbone, and
(ii) b € 6Poo(0) (i.e., b is pivotal for P (0)).
This fact is rather obvious geometrically (see Figure 3.1) . The reader is referred to
[CC4] for an explicit proof. Let Dy(0) be the event that b € By is this unique bond.

Then
Poo(0)\ Boo(0) = | Du(0).

beB,

Observe that Dy(0) requires that b be pivotal for the event Po(0), and that, in
addition, b must be occupied and an endpoint of b must be connected to infinity.
Denoting the latter two events by O(b) and P (9b), respectively, we have

Dy(0) = 64Poc(0) 0 O(b) 0 Ps(0b). (3.16)
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FIGURE 3.1. Two realizations of 6P~ (0). The first realization is in Dy(0), while
the second 1s not.

Using equation (3.16), the BK inequality and Russo’s formula in the form (3.13),
we have

Py(Po(0)\ Boc(0)) < ) P(Dy(0))

beBy

<Y Py(85Poo(0)pPoc(p)

beBy
= pPc(p) Y Pp(84P(0))
beB,
dP
dp

< pPoo(p) (3-17)

Equations (3.15) and (3.17) imply the desired result:

dP

P < P2 4+ pP,—=. O
dp

3.2.3 A Bound on the Expected Cluster Size.
The next theorem also gives a mean field bound, this time on the susceptibility
exponent . It was proved by Aizenman and Newman [ANT1].

THEOREM 3.8. ([AN1]) Forp < pc,

1

)2 )

where ¢(d) is the coordination number (i.e. the number of nearest neighbors).

REMARKS. (i) If the exponent v defined by (1.15) exists, then the theorem im-
plies v > 1.

(ii) This theorem is analogous to that in the last section in that it also follows
from a differential inequality. But here the inequality must be interpreted in a weak
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sense due to possible discontinuities. Ignoring for the moment these subtleties, the
differential inequality is

d 1
—@@ < ¢(d).

PrROOF OF THEOREM 3.8. We start from the relation

x(p) =) 7(0,2;p).

€Ly

As in the proof of Theorem 3.5, we would like to differentiate and use Russo’s for-
mula. However, here again the event in question depends in principle on an infinite
number of bonds. In the proof of Theorem 3.5, we circumvented this difficulty by
using the right derivative inequality form of Russo’s formula (3.13). Here, however,
the inequality goes in the wrong direction, so we instead define finite-volume ana-
logues of all the appropriate quantities and then take the volume to infinity. Let
B,, be a box of side n centered at the origin. We define:

C"(z) ={y € B, : © < y by a path contained in B,},
T7(0,2) = {0 € C(2)},
70, z;p) = Pp(T™(0,2)),
X"(p;z) = Ep(C"(x)),
and {"(p) = max x"(p; ).

Since x(p) > x"(p; ) for every @ € B,,, we have

and therefore
x(p) = limsup X" (p).

n—oo

Furthermore,

V() = X"(p;0) = Y 70,3 p).

zEB,

Since T"(0,x) increases to T(0,x) as n tends to co, we have
7"(0,2;p) — 7(0,2;p).

Therefore, by monotone convergence,

liminf {"(p) > lim Z (0, 2;p) = Z 7(0,2;p) = x(p).

n—oo n—oo

z€B, z€lly

Combining these inequalities gives

lim y"(p) = x(p)

n—oo
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(even in the case y(p) = o).
Differentiating the expression

X"(pa)= Y tx,zp) = Y Pp(T"(x,2))

z€B, z€B,
gives
d n d n
d_pX (prx) = Z d—pPp(T (z,2))
zEB,
=) > P(besT(x,2))
z€Bn peB,,

by Russo’s formula, where B, are the bonds in B,. Suppose that b is pivotal for
T™(z,z) and let y; and y; denote the endpoints of b. We may write

{b€dT(x,2)} =T"(x,yp) o T"(yp,2) U T™(x,y3) 0 T" (s, ).
Hence, by the BK inequality,

Pp(b € 6T"(x,2)) < 7™ (2, yp;0) 7" (yp, 230) + 7" (2, y:0) 7" (s, 25 D).

Summing on z € B,,, we obtain

> Pyb €T, 2)) < m"(wyni P) X" (Piwh) + T2 s p) X (D5 wb).
zEB,

Therefore,

d k13 k13 k13 k13 k13
A (i) < > (@) X (s vh) + T vhs p) X (5 b))
b:(ybayb/)EBn

< X"(p) Z (7" (2, yp5p) + 7" (2, Yy 1))
— o(d) ()" (i)
< (d)X"(p)?, (3.18)

where ¢(d) is the number of nearest neighbors and where the third step uses the

fact that each site is summed over %c(d) times.

Since we are working in a finite box, x"(p;x) is a polynomial, and therefore
the maximum over x is differentiable, except perhaps at finitely many p. Further-
more, the derivative of the maximum is less than or equal to the maximum of the
derivative. Thus

d d

—an < ong < ~n 2
" (p) < max X (pz) < e(d)X"™(p)
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by (3.18). Alternatively,
d 1

~dp X" (p

~—

Integrating from p to p., we have

3.2.4 The Upper Critical Dimension and Saturation of the Mean-Field
Bounds.

As we mentioned earlier, when the dimension gets high enough, the system acts
as if it 1s infinite-dimensional. This may be more familiar in the case of random
walks. It is well known that two random walks will avoid each other in d > 4, but
will intersect in d < 4. The dimension d. = 4 is the upper critical dimension for
random walks. A similar property holds for the Ising magnet ([A], [Fr]). The Ising
criterion for mean-field behavior is that the so-called “bubble diagram” satisfies

B(8) = ZSZ(O,J;) <oo at f=4.,

x

where s(0, ) is the truncated pair correlation (i.e., the Ising analogue of 71%(0, z)).
Again, this occurs beyond the critical dimension d. = 4.

For percolation, Aizenman and Newman [AN1] showed that if the “triangle dia-
gram” satisfies

V(p) =Y 7(0,25p) (2, y;p) Ty, wip) < o0 at p=pe,
T,y

then 3, v, and ¢ exist and assume their mean-field values. The presence of three
factors of 7 reflects the (as yet, unproved) fact that d. = 6 for percolation. Using
the lace expansion—a technique developed by Brydges and Spencer [BS] to study
self avoiding walks— Hara and Slade [HS] showed that indeed 7(p) < oo if d is
sufficiently large. See [MS] for a pedagogical discussion of the lace expansion for
self-avoiding walks.
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CHAPTER IV

TWO FUNDAMENTAL QUESTIONS

In this chapter, we review two of the major achievements of percolation theory
of the past decade: the proofs of 7. = p. and of uniqueness of the infinite cluster.

4.1 Absence of an Intermediate Phase

In this subsection, we discuss the proof of the relation
Te = Pc

for regular lattices in all dimensions. (Recall that the critical point 7. is defined
in (1.6).) If this were not the case, then there would be an intermediate phase in
which x(p) = oo but Po(p) = 0; that is, the cluster of the origin would have infinite
expected size, but there would almost surely be no infinite cluster. In that sense,
every point of such a phase would be similar to the critical point. It has, in fact, been
shown that there is an intermediate phase for percolation on a wedge-like lattice
that opens logarithmically slowly [CC2]. (See Figure 1.3.) This counterexample
helped to established that translation invariance is a necessary condition for the
absence of an intermediate phase.

In 1980, Kesten [K1] showed 7. = p. (= 3) for bond percolation on B;. For
higher dimensions, 7. = p. was finally proved six years later independently by

Menshikov, Molchanov, and Siderenko [MMS] and Aizenman and Barsky [AB].
THEOREM 4.1. ([MMS], [AB]) For translation invariant lattices,

Te = Pe-

Both the [MMS] and [AB] proofs are related to the [CC3] result

Po(p) > p—pe (4.1)

which was proved in the previous chapter (Corollary 3.6). Indeed, a bound of this
form is the key ingredient in the [MMS] proof. Aizenman and Barsky consider
a generalization of the percolation model with an additional parameter which is
comparable to an external field in a spin model. The key estimate in their proof is
a differential inequality which is the generalization of the inequality in Theorem 3.5
to a nonzero external field. Before reviewing (part of) the Aizenman and Barsky
proof, let us discuss percolation in an external field.
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As we will see when we discuss the Potts models, percolation is very much like
a spin model, with p related to the inverse temperature 3 by p = 1 — e™?. Spin
models have an additional parameter, h, called an external field. This parameter
tends to order the system—when h # 0, the analogue of P, is alway non-zero. The
question of long-range order is the question of whether this analogue of P, remains
nonzero as h \, 0. The analogue of Py is the magnetization, denoted by M (3, h).
The susceptibility x (5, h) is the derivative of M with respect to the field h:

OM(j3,h)

X(ﬂvh): T?

so that OM(B. 1)
X(B) = ,{{I}J —

is the analogue of x(p).
Thus, for percolation, we introduce a new parameter v (which we think of as
1 — e~ ") and try to define P (p,v) and x(p,7) so that

Pw(p) = K% Py(p,7)

and

9P (p,7)
= lim ,v) = lim ——"2,
x(p) = lim x(p, y) = limy =7
Using ideas that went back to R. Griffiths [Grif], this was accomplished as follows.
Introduce a new vertex ¢ called a ghost vertex and join each site € Ly to ¢
with probability v. Now the set of realizations is

Q=1{0,1}% x {0,1}

where the first factor, as usual, represents the bond configurations on B, and the
second represents the configurations of sites connected to ¢g. Just as each w €
corresponds to a set of bonds S(w) C By of occupied bonds, each w € Q corresponds
both to a set S(w) C By of bonds and a set G(w) C Ly of sites, which we will
call “green sites”, that connect directly to the ghost site. Notice that, in general,
S(w) contains many components, but G(w) has only one. We may think of g as an
“additional point at infinity” in the sense that all sites connected to ¢ are connected
to each other.
The analogue of the infinite cluster density is

Poo(p;7) = Bp5(C(0) NG #10). (4.2)

As v decreases to 0, the set G becomes more and more sparse, so that the cluster of
the origin, C, must become larger and larger if it is to have a nontrivial intersection
with G. This suggests that

3{% Poo(p,7) = Pp(IC| = 00) = Pss(p). (4.3)
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To prove this, simply write

Po(p,y)=1- ZPp,v(Cﬂ G =01ICl =n) Pp(IC| =n)
p,v(c NG =0[[C| = o0) Pp(|C] = o)

(. @)

—1-3 (1= Py(lc] = n),

n=1

since P, ,(CNG =0||C| =) =0.

Next, let us define an analogue of y(p). We make the obvious choice:

X(p:7) = Eps(IC], €ng =0). (4.4)

Again, it is clear that, for p < p,

lim x(p,7) = x""(p) = x(p): (4.5)

Indeed, we have
= 30l Bl =)

which is enough to see (4.5).

Recall that the point here is to show that (after taking v to zero) P (p) and
x(p) have singularities at the same value of p. First, let us show the P, (p,~) and
X(p,7) are related here as they are related in spin models. To this end, note that
Poo(p,7) is a power series in 1 — v with radius of convergence at least 1. So, we can
differentiate with respect to v to get

That is, for 0 <~ <1,
ool Py Y
=(1—v)——. 4.6
X(p,y) =(1=7) 9 (4.6)

This, up to a harmless factor of 1 — ~, 1s what we wanted. It is useful in proving
the following two differential inequalities:

ProposITION 4.2. ([AB]) Ify €(0,1), p € (0,1), then

1= p P22 < 1Pt P (47)
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and

0P (p7 7)
Oy

0P (p7 7)

5 (4.8)

Po(p,v) <7 + P2 (p.7) + pPx(p,7)

where ¢ = ¢(d) is the coordination number of lattice.

Note that the second inequality is the analogue of Theorem 3.5 in an external
field. We will discuss the proofs of the two inequalities shortly. Before doing that,
however, let us very briefly sketch the proof of Theorem 4.1 given Proposition 4.2.

BRIEF SKETCH OF PROOF OF THEOREM 4.1 GIVEN PROPOSITION 4.2. The
proof has two main steps:
Step 1: In the first step, we substitute the first inequality (4.7) into the second
(4.8) to get a differential inequality purely in terms of Ps, and %. Then standard
manipulations—changing variables, integrating, etc.—lead to the following:

PROPOSITION 4.3. ([AB]) If p is such that Y™ (p) = oo, then there is a constant
k = k(p) > 0 such that

Peo(p,v) > k'l

for small v > 0.

REMARK. It turns out that the exponent ¢, defined in (1.19) in terms of the
decay of the critical finite cluster distribution, may alternatively be defined by

Poo(p,y) = 4/? as 7\, 0

so that Proposition 4.3 gives the mean field bound ¢ > 2.

Step 2: In the second step, we integrate the principal inequality (4.8) over p, using
the control from Proposition 4.3 to take the limit ~ \ 0. The result is:

LEMMA 4.4. ([AB]) If p is such that \""(p) = oo, then either
(a) Poo(p) > 07 or
(b) Px(p) =0 and, for all p' > p,

P.o(p') > 2%,(19’ —p). (4.9)

Notice that if we apply this lemma at p., then case (a) is just Pso(pc) > 0, which
we cannot rule out, and, up to a factor of 1/2, case (b) is just Corollary 3.6. We
lose the factor of 1/2 in controlling the limit v X\ 0.

Now the rest of the proof is easy. The lemma says that if yi%(p) = oo and
(a) holds, then p > p., while if yi%(p) = co and (b) holds, then for all p' > p,
Po(p') > 2%9'(19/ — p), which also implies p > p.. In other words, x™(p) = oo
implies p > pe.

Now suppose p € (7., p.). Then x(p) = oo since p > 7., but x(p) = x™(p) since
p < pe, so that x™(p) = oco. But then, by the argument in the above paragraph,
p > pe, a contradiction. [
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From the above sketch, it should be clear that the heart of the proof of Theo-
rem 4.1 is the proof of the inequalities themselves. As in the proof of Theorem 3.8,
this proof is complicated by the need to restrict to finite volumes and then to es-
tablish convergence of the relevant quantities and their derivatives. Since we have
already shown how to deal with problems of this type in Chapter 3, will not concern
ourselves here with the infinite-volume limit and will instead simply show some of
the finite-volume derivations. For a complete proof, refer to [AB] or [Grim2].

Given a positive integer N, we let Ax be the box centered at the origin of size
2N x 2N with periodic boundary conditions, i.e. a 2N x 2N torus. We define

gy =G NAN,
Cn(z)=C(x) N An,
Cn = Cn(0),
An(T) =A{Cy NT # 0},
XN (pov) = Ep([Cnls Cy NGy = 0)

and

POJX(Z%V) = Pp,v(cN Ngn # Q))
= PP,’Y(AN(QN))'

SKETCH OF PROOF OF THE FIRST INEQUALITY OF PROPOSITION 4.2. We begin
by decomposing OPY (p,~)/dp with respect to Gy. We have

0 _n 0
apP (D7) = a_p 21“: Pp,v(gN =) PP,’Y(AN(P)|QN =)
= 3 Palx =T) 3, P(AN(T)) (4.10)

where we have used that
i) the sum runs over the finite number of possible sets Gy,
(ii) P p ~(Gn =T') does not depend on p,
(iii) P, p ~(AN(T')) does not depend on ~, and
) An(T) is independent of the event {Gn =T'}.
The key step is to rewrite the second factor in the sum using Russo’s formula

(Theorem 3.4):

(iv

Lpanm) = Y Pyb e sdn(T)).

dp bEAN

To evaluate this, let b be a bond in Ay and suppose for the moment that b is pivotal
for An(I"). Further suppose that b is vacant. Then one vertex of b must connect
to the origin, but not to I', while the other vertex of b must connect to I', but not



4.1 ABSENCE OF AN INTERMEDIATE PHASE 51

to the origin. Conversely, if the vertices of b have those properties, then b is vacant
and is pivotal for Ax(I"). That is, letting v_; and vy denote the endpoints of b,

P,(b is vacant, b € 6 An(T")) = Z P,(vi €Cn, CnNT =10, Cn(v_i)NT #0).
i€{—1,1}
Recalling that {b € 6An(I")} is independent of the status of bond b,

(1 _p)d%Pp(AN(r)) =Y PrecCy. CyNT =0, Cy(y)NT #0),  (411)

(z,y)

where the sum is over ordered pairs (x,y) that form a bond in Ay. It follows from

(4.10) and (4.11) that

oPY
(1-p)7= = > Posle €Cn, Oy NGy =0, Cn(y) NGn #0).

(z,y)

Next, we make a decomposition with respect to Cy:

PN
(1— a = 3 Y PCx = A) Py (Cx NGx =D, Cxly) NGn # B]Cx = A),

where the second sum is over connected sets A C Ay such that 0,2 € A and y € A.
Now, conditioned on Cny = A, Cy NGy = ) depends only on sites in A, whereas
Cn(y)NGn # 0 depends only on sites and bonds outside of A. Hence, CyNGn = 0
and Cy(y) NGn #  are independent, conditioned on Cy = A.
Furthermore, since y € A,
Ppo(Cn(y) NGn #0|Cn = A) = P, (Cn(y) NGN # DA« A)
< Pp(Cn(y)NGNn # D)

= PX(p,7),

where the second step uses the FKG inequality and the third step uses translation
invariance.

Using this, and recalling that the sum over A is constrained to satisfy 0,2 € A
and y € A, we have

opN
(1 —P)a—;o <Y ) PCy=A)P(Cx NGy =D |Cn =A)PY(p,7)

= PY(p.7) Y Ppolz €Cy, y&Cy, CyNGn =0)
(z,y)

PNp, ZPP,YJ}ECN,CNOQN:@)
(z,y)

CPN (p,~y Z P, (xz € Cy, CnNGn=10)
TEAN

= cPY(p.7) Ep~(ICN], Cn N GN = 1)
= cPY(p,v) N (p,7),

IA

IA
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where ¢ is the number of nearest neighbors.

But now recall (4.6):
0P
—(1—) L
Xx=(1-7) T

The same relationship exists between v and PZY. So,

dPX(p.v) N OPX (p,v)
_ o0 b < _ o0 b .
(1-p) o = c(1—=7)Pl(p,y) —0

To complete the proof, we would now have to take the limit as N goes to infinity,
proving convergence of PY and its derivatives. [

SKETCH OF PROOF OF THE SECOND INEQUALITY OF PROPOSITION 4.2. We
decompose PY according to:

POJX(PKY) = Pp,7(|CN N gN| = 1) + Pp,7(|CN mgN| > 2)

=Y P, ([Cy NG| =1]Cx| = 1) By(ICx]| = n)

n=1

+ Pp,7(|CN N gN| > 2)

= ZW’Y(l - ’Y)n_l Py([Cn|=n) + Ppy(ICy NGN| = 2)
n=1

- 117 N (py) + Pos(lCnnGn| 2 2)
0P (p,7)

o, T Dralltnngn| 2 2),

where we have again used (4.6) in the last step. So, we have reduced the problem
to analyzing P, ,(|Cxy N Gn| > 2). This is the hard part of the proof, but it is
essentially identical to the proof of Theorem 3.5 except that the connections to
infinity there are replaced by connections to Gy here. With these ideas in mind,
the condition [Cx N Gn| > 2 relates to being in the backbone or in a dangling end,
whereas |Cy N Gn| = 1 relates to being spineless. Once again, the proof ends with
limits in N. O

4.2 Uniqueness of the Infinite Cluster

In 1960, Harris [Har| proved that the infinite cluster is unique in two dimensions.
Unfortunately, his proof was not generalizable as it relied heavily on the fact that
the dual of a bond is a bond in two dimensions (i.e., in d = 2, codimension 1
objects are of dimension 1). In 1981, Newman and Schulman [NS1] gave a soft, but
beautiful argument, which we will discuss below, showing that, under very general
conditions, the number of clusters N = N(w) is either 0, 1, or oo with probability
1. This left a big open problem: prove that N = 1 for p > p.. Of course, this can
not be true on all graphs—for example, N = oo on a homogeneous tree. Indeed,
for some time the necessary conditions were not clear.
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After seven years, a burst of activity ensued. In 1987, Aizenman, Kesten, and
Newman [AKN] proved uniqueness for both nearest-neighbor and long-range inde-
pendent percolation models on Z? Their proof was simplified the following year
by Gandolfi, Grimmett and Russo [GGR]. Then, in 1989, Gandolfi [Ga] proved
uniqueness for stationary Gibbs states. Meanwhile, in 1988, Gandolfi, Keane, and
Russo [GKR] extended the two-dimensional Harris [Har] uniqueness result to mod-
els which obeyed the FKG condition and were ergodic under translations in each
lattice direction. Finally, in 1989, Burton and Keane [BuK] gave a simple and beau-
tiful proof of uniqueness for nearest-neighbor model on Z? under the conditions of
the earlier [NS1] result-—mnamely, stationarity and “finite energy”. In 1992, the Bur-
ton and Keane result was generalized to long-range models on Z? or Z¢ x N by
Gandolfi, Keane, and Newman [GKN]. Here, we will discuss the [NS1] and [BuK]
proofs. First, however, let us review the definitions of the required conditions.

Throughout this subsection, we will restrict attention to a finite-dimensional
lattice LY, and for convenience, we will consider configurations of sites rather than
configurations of bonds.

Stationarity.

Let 2 € Lg. Define a shift operator T}, acting on configurations w € Q = {0, 1},
events A € F, measures P, and random variables X on €2 by

(Tew)y = wy—u,
T.A={T,w:we A},
(To P)(A) = P(T-, A),
and
(T, X)(w) = X(T_,w).

DEFINITION: An event A is translation invariant if 7,4 = A for all # € L,;. A
measure P is stationary if T,P = P for all « € Ly. P is (translation) ergodic if
every invariant event A is P-trivial, i.e. P(A) =0 or P(A) = 1.

If P is stationary but not ergodic, then P can be decomposed into a convex com-
bination of ergodic components. (In physics, these components would be identified
with “pure phases”.) So, without loss of generality, we can take our stationary P
to be ergodic.

We complete our review of stationarity and ergodicity with the following well
known theorem.

THEOREM 4.5. (BIRKHOFF ERGODIC THEOREM) Let P be a (translation) er-
godic measure on some  and let X € L'(Q, P). Then

1
m § T;X — E(X) as. and in Lt
as A /' Ly.

The Finite-Energy Condition.
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DEFINITION: P is a finite-energy measure if P(-|lw(z) = 1) and P(-|lw(z) = 0)
are equivalent for all x € Ly; that is, P has finite energy if, for every = € Ly and
A€ Fr\fay

P(Alw(z) =0)=0 <= P(Alw(z)=1)=0.

We hasten to point out that independent site (or bond) percolation has finite
energy. Another finite-energy measure comes up in later chapters when we discuss
the Ising magnet and, more generally, the Potts model in both the standard spin
representation and the FK representation. The property described here is called
“finite energy” since, for any Gibbs measure, the Radon-Nikodym derivative of one
conditional measure with respect to the other is just the exponential of the energy
difference. If the energy difference is finite, then the Radon-Nikodym derivative
does not vanish in a finite volume and hence the measures are equivalent. The
following proposition gives another interpretation of the finite-energy condition.

PROPOSITION 4.6. Let S C Ly be a finite set and let ¢s € {0,1}° be a configu-
ration on S. For each configuration w € €1, define its modified version

¢S($) ifzes

Pslw) = { w(z) ifrgs

and, for each event A € F, define its modified version

¢s(4) ={¢s(w) 1w € A}, (4.12)

Then P is a finite-energy measure if and only if for all A € F and all finite S C Lq
P(A)>0 = P(¢s(A)) > 0.

The proof of this proposition is an induction proof left to the reader. For future
reference, notice it follows from (4.12) that, for an arbitrary event A,

ps(A) = {w:Fw' € A w=4dsw)}, (4.13)
and therefore for events which satisfy ¢g(A) = A,
ps(A) = {weAd:w=ds(w)}. (4.14)

We end this brief discussion of stationarity and the finite-energy condition by
pointing out that, when decomposing a stationary finite energy measure into ergodic
components, each component still retains the finite-energy property. The following
proposition was implicitly assumed, but not stated or proved in [BuK]; it was proved
in a general context by Gandolfi, Keane and Newman [GKN]. The proof below is
due to Borgs and Chayes.
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ProproOSITION 4.7. If P is a finite-energy measure, then all elements in the
ergodic decomposition of P also have finite energy.

PrOOF. Here we will restrict attention to measures P for which the ergodic
decomposition is of the form of a finite convex combination

P=> \Pa,

where each ergodic component P, is a conditional measure with respect to a non-
trivial event A, in the tail field, i.e. an event A, in the tail field such that 0 <
P(A,) < 1. The reader is referred to [GKN] for a proof of the most general case.
Let P, be an ergodic component of P and let A, be the corresponding nontrivial
event in the tail field, so that
P, = P(-|A,). (4.15)

By Proposition 4.6, it suffices to show that if ¢ is any finite modification of the form
(4.12) and B is any event, then

P,(B)>0 = P,(¢(B)) >0,
which, by (4.15) and the fact that 0 < P(A,) < 1, is equivalent to
P(BNA,)>0 = P(¢(B)NA,)>0. (4.16)
Now, for any two events A and B, it follows from (4.13) and (4.14) that
HBNA)Co(B)NG(A).
Here ¢(Ay) C Aqg since A, is in the tail field. So
#(BNAa) C o(B)Nd(Aa) C ¢(B)N Aa.
Using this and the fact that P itself has finite energy, we therefore obtain
P(BNA,)>0 = P(¢(BNA,)) >0 = P(¢(B)N A,) >0,

which is the desired result (4.16). O

The aforementioned results in [NS1] and [BuK] can now be stated explicitly and
proved. For the following, our configuration space is = {0, 1}, with Ly a finite-
dimensional site lattice, P a measure on 2, and N = N(w) the number of distinct
infinite clusters in w € €.
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THEOREM 4.8. ([NS1]) If P isstationary and has finite energy, then each ergodic
component of P has N =0, 1, or co almost surely.

ProoF or THEOREM 4.8. This proof is just a straightforward application of
the assumptions. By ergodic decomposition and Proposition 4.7, we can assume
without loss of generality that P is ergodic. Then, ergodicity implies that the event
{N =k} has probability 0 or 1. Let k¢ be the value with P(N = ky) = 1. Assume
1 < ko < oo. Since kg > 1, we can find a (large) integer M such that, with
positive probability, at least two infinite clusters intersect a box of side M about
the origin. Now let us locally modify each configuration by occupying every site
in the box. By finite energy in the form of Proposition 4.6, this modified event
has positive probability. But, since ky < oo, our modified configurations must now
have fewer than k¢ infinite clusters, since we have combined at least two of our
clusters into one. Since this occurs with positive probability, we have contradicted
the assumption that P(N = k) =1. O

THEOREM 4.9. ([BuK]) If P is stationary and has finite energy, then each
ergodic component of P has N = 0 or 1 almost surely.

PrOOF OF THEOREM 4.9. Again, by Proposition 4.7, we can assume ergodicity.
By Theorem 4.8, we need only prove that P(N = oo) = 0. So, we suppose that
N = oo a.s. Now, given a site € Ly, = is said to be an encounter point in
configuration w if the following hold:

(1) |C(z;w)| = oo (i.e. @ belongs to an infinite cluster of w)
(2) the set C(x;w) \ {«} has no finite components and exactly three infinite
components.

FIGURE 4.1. An encounter point with arrows representing paths to infinity.

Just as we used finite energy in the proof of Theorem 4.8, we can use it here to see
that the origin is an encounter point with positive probability, say 2¢. Then, by the
ergodic theorem, we can almost surely find a large enough rectangle R (depending
on w) so that the number of encounter points in R is at least ¢|R)|.

However, we will show that the number of encounter points in R must be less
than |OR|. This will give a contradiction since

¢|R| < |0R)

is false for a large enough rectangle R in finite dimension d.
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The heuristics of the remainder of the proof are straightforward: The encounter
points of a given cluster are connected by a tree structure; therefore, the number of
encounter points in that cluster is bounded by the number of boundary points in
the cluster. This idea is formalized as follows:

Let C = C(w) be an infinite cluster, let

Y =CNaR,

and let , 2" € R be two encounter points in C. So, C \ {z} naturally corresponds

to a partition of Y:
P={P,P,, P}

where all the points in P; are in the same component of C \ {}. We have a similar
partition using z':

Q ={Q1,0Q2,Qs}.
Notice that the indices 1,2, and 3 may be chosen so that

P D QU Qs. (4.17)

Indeed, this follows immediately by taking P; to be the component of C \ {z}
containing ¢’ and taking @1 be the component of C\ {z'} containing x. (See Figure

4.2).

FIGURE 4.2. An illustration of how to choose the indices of the partitions to
satisfy (4.17). The first figure shows a cluster C with two encounter points. The
second figure removes point x and highlights the component that should be labeled
Py. The third figure removes point x' and highlights the component that should be
labeled Q).

We will say that any two partitions P = {P, Py, P3} and Q = {Q1,Q2,Q3} are
compatible if there is an ordering of the indices such that (4.17) holds, and that a
collection P of partitions is compatible if each pair P,Q) € P is compatible. The
proof is now a routine consequence of the following lemma:

LEMMA 4.10. If P is a compatible collection of partitions of Y, then
Pl < Y] -2

Indeed, by summing over all infinite clusters C, we have that the number of encounter
points in R is bounded above by |0R)|, a contradiction. O
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We will not bother to prove the lemma here; the proof is not difficult and can
be quickly read in [BuK]. The key observation, seen in Figure 4.2, is the finite-
dimensional intuition discussed above: namely, the only way to get compatible
partitions is to have a tree structure. It follows that this proof does not work on a
tree, since the inequality e R < |OR)| does not lead to a contradiction there. In fact,
on a tree, there are infinitely many infinite clusters.
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CHAPTER V

FINITE-SIZE SCALING AND THE
INCIPIENT INFINITE CLUSTER

In this chapter, we return to the study of the critical regime and review the new
results of Borgs, Chayes, Kesten and Spencer [BCKS] on finite-size scaling and the
incipient infinite cluster. We develop in some detail the ideas of length scales and
finite-size scaling introduced in Chapter 2.

We consider percolation in a finite box. As a function of the size of this box,
we determine the scaling window about p. in which the system behaves critically.
Here criticality is characterized by the behavior of the distribution of sizes of the
largest clusters in the box. We show how these clusters can be identified with the so-
called incipient infinite cluster—the cluster of infinite expected size which appears
at p.. It turns out that all of these results can be established axiomatically from
hypotheses which are mathematical expressions of the purported scaling behavior
in critical percolation. Moreover, these hypotheses can be explicitly verified in two
dimensions. Here we will omit almost all details of the proofs, although we will
discuss the motivation, the hypotheses and certain results at some length. The only
proof we will explicitly review is a proof of the scale invariance of the cluster size
distribution, given the axioms. The reader is referred to [BCKS] for more details
and for related results which are not included here.

5.1 The Motivation

The motivation for the [BCKS] work was threefold, and is perhaps as interesting
as the results.

The Random Graph Model.

The initial motivation was to obtain an analogue of recent results on the so-called
random graph model of Erdés and Renyi ([ER1], [ER2]). The random graph model
is just a mean-field percolation model on N sites in which each site is connected to
each other site independently with uniform probability p(NN), i.e. it is just percola-
tion on the complete graph. It turns out that the model has nontrivial behavior if

p(NN) scales like

c
N

with ¢ = O(1). Here, as usual, f = O(N®) means that there are nonzero, finite
constants ¢; and ¢y such that ey N® < f < o N®. Clearly, if ¢ grows more rapidly
with N, the model will just collapse into one cluster.

p(N)
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Let W) denote the random variable representing the size of the i*" largest cluster
in the system. Erdos and Renyi showed that the model has a phase transition at
¢ = 1 characterized by the behavior of W), For ¢ < 1,
W = 0(log N)
with probability one, whereas for ¢ > 1,

w = e(N),

and indeed

(1)
w —6>0

with probability one. On the other hand, for all ¢ # 1, W) = O(log N). The
O(N) cluster for ¢ > 1 is clearly the analogue of the infinite cluster in percolation
on finite-dimensional graphs; here it is called the giant component. As we will see,
the O(log N) clusters are analogues of finite clusters in ordinary percolation.

In the past few years, there has been a tremendous amount of work and remark-
able progress on the random graph model. Much of this work culminated in the
combinatoric tour de force of Janson, Knuth, Luczak and Pittel [JKLP]. Using re-
markably detailed calculations, it was shown that the correct parameterization of
the critical regime is

1 AN
SN TN

in the sense that if N — oo with Nlim |An| < o0, then
—00

p(N)

W = (N3

for all i, and furthermore each W has a nontrivial distribution (i.e. W /N2/3
constant). On the other hand, if N — oo with lim Ay = —oo, then

N—oo

w(®2)

Ty~ !

with probability one, whereas if N — oo with lim Ay = +oc, then

N—oc
w(®2)
T

and
w)
N2/3

— OO

with probability one. The largest component in the regime with Ay — 400 is called
the dominant component. As we will see, it has an analogue in ordinary percolation.
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[BCKS] asked whether there is some finite-dimensional analogue of these results.
In order to answer this, they considered d-dimensional percolation in a box of linear
size n, and hence volume N = n?. In particular, they asked how the size of the
largest cluster in the box behaves as a function of n for p < p., p = p. and p > p..
Also, they asked whether there is some window p(n) about p. such that the system
has a nontrivial cluster size distribution within the window.

Finite-Size Scaling.

The considerations of the previous paragraph lead us immediately to the question
of finite-size scaling (FSS). Phase transitions cannot occur in finite volumes, since all
relevant functions are polynomials and thus analytic; nonanalyticities only emerge
in the infinite-volume limit. What quantities should we study to see the phase
transition emerge as we go to larger and larger volume?

Before the [BCKS] work, this question had been addressed rigorously only in sys-
tems with first-order transitions—transitions at which the correlation length and
order parameter are discontinuous. Finite-size scaling at first-order phase transi-
tions was studied in some detail by Borgs and collaborators ([BoK], [BKM], [BI1],
[BI2]). At first-order transitions, the problem is simpler because the order parameter
jumps at the transition point. Thus the analogue of the behavior W) = @(N2/3)
is W) = O(N) at p.. Moreover, this means that the analogue of the window about
pe is also trivial: it scales like p(N) = p. + An/N. In this case, it is possible to ask
much more delicate questions by looking at the derivative of the order parameter.
Then one can ask how the transition point is shifted and what function describes
the smoothing of the discontinuity in finite volume. This was done in some detail
in the papers cited above.

Returning now to the question of rigorous finite-size scaling at second-order phase
transitions, we see that the issue is complicated by the fact that the order parameter
vanishes at the critical point. For example, in percolation it is expected that there
is no infinite cluster at p., with probability one. However, physicists routinely talk
about an incipient infinite cluster at p.. This brings us to our third motivation.

The Incipient Infinite Cluster.
At p., there is no infinite cluster with probability one, but the expected size of

the cluster of the origin is infinite. Physicists call this object the incipient infinite
cluster (IIC).

In the mid 1980’s there were two attempts to construct rigorously an object that
could be identified as an incipient infinite cluster. Kesten [K3] proposed to look at
the conditional measure in which the origin is connected to the boundary of B,,, a
2n x 2n box centered at the origin, by a path of occupied bonds:

Pl(:) = Py(- | 0 < OBy).
Observe that, at p = p., as n — oo, PJ(-) becomes mutually singular with respect
to the unconditioned measure P,(-). Nevertheless, Kesten found that

lim P} (-) = lim Py(- |0 < o0).

n—00 P\Pe
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Moreover, Kesten studied properties of the infinite object so constructed and found
that it has a nontrivial fractal dimension which agrees with the fractal dimension
of the physicists’ incipient infinite cluster.

Another proposal was made by Chayes, Chayes and Durrett [CCD]. They modi-
fied the standard measure in a different manner than Kesten, replacing the uniform
p by an inhomogeneous p(x) which varies with the distance from the origin:

p(x) =pe + # (5.1)

The idea was to enhance the density just enough to obtain a nontrivial infinite
object. [CCD] found that when ¢ = %, where v is the correlation length exponent,
the measure P,(,) has some properties reminiscent of the physicists’ incipient infinite
cluster.

In the work to be discussed here, [BCKS] propose yet a third rigorous incipient
cluster—namely the largest cluster in a box. This is, in fact, exactly the definition
that numerical physicists use in simulations. Moreover, it will turn out to be closely
related to the IICs constructed by Kesten and Chayes, Chayes and Durrett. Like
the IIC of [K3], the largest cluster in a box will have a fractal dimension which
agrees with that of the physicists’ IIC. Also, the [BCKS] proofs rely heavily on
technical estimates from the IIC construction of [K3]. More interestingly, the form
of the scaling window p(n) for the [BCKS] problem will turn out to be precisely the
form (5.1) of the enhanced density used to construct the IIC of [CCD].

5.2 Definitions of Relevant Quantities and Preliminaries

Much of this subsection is taken almost verbatim from the definition section of a
prelimary version of [BCKS]. Throughout this chapter, we will consider only nearest-
neighbor bond percolation on the hypercubic lattice. In Chapter 1, we defined the
relevant notion of occupied clusters in bond percolation. Here we begin by defining
the analogous notion for clusters in a finite box A C Z?. The connected component
of the occupied cluster of & within A is denoted by Cx(x) = Ca(z;w). Notice that
Ca(z) does not include pieces of the cluster of x in A which are connected to x solely
through paths in A® = Z4\ A. We will use 61(\1)701(\2)7 x -C/(\k) to denote the occupied
clusters in A, ordered from largest to smallest size, with lexicographic order between
clusters of the same size. W/(\Z) = |C/(\l)| denotes the size of the ‘! largest cluster in

A. Finally ‘
Na(s1,52) = [{i | s1 < WL < s (5.2)

denotes the number of clusters in A with size between sy and s5, and
Na(sys2) = [{i | s1 < WL < sy, €7 e DAY (5.3)

is the corresponding number of clusters which do not touch the boundary A of A.
Here, as usual, OA is the set of points € A that have distance less or equal 1 from

Ac.
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In Chapter 1, we defined the (point-to-point) connectivity functions 7(x, y; p) and
72 y; p), cf. equations (1.11) and (1.12). Here we also define the point-to-plane
connectivity function

Tn(p) =Pz =(n,-), 0= x),
and the point-to-box connectivity function

mn(p) = Pp(0 = 0B,(0)),

where

By(x) ={y € Z"| ¢ —y| < n}
and | - | denotes the (-norm. Notice that 7,(p) and 7,(p) are equivalent in the
sense that

Tn(p) < mlp) < 2d7n(p).
A quantity which for p > p. behaves much like 7% (z, y; p) is the covariance:

COV(

7V(z,y;p) = Covp(a < ooy < 00),

where

Cov,(A, B) = Py(AN B) — P,(A)P,(B).

Notice that, by translation invariance, the connectivities 7(x,y;p) and 71%(x,y; p)
are related to the susceptibility and the finite-cluster susceptibility, cf. (1.5) and
(1.9), by

X(p) = Ep([C(0))) = > 7(0,2;p),

x

and

N"(p) = Ep(IC(0)],1C(0)] < o0) = Y 7™ (0.2:p) = Y sPu(p)-

z §< 00O

Similarly, we define

X(p) =) (0,7 p).

x

Finally, we introduce the quantity

s(n) = (2n)" 7 (pe).

It will turn out that s(n) represents the size of the largest critical clusters on scale
n. In order to describe these, we define the exponent p by

Tn(pe) & n_l/p, (5.4)

assuming this exponent exists. Then

1
s(n) ~ n®  where dy =d— —
)
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represents the fractal dimension of the incipient infinite cluster.

In Chapter 2, we discussed the notion of length scales and finite-size scaling
lengths. We proved the existence of a fundamental correlation length, £(p), (Propo-
sition 2.6) and showed that it is non-trivial for p < p. (Theorem 2.9). It turns out
that for all p € [0,1], we can define

.f_l(p) = —| lim log Tﬁn(O,x;p), (5.5)

z|—o0
with « taken along a coordinate axis, and show that £(p) < oo for p # p.. For
p < pe, this is just the result mentioned above. For p > p., this is a result of
[CCGKS]. The proof is rather technical and will not be discussed here. However,
the heuristics of the generalization of this proof to the Potts model are discussed in
some detail in Section 7.7.

In Chapter 2, we also saw that for p < p., &(p) is equivalent to a finite-size
scaling correlation length, i.e. a length defined in terms of events that occur on
finite sets. In equations (2.22) and (2.23), we defined Lo(p) = Lo(p; 2,c¢/e) where
¢ = ¢(d) is the constant needed to satisfy the hypothesis of the rescaling lemma. In
this chapter, we instead take Lo(p) = Lo(p; 3, €), i.e.

LO(P) = min{L >1: R§,3L < 6} for p < pe, (5'6)

where € = €(d) has been chosen to satisfy the conditions of the appropriate rescaling
lemma.

There are many essentially equivalent definitions of a finite-size scaling length;
one must choose a definition which is appropriate for the proof at hand. In Chapter
2, we chose a definition of L{(p) for p > p. and d = 2, see (2.13) and (2.14), such
that the effective bond density tended exponentially to 1. In fact, in order to do
this properly in d > 2, one must show instead that the effective density of dual
hypersurfaces tends exponentially to 0. Thus, [BCKS] define a finite-size scaling
inverse surface tension as

Ao(p) = min{L¥1 > 1: R%’3L >1—¢€} for p>p. (5.7)

with e chosen to satisfy the appropriate rescaling lemma. In d = 2, it is possible to
show that Ag(p) is indeed equivalent to a fundamental surface tension [BCKS].

We still must define a finite-size scaling correlation length for p > p.. Given
the definition (5.5) of the fundamental correlation length, it seems natural to de-
fine Lo(p) in terms of a finite-cluster analogue of a rectangle crossing probability.
However, [BCKS] find it convenient to consider instead finite-cluster crossings in an
annulus

Hpym =70 [—L, L+ M]*\ (0,M)*,
with inner and outer boundaries 0y Hy, p and OgpHy pr. [BCKS] say that an occu-
pied cluster Cy in H = Hy pr is H-finite if H \ Cy contains a path—occupied or
not—that connects 9rH to Op H. Let
S%?M(p) = P,(3 an occupied H-finite cluster Cy in H = Hy, p
that connects OrH to OpH),
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with the convention S&I}W(p) = 1. They define

Lo(p) = Lo(pie) = 1+ max{L 2 0| STy (p) 2 ¢} for p>pe,  (58)
and more generally, for « > 1,
Lo(p;e,x) =1+ max{L >0 | S%?LxLJ (p) > €} for p>p.. (5.9)

Note that Ly(p;e, ) may be finite or infinite, depending on whether or not there
exists an N < oo such that S%?LxLJ (p) < eforall L > N. [BCKS] expect that this
definition coincides, say in the sense of Theorem 2.11 (with an x—dependent con-
stant ¢z, and ¢1(d) = 0), with the standard correlation length £(p) above threshold.
However, they are not able to prove this in d > 3, since the rescaling techniques of
[ACCFR] do not work for finite-cluster crossings. In d = 2, they prove this using
both the RSW and ACCFR lemmas.

While the behavior of Ly(p) below p. is well understood in general dimension,
much less is know about Lo(p) or Ag(p) above p.. In particular, below p., it
is straightforward to see that Lg(p) is monotone increasing, left continuous and

piecewise constant. Using Theorems 2.9 and 2.11, it is also straightforward to show
that

Lo(p) /o0 as p ./ pe,

see e.g. [CC1], Proposition 2.11. Furthermore, the jumps in Lo(p) are uniformly
bounded (on a logarithmic scale). Namely, by the rescaling inequality

(which is proved analogously to Lemma 2.3), we have

limM<2

lim =7 5= <2, (5.10)

provided p < p. and € < a(d). By contrast, none of these properties are known for
Ly(p) above p.. Therefore [BCKS] turn attention to Ag(p), which they can show is
montone decreasing and right continuous. However, in general dimension, they do
not have a proof that Ay(p) diverges as p decreases to p., nor do they have a bound
of the form (5.10). They therefore require several axioms on the behavior of Ly(p)
and Ag(p) above p.

5.3 The Scaling Axioms and the Results

As mentioned at the beginning of this chapter, the [BCKS] results are estab-
lished under a set of axioms which they can explictly verify in two dimensions and
which they expect to be true whenever the dimension does not exceed the critical
dimension d. (presumably d. = 6). [BCKS] call their axioms the Scaling Axioms
since they are to a large extent characterizations of the scaling behaviors implicitly
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assumed in the physics literature. In this section, we will review the axioms and
some of the results from a preliminary version of [BCKS]. Again, this section draws
almost verbatim from some of the corresponding sections of [BCKS]. It should be
noted that the axioms in the final version of [BCKS]| are somewhat different from
those presented here: A couple of the axioms here have been shown to be provable
from the other axioms and have therefore been removed, and one axiom has been
added to obtain stronger results below the scaling window. See [BCKS] for more
details.

The Scaling Axioms.

Several of the axioms concern the length scales Lo(p) and Ag(p), and therefore
implicitly involve the constant e (see (5.6)-(5.9)). [BCKS] assume that the axioms
are true for all € < €y, where ey = ¢y(d) depends on the relevant rescaling lemma.

The axioms are written in terms of the equivalence symbol <. Here

F(p) < G(p)
means that there are lower and upper bounds of the form
C1F(p) < G(p) < C2F(p)

where C'; > 0 and C; < oo are constants which do not depend on n or p, as long
as p is uniformly bounded away from zero or one, but which may depend on the
constants €, € or ¥ appearing explicitly or implicitly in the axioms. The [BCKS]
scaling axioms are

(D) Lo(p) = 0o asp\, pe;

(IT) lim sup lim M
plpe =0 Ao(p)

(ITIT) For 0 < € < eg, @ > 1 and p > p,,
Ao(p) = Ly (p) = Ly~ (p, & 2);
V) Tn(p) X wul(pe) i 1 < Lo(p);
V) Psom)(p) X Psgmy(pe) i n < Lo(p);
VI) Tn(Pe) X P>o(ny(pe);
VII) There are finite constants C; > 0, Cy > 0, p3 > 0 and p; > %, such that

< oQ;

Cot < TnlPe) et
Tn\Pc

(VIII) For p > pe,
X (p) = x™(p) < PL(p)Li(p);
(IX) For p > p.,

FLo(p)(pC) = Poo(p)

Let us discuss the interpretation of the axioms. The first tells us that the ap-
proach to p. is critical—i.e., continuous or second-order—from above p.. Recall that
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the analogue of this for p  p. is known rigorously. The second axiom gives a bound
of the form (5.10) on the jumps of A¢(p). Note that these axioms are needed due
to incomplete knowledge of the continuity properties of the 1/A4¢(p) and 1/Ly(p)
above p.. The third axiom is the assumption of equivalence of length scales above
pe: The second part of it asserts the equivalence of the finite-size scaling lengths at
various values of > 1 and € € (0,¢). The first part of it, i.e. Ag(p) < LE™(p), is
called Widom scaling. It dimensionally relates the surface tension to the correlation
length. Denoting the fundamental surface tension by o(p) and its critical exponent
by 7:

o(p) = p—p|” P\ Pe

(see [ACCFR] for a defintion of the surface tension), Widom scaling says that
r=(d-1)v,

a hyperscaling relation which is expected to hold up to the critical dimension d = d..
The next two axioms contain a crucial element of the conventional scaling wis-
dom. Scaling theory asserts that whenever the system is viewed on length scales
smaller than the correlation length, it behaves as it does at threshold. Axioms (IV)
and (V) assert that this is the case for the connectivity function #(p) and the cluster
size distribution Psgn)(p).
The sixth axiom is equivalent to the hyperscaling relation

dp=06+1,

as can be seen by using the “definitions” (5.4) and (1.19) of p and ¢. This of course
assumes that the exponents p and ¢ exist. Note that since this is a hyperscaling
relation, it is also expected to hold only up to d = d..

Axiom (VII) implies that the connectivity function 7, (p) has upper and lower
bounds of power law behavior at threshold. Of course, scaling theory assumes a
pure power law with exponent —1/p. If we assume power laws for y and Ly and
use the scaling relation implicit in Axioms (VIII) and (IX), the bound p; > 2/d in
Axiom (VII) is equivalent to the very weak bound v > 0. (Compare this to the
mean field bound v > 1 in Chapter 3.)

Finally, Axioms (VIII) and (IX) imply scaling and hyperscaling relations among
critical exponents, again assuming these exponents exist. Axiom (IX) says that

v
- = 67
p

while Axiom (VIII) gives the hyperscaling relations

dv=20+~.
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THEOREM 5.1. ([BCKS]) The Scaling Axioms (I)-(IX) hold in d = 2.

The Results.

In order to state the [BCKS] results, we need to find a scaling window in which
the system behaves critically, i.e. an analogue of the function p(NN) in the random
graph problem. [BCKS] constructed a monotone function f : R — [—p., 1 — p.]
with f(0) =0, f(z) >0 for x > 0 and f(x) < 0 for + < 0 such that for

An
Pn :pc‘l‘f (7)

the system in the finite box A,, = B,(0) behaves critically if lim sup,,_ . [An] < o0,
subecritically if lim,, ..o A, = —o0 and supercritically if lim,, .., A;, = +00. Roughly
speaking, they find that f is the inverse of the function @ — 1/L¢(p. + @) and hence
f(z) =~ 2'/7. The following theorem makes this notion precise, with part (i) of the
theorem giving the scaling behavior of f, and parts (ii)—(iv) giving the expected
behavior of the cluster size distribution inside, below and above the window. The
symbol < is used in the statement of the theorem, this time for two sequences a,,
and b, of real numbers . We write

an < by,

if
a a
0 < liminf — < limsup — < co.

n—oo 0Op n—oo n

The first [BCKS] theorem characterizes the scaling window in terms of the ex-
pectation of the largest cluster sizes.

THEOREM 5.2. ([BCKS]) Suppose that Axioms (I)-(VIII) hold. Let A, be a
sequence of real numbers, and let p, = p. + f(An/n).

(i) Lo(pn) < n if Ay = Ao € R\ {0}, while Lo(p,)/n — 0 if X,, — 0.
(ii) If lim sup |\, | < oo and ¢ € N, then

E,,(W,)) = s(n).
(iii) If lim A, = —oo, then

E,, (W)
s(n)

(iv) If lim A, = +o0, then

—0 as n— oo. (5.11)

1

—_— 1 as n — oo, (5.12)
|[An|Poo(pn)
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and

2
Ep, (Wy))
E,,(Wy,)
REMARKS. (i) Assume that the critical exponent v exists (see (1.16)) and that
an equivalence of the form of Theorem 2.11 holds for p > p. as well. Choose

Pn = pe+ f(1/n), i.e. A, = 1. Then

Lo(pn) = &(pn) & pn — pe| ™" = |f(1/n)[™"

By statement (i) of the theorem, Lo(py) < n, which therefore implies that

flz) ~ sgn(a)|z['/".

Thus, under the assumption of the existence of v, the scaling window has width
n=l/v,

(ii) Assuming the existence of the exponent p, see (5.4), the theorem implies that
inside the scaling window the largest, second largest, third largest, - - - clusters scale
like n?s | with dy = d — 1/p. On the other hand, below the scaling window the size
of the largest cluster (and hence of all clusters) goes to zero on the scale n?/ | while
above the scaling window the largest cluster becomes dominant and its size tends to
1 on the scale n?P,,. Above the window, it is also possible to show that the size of
the largest cluster tends to infinity on the scale n?/, although this requires Axiom
(IX) (which was not used in Theorem 5.2), in addition to the theorem. Together
with Axiom (VII) and statement (i) of the theorem, Axiom (IX) implies that

|An|POO(pn) Poo(pn) - FLo(pn)(pc)

= = — .

s(n) Tn(pe) Tu(pe)

So, by (5.12), the size of the largest cluster diverges on the scale s(n) ~ n’.

[BCKS] also prove analogues of statements (ii)—(iv) of the theorem for conver-
gence in probability, rather than in expectation. Morever, they show that the
distribution of W() is nontrivial within the scaling window. These results re-
quire some dehcate ‘second moment estimates which are beyond the scope of theses
notes. Also, under an additional axiom, [BCKS]| establish that W/(\n) scales like
$(Lo(pn))log[n/Le(pn)] below the scaling window, again both in expectation and
in probability. This also requires some very delicate estimates. The reader is re-
ferred to [BCKS] for precise statements of these results and for their proofs.

One final result is worth mentioning, since it is used in the proofs of the other
results and is of interest in its own right. It concerns the number of clusters on
scales m < n. Before stating the result, it should be noted that, due to (5.11), the

“incipient infinite cluster” inside the scaling window is not unique, in the sense that

W( )] 1s of the same scale as W( ) This should be contrasted with the behavior (5.13)

of W/(XZ)/ (1) above the scahng window, a remnant of the uniqueness of the infinite
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cluster above p.. The next theorem relates the non-uniqueness of the “incipient
infinite cluster” inside the scaling window to the property of scale invariance at p..
Basically, it says that the number of clusters of scale m in a system of scale n is
a function only of the ratio n/m. How can this hold on all scales m? The only
way it can be true is if the system has a fractal-like structure with smaller clusters
inside holes in larger clusters. The theorem concerns the numbers Ny (s1,s2) and
NA(sl,SQ) of clusters with size between s; and s3, see (5.2) and (5.3).

THEOREM 5.3. ([BCKS]) Suppose that Axioms (IV)—~(VII) hold. Then there

are strictly positive, finite constants Cy, Cy and ko such that

n

¢ (-)d < By (Na(s(m). s(km))) < E,(Na(s(m), s(km))) < C; (%)d

m

provided A = A, kom < min{Lo(p),n} and k > ky.

PROOF OoF THEOREM 5.3. We follow essentially verbatim the proof of [BCKS].
We begin with the fact that for an arbitrary configuration w, the number of clusters
of size s can be rewritten as

. ; 1
1wy = st =" S Lleat =}
zEA

where, as usual, 14 denotes the indicator of the event A. As an immediate conse-
quence,

E,(Na(s1,52)) Z Z L (ICa ()] = ). (5.14)

§=81 xEA

In a similar way,

E,(N(s1,52)) Z Z ([Ca(2)] = s, & s ON). (5.15)

§=81 xEA

First we prove the upper bound, which follows easily from the representation
above and the axioms. Choosing s; = s(m) and sz = s(km), using the representa-
tion (5.14) and bounding the factor 1/s in (5.14) by 1/s; = 1/s(m), we get

EP<NA(3(m),3(km))> § P,(|Ca(2)] = s)
wEA s>s(m)
= p(ICa(2)] = s(m))
< @stm)(p), (5.16)
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where in the last step we used the definition (1.8) of Ps ()(p) and the fact that
|ICa(x)| < |C(x)|. Since kom < Lo(p) implies m < Lo(p), we may use Axioms (V)
and (VI) to bound the right hand side of (5.16). We get

d
(2n)4 (2n)4 n
—P < m(pe) =Co| — 5.17
S(m) >s(m)( ) 2 S(m) T (p ) 2 m ( )
where C5 is a finite constant. (5.16) and (5.17) imply the upper bound.

~ The lower bound is somewhat more difficult. To prove it, we choose a constant
ko to be fixed in the course of the proof. Given kg, we choose ky > k¢ in such a way

that the assumption k& > ko implies s(km) > s(zrom) (the existence of such a ky is
guaranteed by Axiom VII). Using this bound and (5.15), we have

B, (Na(s(m). s(km))) > E <NA<s<m>,s<f%om> -1)

s(kom)—1

> > Z P,(ICa(2)| = 5,2 # OA)
s=s(m) IEAn
s(kom)—1
= Z Z z)| =s,x ¢ ON),
s=s(m) xEAn (518)

where in the second step we bounded the sum over A = A,, from below by a sum
over An. The fact that  is not connected to A allows us to replace Ca(z) by C(x)

in the last step. Bounding the factor 1/s in (5.18) from below by 1/3(2:0m), we get

E,(Na(s(m), s(km)))

> S(ém) S Pyls(m) < [C(@)] < s(Bom),a 5 OA)
= o 2 [Btstom < et < stom)
— Py(s(m) < [C(2)] < s(kom),z aA)}
1 -
2 s 20 [Pelelm) < [0 < sthum) = o)
= o (P2 () = P iy () = ()]

In the third step above, we relaxed the condition that s(m) < |C(z)| < s(kom) in
the second term in the sum. Since n > kgm > kgm by the assumption kym <
min{Lg(p),n}, we obtain

~ n

E,(Nx(s(m),s(km))) >

{st(m)(p) B PZs(icom)(p) B 7Tl~<:0m/2(p) :

s(kom)
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Again by the assumption mky < min{Lo(p),n}, we have ko < Lo(p). We there-
fore may use Axioms (IV), (V) and (VI) in conjunction with the bound 7z ,, (p) <

Thom /2 (p) to conclude that

~ nd

By (Na(s(m).s(km))) = ——|Cimm(pe) = Compa(pe)]

s(kom

where C; and Cs are strictly positive, finite constants. Finally using Axiom (VII)
to bound Thym /2 (pc) from above by a small constant times 7,,(p.), we get

~ nd

E,(Na(s(m),s(km))) > —= %élﬂ'm c)s
(Rafatm).sthm)) 2 2t Crmaire)

provided kg is chosen large enough (depending on the constants in Axiom (VII) and
the ratio of C'; and Cy). We finally use that s(kom) < kds(m) to conclude that

- nd n

Ey(Na(s(m), s(km))) > C1——mm(pe) = C1 (—)d,

s(m) m

where (] = l;:gél. This proves the lower bound. 0O

5.4 Interpretation of the Results

Assuming the existence of critical exponents and monotonicity of various quan-
tities, the results say basically that the scaling window is of the form

&
pnzpcima

that inside the window
W ~ ndf7
w2 ~ ndf7

while above the window

W n?P.,
W(l)/ndf — 00,
W(Z)/W(l) -0,

and below the window

W /pds 0

where, in fact,

W x4 logn /€.

These results hold both in expectation and in probability.
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How can we understand the form of the window? As explained earlier, the system
is expected to behave critically whenever the length scale is less than the correlation
length. Indeed, this is the content of Axioms (IV) and (V). But this means that

S /\‘f ~ ;\|p_pc

|—I/

le. \
pRpct YT

where A and A are constants. This is of course precisely the content of Theorem
5.2(i) (and Remark (i) following the theorem).

What would these results say if we attempted to apply them in the case of
random graph model (to which they of course do not rigorously apply)? Let us use
the hyperscaling relation

dv=~+20

and the observation that the volume N of our system is just n?, to rewrite the
window in the form

Pn = peE f 7
B < = 1/u>
- < =+ Nl/du>
- < = Nl/(mﬁ)) (5.19)
Similarly, let us use the hyperscaling relation
de/d=06/(1+0)
to rewrite the size of the largest cluster as
W~ pds
~ N/d (5.20)

~ NO/OFE)

Noting that the random graph model is a mean-field model, we expect (and in
fact it can be verified) that v =1, =1 and 6 = 2. Using also p. = 1/N, we have
a window of the form

and within that window
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just the values obtained in the combinatoric calculations on the random graph
model.

The results also have implications for finite-size scaling. Indeed, the form (5.19)
of the window tells us precisely how to locate the critical point, i.e. it tells us the
correct region about p. in which to do critical calculations. Similarly, (5.20) tells
us how to extrapolate the scaling of clusters in the critical regime.

Finally, the results tell us that we may use the largest cluster in the box as a
candidate for the incipient infinite cluster. Within the window, it is not unique, in
the sense that there are many clusters of this scale. However, outside the window
(even including a region where p is not strictly greater than p. as n — o0), there is
a unique cluster of largest scale. This is the analogue of what is called the dominant
component in the random graph problem.
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CHAPTER VI

THE BK(R) INEQUALITY

In this chapter, we review D. Reimer’s beautiful new proof of the BK inequality
for arbitrary events in percolation. The proof given here is based on a copy of a
preliminary manuscript and some notes by D. Reimer [Re], as well as on a lecture
by J. Kahn and on some comments on a preliminary version of this chapter by C.
Borgs, H. Kesten and P. Deligne. We have modified some of Reimer’s notation and
added a few details to the proofs we have seen, but the main proof presented here is
very similar to that given by Reimer. In particular, the notion of butterflies is due
to him, and it is this notion that he uses in his proof of the main lemma (Lemma
6.2). It should be noted that a form of the proof of the sufficiency of the main
lemma was already known to van den Berg [Be] and Talagrand [Ta).

We begin the chapter with a section on various equivalent forms of the BK
inequality, one of which-—the Fishburn-Shepp [FiS] form-—is the one ultimately
proved by Reimer. Throughout the chapter, we restrict attention to independent
percolation on a bond (or site) lattice B with [B| = n < co. Here Q = {0,1}E, so
that |Q2| = 2.

6.1 Equivalent Forms of the Inequality

First we reformulate the disjoint occurence event A o B in terms of cylinders.
Given a configuration w € © and a set of bonds S C B, we define the cylinder [w]s
by

[w]s ={w' 1wy =wp Vbe S

With this definition, we may rewrite A o B as
AoB={w:354,55CB, SanSg=10, [w]s, CA, [w]s, C B}. (6.1)
As we saw in Chapter 1, the original form of the BK inequality is
Py(40 B) < By(4) P,(B) (6.2)

for any events A and B and for all 0 < p < 1. The first simplification was due to van
den Berg and Feibig [BF] who showed that it is sufficient to prove the inequality for
p = 1/2. We will not give the proof here, although we will note that it is not terribly
difficult. It relies on a general lemma that, roughly speaking, relates measures that
respect the same notion of disjointness. This simplification is significant in that
the inequality now becomes a purely combinatorial one. Since each bond is equally
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likely to open or closed, the probability of any event A occuring is just |A|/|Q]. In
other words, the BF form of the BK inequality is given by

|A o B||Q2| < |A||B]| (6.3)

for any events A and B.

Fishburn and Shepp [FiS] discovered another way of expressing the BK inequality.
It is, in fact, this form of the inequality that Reimer [Re] proved. The F'S form of
the BK inequality is

10 < |Ukils] |Ue)s: (6.4
i=1 i=1
for all 1 < m < |, all distinct configurations w',... ,w™ € Q, and all sets
S1,...,Sm C B. We will now show that (6.4) is equivalent to (6.2).
PROOF THAT (6.2) IMPLIES (6.4). Let 1 < m < |Q], let w!,... ,w™ € Q be
distinct configurations, and let Sy,...,5;, C B. Consider
A= U[Wi]Si and B = U[wi]sf‘
i=1 =1

Notice that
{wh, ..., W™ CAoB.

Hence, by (6.2),
10 < |40 B]|0]
< |Al1B]

m

U[wi]si

=1

m

[0 e | -
1

1=

4

PROOF THAT (6.4) IMPLIES (6.2). We will only show that (6.4) implies (6.3),
and rely on the equivalence of (6.2) and (6.3). Let A, B C Q. Let m = |Ao B|. Let
w! ..., w™ denote the distinct elements of A o B. By the definition (6.2) of Ao B,

there are S; such that ‘ ‘
[w']s; C A and [w']se C B.

So, by (6.4),
|Ao B|[Q =m|Q]

m

U[wi]si

=1

< |A]]B].

m

<

0] s
1

1=
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6.2 Preliminaries to the Proof of the BK Inequality

We begin the proof with some notation and a couple of simple observations. In
the rest of this chapter, we will depart from our previous convention and use w, =,
y and z to denote configurations, and ¢ and j to denote sites or bonds. The symbol
b will be reserved for butterflies, to be defined below.

Let @,y € Q. The antipode ' of the configuration x is given by ! =1 — ;, and
the antipode Q' of the event @@ C Qis Q' = {a : 2’ € Q}. The subcube generated
by two configurations x,y € Q is (z,y) = [¥]{ie;=y;} = [Y]{i:wi=y;}- Notice that
subcubes are equivalent to cylinders.

Reimer’s fundamental construct in the proof of the BK inequality is what he
called a butterfly:

DEFINITION: A butterfly b on § is an ordered pair b = (z,y) with x,y € Q. A
butterfly generates the following four subsets of {2:

body(z,y) = {z}
tip(z, y) = {y}
right wing(x,y) = r(b) = (z,y)
left wing(z,y) = ((b) = (z,y")

Notice that

Ao B ={x:3butterfly b, body(b) ==, r(b) C A, ((b) C B}.

DEFINITION: A flock B of butterflies on 2 is a set B = {b: b € B} of butterflies
on €). It also generates four subsets of €:

body(B) = X(B) = | J body(b)
tip(B) = Y(B) = | J tip(b)
right wing(B) = R(B) = | r(b)
left wing(B) = L(B) = | ((b).

Notice that the BK inequality in the Fishburn-Shepp form (6.4) is equivalent to the
statement that

[R(B)| |L(B)| = |2 [X(B)| (6.5)

for all flocks B of butterflies with distinct bodies. (To see the equivalence, consider
the correspondence that takes a configuration x € 2 and a set of bonds S C B and
generates a butterfly (z,2) with @, = &; iff ¢ € 5.)
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Now consider a cylinder A = [y]s. Given a configuration z, we define the antipode

of v in A by
! 1—z; if:e€ S°.

Thus 'Y is the configuration which agrees with 2 on those sites i on which A is
fixed and differs from = on the sites ¢ on which A varies. Notice that

A=(r,y) = y=2a'. (6.6)

Given the notion of an antipode, we now define, for each cylinder A and each
butterfly (z,y) with * € A and y € A, the left and right wing of («,y), considered
as a butterfly in A. Namely, we define

ra(x,y) = (z,y) and
KA(xvy) = <x7yl(A)>'

The next lemma defines what we will call subbutterflies on cylinders.

LEMMA 6.1. (SUBBUTTERFLY LEMMA) Let A C Q be a cylinder and let (x,y)
be a butterfly on {2 with * € A. Then there exists a unique y € A such that

ra(xz,y)=r(z,y)NA and
£a(,9) = z,y) N A.

PROOF. Let the set S be defined by A = [2]s. If § is defined by (x, §) = (z,y)NA,
then it is easy to see that
B { x, ifeeS
Yi =

y; ifc e S°
Now, it simply remains to check that (z,7'Y) = (z,y') N A for this choice of j. O
This allow us also to define subflocks on cylinders:
DEFINITION: Let b = (x,y) with  in some cylinder A. We denote by b the

subbutterfly (v,y) on A, with § € A as given in the Subbutterfly Lemma. Let B

be a flock of butterflies on . We define the subflock B4 = Ba(B) as the flock on
A given by
By ={ba:be B body(b) € A}.

We also define X 4(B), Ya(B), Ra(B), and L4(B) in the obvious way; we suppress

B when it is convenient.

Notice that X4 = X N A and that

Ry = U TA(Z)A) = RNA CR
bacBa

Ly = U KA(Z)A) =LNA CL.
ba€Ba
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6.3 The Proof of the BK Inequality
We now come to the main lemma in the proof of the BK inequality.

LEMMA 6.2. For any flock of butterflies B,
ROL| > |X|

Before proving the lemma, let us see how to apply it to prove the BK inequality.

PROOF OF THEOREM 1.4 GIVEN LEMMA 6.2. It suffices to show the Fishburn-
Shepp form (6.5) of the BK inequality. Let B be a flock of butterflies with distinct
bodies. Partitioning according to subcubes and using the fact that R4 C R and
Ly C L for a subflock on any subcube A, we have

[RI|L| = [{(z.w) € R x L}
= H(zw) € Rx L:(s,w) = A}
A

> H(z,w) € Ra x La: (z,w) = A}.
A

But by (6.6), if (z,w) = A, then z = w'™, so that w € L 4 implies z € L;(‘A). Given
that z € R4 also, it follows that z € R4 N LigA). Since, for a given A and z, the

condition (z,w) = A uniquely specifies w, we have

[{(z,w0) € Ra x La : (z,0) = A}| = [Ra 0 L\

Thus applying the main lemma on the state space A, we have

RIIL > 3 XAl (6.7)

Now an easy counting argument gives that the right hand side of (6.7) is equal to
| X]]€?]. Indeed,

YIXnAl=) > Hepndl=) > 1= I9 =X,

A reX X Adz reEX

which, together with (6.7), is the desired result. O

Now we come to the heart of the matter: Reimer’s proof of the main lemma.

PrOOF OoF LEMMA 6.2. First, we note that the statement of the lemma is ob-
viously equivalent to the statement that |[R N L| > |Y| for all flocks of butterflies
B. In order to see this, just interchange all tips and bodies in the butterflies of
the flock B. Since this leaves the right wings invariant, but changes the set L to
L' and the set X to Y, the claim follows. Next we note that it is enough to prove
the statement |[RN L| > |Y| for all flocks of butterflies with distinct tips, since this
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immediately implies the same statement for general flocks of butterflies. But for
flocks of butterflies with distinct tips, we have |Y| = |B], so that suffices to prove
|[RN L| > |B|. Using de Morgan’s laws, this is equivalent to

|R°U L] < [Q] - |B],

or
|R°| +|RNL°|+ |B| < |9 =2" (6.8)
To obtain (6.8), we will construct three injective maps:
o R°—R¥
3:RNL°—=RY
v : B — R?".

We will show that the images of these maps are disjoint and that the union of the
images is a set of linearly independent vectors in R2?". This immediately implies
that the number of elements in the union, and hence on the left hand side of (6.8),
is bounded above by 2". It suffices to verify the following six statements:

(1) a(R?) L B(RN L)

(2) a(R?) L~(B)

(3) B(RNL) L~y(B)

(4) a(R°) is linearly independent

(5) (RN L°) is linearly independent

(6) v(B) is linearly independent.

We begin by defining the maps. To define & on R¢, first define o on {0,1}:

(1) =0
a<xi)_{(0,1) if ;= 1.

Now, to extend a to Q = {0,1}%, we must first set some notation. Let @& denote
concatenation given by, (a,b) & (¢,d) = (a,b,c,d). Let @ be the tensor product
given by (a,b) @ v = av @ bv for a,b € R and v € R™. Equipping R?" with the

standard inner product: (v|w) = Ef:l v;w;, notice that a easy inductive proof
yields
n n n
(X vil @wi) =[[(vilw:) (6.9)
=1 =1 =1

for v;, w; € R?,1 < < n. With notation in hand, let

=1

for each x € . Similarly, we define 3(x) on Q by

= Q) Al
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where

(1,0) ifz; =0

ﬂ<xi):{(1,—1) =1,

and we define y(z,y) on Q x Q by

where (1,0) if (z;,y:) = (0,0)
oy = D i) = (0.1

(0,1)  if (xs,9:) = (1,0)

(1,=1) if (2,y:) = (1,1)

It remains to verify the six conditions that imply the linear independence. The
functions have been cleverly defined so that most of this will be quite routine.

(1) a(R%) L (RN L)
If + € R®and y € RN L°, then = # y and so x; # y; for some i. So either

(a(z;) | Aly)) = ((1,1)](1,=1)) =0
(i) | Bly:)) = ((0,1)](1,0)) = 0.

Hence, recalling (6.9), we have that

{az) | Bly)) = 0.
Since it is easy to see that neither a(x) nor (y) can be the zero vector, it follows
that o(R°) L B(RN L°).
(2) a(R?) L y(B)
If z € R° and («,y) € B, then z ¢ (x,y) and so ©; = y; # z; for some 7. So either

(alz) | ¥(ziyyi)) = ((0,1)](1,0)) =0
(a(zi) [y(wi,90)) = (1, 1)[(1,-1)) = 0.
Hence (a(z)|~v(x,y)) = 0, which yields a(R°) L v(B).
(3) B(RNL°) L 4(B)

If z€ RN L° and (x,y) € B, then z ¢ (x,y') and so x; = 1 — y; # z; for some 1.
So either

(B(z:) | ¥(ziyyi)) = ((1,0)](0,1)) =0
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(B(zi) [y(@i,y:)) = (1, =1) [(1,1)) = 0.
Hence (5(z)|y(x,y)) = 0, which yields S(RN L°) L v(B).
(4) a(R°) is linearly independent

We will show that a(£2) is linearly independent. Here we could rely on the obvious
implication that since {(1,1),(0,1)} is a basis of R? the tensor product « () =
@, {(1,1),(0,1)} must be a basis of R?". Instead, let us show this explicitly, in
the process developing a method which will apply also to the less obvious case of
independence of y(B). For 0 < k < 2", let 2* be the configuration in Q given by
the binary representation of k so that @ = {2 : 0 < k < 2"}. If we let A(™ be the
2" x 2" matrix formed by letting row k + 1 be the vector a(z¥), then we wish to
show that det A £ 0. Indeed we will show det A(™ =1 by induction. The case
n = 1 is trivial. Assume that det A(™ = 1. Noting that the first 2" configurations
begin with a 0 and the next 2" begin with a 1, and using the definition of «, it is
easy to see that for 0 < k < 27,

n+1

n+1 .
A = (1,1) 0 K ale ()
1 =2
n+1 n+1

_ (X) a(zF()) @ (X) a(z*(1))

— A(")

(n)
k11, P A )

k+1,-
while for 2" < k < 27t

n+1
A = (0.1) 0 Q) ale ()
=2

n+1

o
=0 & X) alz*i))
j=1 i=2
o
=Poaa .
j=1

That is,

(n)  4(n)
(1) _ (4
4 —< 0 A<n>>

so that det A®TD = det A det A = 1, completing our inductive proof. As
mentioned above, this method will serve us for the final two arguments, of which
the latter is the more complicated one.

(5) B(RN L°) is linearly independent
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This proof is exactly like the last proof. Here, the recursion from the matrix

At to A g
(n) 0
(nt1) _ (A
AT = <A<n> _A<n>>

which again gives det A("+1) =£ 0,
(6) v(B) is linearly independent

For this argument, it is sufficient to prove the independence on Z%n rather than
R?", and, as will become clear, it turns out to be much simpler for Z%n. For the
moment, simply note that, in Z2, v((1,1)) = (1,1), so that v((1,1)) = 7((0,1)).

Notice that since the tips are distinct (recall that we made this assumption in
the first paragraph of the proof), for each (z,y) € B, there is a function  :  — Q
such that (z,y) = (z(y),y). This in turn induces a function ~,(y) : @ — R?" (or
72" which coincides with v on R?" (or Z3"):

Again denoting by y* the binary representation of k, and now writing rows and
columns of matrices as arguments rather than as subscripts, it suffices to show that

for all functions x :  — €2, the matrix AS;") defined by
AP+ 1) = 7 (y")

satisfies

det A0V =1

Once again we will use induction. The base case is trivial to check. So suppose
that we have our result for n. Proceeding as before, and noting that each of the
first 2" configurations begins with 0, so that (x(y);,v;) = (0,0) or (1,0), and hence
Y(@(y)i,yi) = (1,0) or (0,1), we see that there exists a function z :  —  such
that for each 0 < k < 2", either

AL+ 1) = (1.0) © @ valv* (1)
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or

n+1
AT+ 1) = (0.1) © @) alv* ()

n+1

= @ 06 (X)%(yk(i))-

2n
—Poe A (k+1.) .

j=1
So, there exist ¢ € {0,1} such that
AP+ 1) = e A+ 1) 8 (1— e AV (R +1,0).

Meanwhile, since (1,—1) = (1,1) in Z3, there exists a function & :  — Q such that
for each 2" < | < 2n+!

n+1
A+ 1) = (1,10 @15 (1)

n+1 n+1

= (X)%(yk(i)) @ ® 7i(y* (1))
=AM k41, 9B A (k41,0

Hence (n) (n)
A(n—l—l) _ gkAin (kvj) (1 o gk)Ain (kM])

Although this matrix does not look quite as nice as the ones in the previous argu-
ments, a few column operations—actually 2" of them—will improve things, without
changing the determinant, of course. By adding column k£ + 1 to column k+ 142"
(for each 0 < k < 2") which, in Zs, is the same as subtracting column k + 1 from
column k + 1+ 2", we can conclude that

det A(n-l—l) — det €kA(in)(k7]) A(En)(kv)

= det A" det A
=1,

where the final step follows by induction. 0O

The proof given above for independence of v(B) follows closely the matrix proof
given by Reimer. Alternatively, there is a more algebraic proof, similar to one
presented by J. Kahn and also to one suggested to us by P. Deligne. Below we
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give a version of such a proof, originally presented by one of us (J.T.C.) in the Kac
Seminars of 1995.

ALTERNATIVE PROOF OF INDEPENDENCE OF ~(B). As in the above proof, we
will establish independence on Z%n rather than R?". For convenience, we define
w = (1,0) and v = (1,1), so that v(0,0) = w, v(0,1) = v(1,1) = v and 7(1,0) =
w + v. As in the proof above, we will use the fact that the tips are distinct to write

(@, y) = v(2(y),y)-

To show that ~v(x(y),y) are linearly independent, it suffices to expand them in
a basis in ®?:1Z§ and show that the coefficient matrix has nonzero determinant.
To this end, let I C B be a label of a subset of sites. Our basis in ®?:1Z§ will be

{ur | I C B} where
uI:®V & ®W.

jer J€l

In order to expand v(2(y),y) in the {us}, welet I, = {¢ | y; = 0}. Then
Yx(y).y) =Q)1(=(y)i,vi)
=1
W if Ty — 0
~@ve®{ L,y p s

i, ier VWV

= ®V ® ®(W—|—xiv)
g1, i€l

= Z ®V®®W® ® T;V.
JCI, i¢l, icJ i€I\J

Noting that I, U I, \ J = J¢, and defining €(.J) =: HIy\J x; € {0,1}, we have

Yay)y) = DY lNQv o Rw

JCI, i ieJ
= Z e(J)uy
JCI,
=uy, + Z eJ)yuy,
Jcl,

where J is a proper subset of I, in the final sum.

Now the above matrix is an upper triangular matrix with 1’s along the diago-
nal. If the index set I, were a totally ordered set, this would immediately imply
dety(x(y),y) = 1 and hence that the v(x(y),y) are linearly independent. Since
the index set is only partially ordered, this requires a little additional argument,

which we leave to the reader. It is easy to verify using e.g. the expansion of the
determinant in minors. [
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CHAPTER VII

THE POTTS MODEL AND THE RANDOM CLUSTER MODEL

The Potts models are statistical mechanical models of magnets which turn out to
be very closely related to percolation. Using the Potts models, we will be able to see
precisely how P, is analogous to the spontaneous magnetization and how 7(z,y)
is analogous to the spin-spin correlation. The Potts models are also of interest in
their own right. They have two parameters: 3, an inverse temperature parameter,
analogous to the density parameter p in percolation, and an additional parameter
q, representing the number of possible states at each site. As we will see, the ¢ =1
model is equivalent to percolation, and the ¢ = 2 model is equivalent to the Ising
magnet. Both percolation and the Ising magnet have second-order, i.e. continuous,
phase transitions in all dimensions. The ¢ = 3 and ¢ = 4 Potts models have
second-order transitions in two dimensions, but first-order, i.e. discontinuous, phase
transitions in higher dimensions. The ¢ > 5 models have first-order transitions in
all dimensions d > 2.

The Potts models are among the most widely studied of all statistical mechanics
models. They are the simplest models to exhibit first-order transitions, and there-
fore are used by mathematical, theoretical and experimental physicists to model
systems with such transitions. As we will discuss at length, they can be mapped
into interacting percolation models [FK], and therefore are of interest to proba-
bilists. Moreover, using this mapping, it is possible to simulate the Potts model
with incredibly efficient algorithms [SW], and therefore the model is used a great
deal by numerical physicists. For certain ¢, the Potts model is exactly (though
not rigorously) solvable in two dimensions, and therefore is widely studied in the
exact solutions community. Indeed, the model has fascinating combinatoric and
algebraic content: The partition function of the Potts model is equivalent to the
Tutte polynomial. It also arises in the fundamental equations of knot theory [W].

In this chapter, we will first define the Potts models in their conventional spin
representation. Then, using a method due to Fortuin and Kasteleyn [FK], we will
rewrite them as interacting percolation models. It will turn out that these inter-
acting percolation models will be perfectly well defined even for ¢ noninteger. The
model with arbitrary real ¢ is usually called the random cluster model.

We will review many of the properties of the random cluster model, including
correlation inequalities, the nature of Gibbs states and the behavior of length scales
in the model. In the process, we will cover many of the results of (but omit most
of the proofs in) [ACCN2] and [BC]. Much of this chapter is taken almost verbatim
from the paper of Borgs and Chayes [BC].
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7.1 The Potts Models

Consider a finite site lattice A C Lg. Let § = {1,...,¢} denote the set of
possible spin states at each site © € A. The state space of the Potts model is
Qr = 5% ={1,...,¢}*. A generic spin configuration o € Q, thus has spin values
oy € 5 for each z € A.

The Hamiltonian Hy : Qy — R is given by

Hy(o) = Ha(oi{Toy ) == Y oy (bosy =1) =0 bon (7.1

(z,y)EAXA TEA

where the coupling J, , is a real symmetric function on Ly x Lg, 6; ; is the indicator
that ¢« = j, and the external magnetic field h is a real constant. In many instances,
Jy y 1s taken to be translation invariant. In this case, J, , = J(z — y) and, by the
symmetry assumption, J(y — ) = J(z —vy). If J,, > 0 for all (z,y) € Lq x Lq,
the system is said to be ferromagnetic. Often we only allow interaction between
nearest-neighbor pairs which amounts to J, , = 0 if |z —y| > 1.

Sometimes we take {J, 4} to be i.i.d. random variables with common distribution
p = p(J). Then the J, , are clearly not translation invariant, although they are
stationary in distribution. When the distribution p assigns substantial mass to both
positive and negatives values of J, the system is a spin glass. When p has an atom
at J = 0, the system is said to be dilute. We will usually take {J, ,} to be fixed
and suppress the {J, ,}-dependence in our notation.

The first term in the Hamiltonian is the interaction term. It measures the amount
of agreement between pairs of spins. This interaction is the most insensitive non-
trivial trace on a group of ¢ elements—it measures only whether spins agree or
disagree, but not by how much. Note, however, if ¢ = 2, this is the only nontrivial
trace, and indeed the ¢ = 2 Potts model is equivalent to the Ising magnet. For
q > 3, there are other models besides the Potts model on the spin space Q4 = SA.
If J is nonnegative, the interaction favors alignment of the spins: the energy Ha (o)
is lower if spins are aligned. The second term in Hx(o) is the external magnetic
field term, here for a field in the 1-direction. It favors alignment with the field.

We define the range R of the Hamiltonian by

R =sup{lz —y|: J, , # 0}.

z,y

Technically, we must include in the interaction term of H the sites in A within R
of A. For this purpose, we let JAr denote the boundary of A (i.e., the set of sites
y € Ly \ A within distance R of A) and we replace the interaction term in (7.1) by

Hy({ow:a €A} [{oy iy €00r}) ==Y > Jay (60,0, —1).

rEN yEAUOAR

The set ¢ = {0, : y € OAR} is called the boundary condition. Often we write
Hy (o) in place of Hy(-|p). If we take ¢ = 0, i.e. if we do not specify the spins
on OAg, then ¢ is said to be a free boundary condition. If we take o, = ¢ for
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all y € OAgr, where ¢ is a fixed element of S = {1,...¢}, then ¢ is said to be
the constant ¢ boundary condition. Finally, if A is a d-dimensional torus so that
OAr = 0, i.e. if there are no boundary sites, then the system is said to have periodic
boundary conditions.

The partition function at inverse temperature [ with boundary condition ¢ is

defined by
Zro(B) = exp(—BHa (o).

oEQA
The partition function Z, (/) induces a finite-volume probability measure on {2,

given by
) = DBy (o)
S T Zh . (B)

For future reference, we note that in d = 2, it turns out that the partition function
Z free( ) 1s equal to the partition function Zj o(5*) at the dual temperature *

defined by
(eﬁ — 1) (eﬂ* — 1) =q. (7.2)

The self-dual point, i.e. the point at which g = §*, is given by

Bs =log (1 +/q). (7.3)

An observable A is a function (i.e., a random variable) on the space of configu-
rations:

A:Qpn — C

The expectation of A with respect to vy ., denoted by (A)x ,, is

<A>A,go Z Afo)exp ( 5HA,@(U)) .

Zr o(B)
A,so UEQA

Using either the mapping to the random cluster model ([ACCN2], Theorem 2.3)
or Griffith’s second inequality [Grif], as generalized by Ginibre [Gin], it can be
shown that for either free or constant boundary conditions, an infinite-volume Gibbs
measure exists for any ferromagnetic Potts model. That is, that there exists a
measure v, such that

VAo — Vo (7.4)

as A /" ILg. This result does not require translation invariance or any restriction on
the couplings J, , other than nonnegativity.
Let us define the relevant quantities in the model. The free energy is the limit

f(ﬂvh) = Ali/m]Ld f/\(ﬂvh)

where

—log (ZA,L,O(ﬂ)) '
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Again under general conditions, the limit exists and is independent of boundary
conditions. The spontaneous magnetization is given by

S (X

where (-)1 is the thermal average in the (infinite-volume) Gibbs measure constructed
with the constant ¢, = 1 boundary condition. Finally, the two-point correlation
function with boundary condition ¢ is

(¢60,1:400,1), (B) = q%l <<5am,ay - $>>@ (8).

As we will see, the magnetization is the analogue of the percolation probability P,
and the two-point function is the analogue of the connectivity function 7(x,y).

In order to obtain alternate expressions for the magnetization and the two-point,
or spin-spin, correlation function, it is sometimes useful to represent the spin vari-
ables differently. Rather than o, € S, we can take the spin variables to be unit
vectors @, € RY7! from the center to the (equally-spaced) corners of a (¢ — 1)-
dimensional tetrahedron.

FIGURE 7.1. The spin vectors for ¢ = 3. Here, the (¢—1)-dimensional tetrahedron
is simply an equilateral triangle.

o 1 if 5, = &,,
Op * Oy =

— qu otherwise.

Note that

Hence, we can write

- - qéa'maa'y - 1
Ggp Oy = —————,

g—1

and, up to a constant, the Hamiltonian can be rewritten as

H(o) ==Y Joy(6: 6y —1)—h) é&-d
T,y z

where J},y = %Jx,y, ;Lx’y = %h and €7 is the unit vector in the spin 1-direction.
In this alternate representation, the magnetization is M(f3) = (€1 -09)1(3), and the
two-point function is simply (7, - ) ().
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Let us discuss the expected behaviors of M and (¢, - &) for various values of
g. The magnetization is the order parameter of the Potts phase transition. Noting
that M(3) is increasing in 3, we see that it defines the transition point

By =inf{p : M(p) > 0}. (7.6)

We remark that in d = 2, f; is expected, though not proven, to coincide with
the self-dual point s defined in equation (7.3). As mentioned at the beginning of
this section, the Potts model is believed to have a second-order, i.e. continuous,
transition for values of ¢ up to some critical value, and to have a first-order, i.e.
discontinuous, transition above this value. Assuming that M (/) is increasing in ¢,
this value may be defined by

e = 4e(d) = max{q € N: M(5,) = 0},

M) MDD
. :
(¢ Lt

FIGURE 7.2. The expected behaviors of M(3) in the cases ¢ < ¢. and ¢ > q.,
respectively.

It is believed that ¢ =4 in d = 2 and ¢. = 2 in d > 2. The fact that M(5;) > 0
has been established rigorously using expansion methods for all d > 2 provided ¢ is
sufficiently large ([KS], [LMR], [LMMRS]).

It is expected that the two-point function with free boundary conditions decays
exponentially for 8 < [f;:

(Fu - Ty ree ~ e~ lr=ul/E(8)

where, as usual, ~ means that the limit of the ratio of the logarithms with = and
y along a coordinate axis. Here, as in percolation, we identify £ as the correlation
length of the system. It is also expected that £(3) /" oo as 3/ By when ¢ < ¢,
while £(;) < oo for ¢ > ¢c, as illustrated below.

m(m) m(m)
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FIGURE 7.3. The expected behaviors of £(3) in the cases ¢ < ¢. and ¢ > q.,
respectively.

As we have just seen, models with first- and second-order transitions are typically
distinguished by the continuity properties of relevant quantities such as the corre-
lation length. It turns out that there is another way to distinguish them: by the
number of states at the transition point. For § < 3, all of the Potts models have
1 (pure) state, i.e. 1 ergodic component of any translation-invariant measure. For
B > 3y, the g-state Potts model has ¢ pure states; they may be induced by applying
o, = s € S boundary conditions. However, the number of states at § = 3; depends
on the order of the transition. For ¢ < ¢.(d), the ¢-state model has only 1 pure state
at ;. This should be contrasted with the ¢ > ¢.(d) models which have ¢ + 1 pure
states, and hence phase coexistence of the high- and low-temperature phases, at 3,.
The phases are separated by interfaces with a positive surface tension, which is of
course related to the finite correlation length discussed above. Phase coexistence
has been rigorously established for ¢ sufficiently large [LMR].

7.2 The Fortuin-Kasteleyn Representation

Fortuin and Kasteleyn [FK] re-expressed the ¢-state Potts model as an integer
value of a two-parameter interacting percolation model, the so-called random cluster
model. Given a set of couplings {J, 4}, the representation is defined in terms of
configurations w € Q = {0,1}%¢ where

Ka = Ka({Je,y}) = {(2,9) 120,y € La Joy 70}

is the bond lattice on L4 consisting of bonds between all pairs of points with nonzero
interaction. For subsets K C Ky, the configuration space is denoted by Qg =
{0,1}%. Given a finite subset A C L4, let K(A) denote the corresponding {.J, ,}-
dependent bond graph on A.

Throughout the rest of this chapter, we will restrict attention to the Potts model
with h = 0, but we note that the FK representation can also be derived for nonzero
external magnetic field.

We begin by obtaining the representation for the finite-volume partition function
with free boundary conditions. We write the Gibbs factor e~#Hamee(9) ag

H eﬁJm,y(éo—m,o’y_l) ,

(z,9) €EK(A)
and expand the product with the help of the identity

eﬂJm,y(éo’m,o’y _1) — ( 6mey .

1 o px,y) —I_pf,yéo'm,a'y Where pw,y = 1 — 6_

Each term of this expansion can be identified with a configuration w € Qg y): w
is chosen so that it is zero on those bonds for which the factor in the product is
1 — pe,y, and one on those bonds for which the factor is p; 05, s,. Geometrically,
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we think of the bonds b = (x,y) for which w, =1 as occupied, and those for which
wp = 0 as vacant. Sometimes we use the symbol w to denote the set of occupied
bonds in K(A), and w® to denote the set of vacant bonds in K (A).

Rewriting the Gibbs factor in expanded form, we obtain

ZA,free(ﬂ):Z Z H (1 —ps) H Db H 0o, ,0,

o€y wellg () {b:wp=0} {b:wp=1} {(z,y)=bwp=1}
=2 MMa-w I wd I o
we () {b:wp=0} {b:wp=1} 0€Qx {(z,y)=b:wp=1}

All that remains to do is evaluate the sum over o € ). As usual, w partitions A
into connected components or clusters. The delta functions require that all spins
within a given component assume the same value—any of the ¢ possible spins values.
Otherwise, the trace is unconstrained. Thus the trace gives a factor of ¢ for each
connected component of the graph (A,w) (regarding isolated points as separate
clusters). Denoting the number of clusters in this graph by #(w), we find

Z free( ) = Z H (1—ps) H oy )

we g (a) {b:wp=0} {b:wp=1}

Letting B,(w) = H{b:wb:O}(]‘ - pb)H{b:wbzl}pb denote the Bernoulli weight of w
with bond values p = {ps} = {1 — e #%}, we finally obtain

ZA,free(ﬂ) = Z Bp(w)q#(“’) .

wWELL K (A)

Similarly, we may write the expectation of of any local observable A as

<A>A,free = Z GAafTee(w)Efree(A|w) ’ (77)
wWELL K (A)
where 4o
Bp(w)g™
GA free(w) = 22 7.8
A ( ) ZA,free(ﬂ) ( )

is the weight of the configuration w, while Epee(-|w) is an average over spins with the
spins constrained to be constant on each connected cluster of w and with values for
different clusters being chosen uniformly from {1,--- ,¢}. Note that free boundary
conditions in the spin representation transform into free boundary conditions in the
FK representation.
For constant boundary conditions, one obtains a similar representation, with the
following differences (as noted in [ACCN2] and [BC]):
(i) The set K(A) is replaced by the set K+(A) of all pairs (x,y) for which at least
one of the two points x and y lies in A and the other lies in A U 0Ag.
(ii) The points of the boundary OAr are regarded as preconnected or wired, in the
sense that these points are taken to be lying in one cluster. This of course
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decreases the value of #(w) by one less than the number of connected components
of A connecting to JAg.

(iii) The expectation Epee(Alw) in is replaced by E.(A|w), where the average is com-
puted with the additional constraint that spins in clusters connected to the
boundary now assume only the value o, = ¢. Note that all ¢ constant boundary
condition measures in the spin representation transform into a single measure in
the FK representation. We call this the wired measure.

We have:
(Dpe= Y Gawir(w)Ee(4lw), (7.9)
wWE g+ ()
where
G wir(w) = M (7.10)

B ZA,WiI“(ﬂ)

and Za wir = Y eces ZA,c = 4271

We denote by fip free(-) and fip wir(-) the finite-volume measures defined by the
weights (7.8) and (7.10), respectively, and we denote by pp per(:) the analogously
defined measure with periodic boundary conditions. We can of course derive finite-
volume measures with other boundary conditions. For example, in the spin system
we could take so-called Dobrushin boundary conditions in which the spins in the
upper half of AR are taken to be in the €7 direction, while those in the bottom
half of 0A R are taken to be in the €3 direction. This would mean that the resulting
FK measure gives zero weight to configurations w with components connecting the
upper and lower halves of JAr. The problem with such a finite-volume measure
is that, at present, we do not know how to extract an infinite-volume limit. On
the other hand, we can establish convergence of the measures pip free(), fa wir(:)s
and fp per(-). Indeed (again by [ACCN2], Theorem 2.3), for free, wired, or periodic
boundary conditions, p € [0, 1], and ¢ > 1, there exists a measure y, such that

HA,e — He (711)

as A /" L4. The proof relies on the FKG inequality, which we will establish for the
random clusters measures in the next subsection.

Notice that the random cluster model is a dependent percolation model. It has
percolation weights B,(w) modified by the factor ¢#(“) . Not surprisingly, the mag-
netization and spin-spin correlation have expressions which look like percolation

probabilities and connectivities. Indeed, using monotonicity and convexity proper-
ties, one can show ([ACCN2|, Lemma 2.1 and Theorem 2.3) that

M(B) = pwir(0 < 00). (7.12)
A much more involved proof ([BC], Proposition 3.4) shows also that
<0_3x : 0_3y>free = Mfree(x = y) = Tfree(xvy)' (713)

The random cluster representation is often more useful than the spin represen-
tation, but both have their attributes. Edwards and Sokal [ES] pointed out that
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there is a joint distribution Aj , on Qg a) X 25 which has both the FK measure
ta,, and the spin measure vy , as its marginals:

AA,@(U7(‘U) (8 H <(1 - pI,y)(Swz,y,O —I_ 6Umaayp$ayéwm,ya1> .
(z,y) EK(A)

Given these weights, it 1s clear that:
(i) The conditional distribution of w given o can be obtained as follows: For each
bond b = (x,y),
(a) if o, # oy, then set w, , = 0, while
(b) if 0, = 0y, then set

{ 0  with probability 1 — p, ,
We,y = . 1.
Y 1 with probability p, 4.

(ii) The conditional distribution of o given w can be obtained as follows: Given a
cluster C (potentially an isolated site) of w, choose uniformly over the ¢ possible
spin values and set all spins in C to that value.

There 1s a very efficient computer algorithm, called the Swendsen-Wang algorithm
[SW], which alternatingly applies (i) and (ii) to approximate A. There is no rigorous
argument which shows that this procedure actually converges to the correct infinite-
volume distribution. However, the algorithm is widely believed to yield accurate
results, and is in practice much faster than the conventional Monte Carlo algorithms
based on the spin representation.

7.3 Standard Correlation Inequalities

7.3.1 FKG Inequality.

An important property of the FK representation is that, for ¢ > 1, it obeys
the Harris-FKG inequality, as discussed for percolation in Section 1.2.2. That the
g > 1 random cluster measure satisfies the FKG inequality is a consequence of the
following very useful proposition.

PropPOSITION 7.1. ([FKG]) Let (2, F,u) be a probability space with u a
measure of the form dy = fdp where p is a product measure and f is a nonnegative
function satisfying

fluve)flonw) = flw)flw') Y, €Q. (7.14)
Here, as usual,
(w V') = max(ws,w)
(@ Aw')s = min(ay, ).
Then p is an FKG measure; that is, for all increasing A, B € Fy,
W(ANB) > p(A)u(B).

We will not bother to prove this here, referring the reader instead to [FKG].
Note, however, that we have already seen the proof in case f = 1 in Theorem 1.3.
Measures which satisfy the sufficient condition in Proposition 7.1 are said to be
strong FKG measures.
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THEOREM 7.2. ([Fo], [ACCN2]) Let ¢ > 1. Then the finite-volume free, peri-
odic, and wired FK measures, [ifrce A, [iper, A, and fiwir, A, are strong FKG measures.

PrROOF. The random cluster measures with free or periodic boundary conditions
are explicitly of the form specified in the FKG theorem, while the measure with
wired boundary conditions is equivalent to a free problem on a lattice in which A g
has been collapsed to a single point. Thus it suffices to show that the function

flw) = ¢#

satisfies (7.14) for all w, w' € Qg (). For ¢ > 1, (7.14) is equivalent to

#wVw) + #whw) > #w) + #W). (7.15)

Suppose we show that for all w, n, ¢ € Qg (a) such that 5 = (,

#H(w V) =) = #w V() = #(0) (7.16)

Then given w, w' € Qg p), let n = &' and ( = w A w' and note that w V ( =
wV (wAw') =w. Hence, (7.16) implies (7.15). Finally, (7.16) is implied by the
statement that

glw,n) = #(wVn)—H#(n) (7.17)

is an increasing function of 7. We prove this by induction on the number of occupied
bonds in w.
The base case holds trivially since when w is a single bond b, we have

1 if the endpoints of b are

_ not connected in 7,
g(w,n) = { :
0 otherwise.

Assume that g(w,n) is an increasing function of 1 for w with less than n occupied
bonds. Given w with exactly n bonds occupied, we can write w = wy V wo where wq
has exactly one bond occupied and ws has exactly n — 1 bonds occupied. Using the
definition of ¢(w,-) and adding and substracting the term #(w> V 1), we have

g(w,n) = g(wr Vws,n)
= g(wi,w2 V) + g(wa,n).

Noting that ¢ = n implies wy V ( = w3 V 1 gives that ¢g(wy,ws V ) is an increasing
function. Hence, g(w,-) is the sum of two increasing functions and is therefore
increasing.

We have just shown that the ¢ > 1 random cluster measures are FKG. What
about the ¢ < 1 random cluster measures? We have the following:

COUNTEREXAMPLE: Fix a bond b such that 0 < py < 1. Then

if the endpoints of b are connected,
Pb
dl f
jin(wp = 1wy, b #b) = , regardless of w; (7.18)
————  otherwise.
po+q(1—ps)
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Notice that
>py ifg<l1,
Po

o +q(1 —pp)

=pp ifg=1,
<pp ifg>1.

Take A to be the event that b’ is occupied for all &' # b and let B be the event that
b is occupied. Then

MA(B|A) = Db,
while

ua(B) = D ualws = Www borszes) pal{wn bozs)

{wb’}b’;ﬁb
Po
=app + (1 —«
( )pb + (1 —ps)

>py, ifg<l,

<py 1ifqg>1.

Thus ¢ < 1 implies
pa(ANDB)
pa(B) > pp(BlA) = ——————,
(B) > ma(Bl4) = PE2E

so that FKG fails.

7.3.2 Failure of the BK Inequality.

The BK inequality is in some sense complementary to the FKG inequality, and
therefore one might expect it to fail for the ¢ > 1 random cluster measures. Indeed,
our FKG counterexample described above gives a counterexample here as well.

COUNTEREXAMPLE 1: Since the events A and B specified above are disjoint,

ANB=AoB.

However, for ¢ > 1, (7.19) implies that

pa(ANB)

pa(B) < pa(BlA) = (A

which violates the BK inequality.

COUNTEREXAMPLE 2: It is also possible to give a more physical counterexample
which shows that the failure of the BK inequality is intimately associated with the
discontinuous nature of the Potts’ phase transition. Let ¢ be sufficiently large to
guarantee that the Potts model has a first-order phase transition. Then it turns
out that any translation-invariant random cluster measure at p.(¢) will decompose
into two ergodic components, one representing the high-density and the other the
low-density phase-i.e., one with an infinite cluster and the other without an infinite
cluster). Now consider the event of two disjoint crossings:
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M,/\/'V

FIGURE 7.4. Two disjoint crossings.

If we know that the top crossing has occurred, then we know that the system is more
likely to be in the ergodic component containing an infinite cluster. In this case,

the bottom crossing is more likely to occur, even though it must do so disjointly
from the top crossing. Again, the BK inequality is violated.

In the next section, we will see that even though the BK inequality fails for the
g > 1 random cluster measures, we can in certain cases get a result analogous to
the BK inequality by using the decoupling inequalities of Borgs and Chayes [BC].

It is an open, and very interesting question, whether the BK inequality holds
for increasing events in the ¢ < 1 random cluster measures. We know that the
BK inequality cannot hold for all events in the ¢ < 1 random cluster measures,
since e.g. the BK inequality coincides the FKG inequality for the intersection of an
increasing and a decreasing event, and the latter does not hold for ¢ < 1. However,
if the BK inequality held for increasing events in the ¢ < 1 (finite-volume) random
cluster measures, this could be used to show the existence of the corresponding
infinite-volume measures.

7.4 The BC Decoupling Inequalities

There are three standard technical tools for factoring intersections of events in
independent percolation: the FKG inequality for monotone increasing or decreasing
events, independence for events which occur on nonrandom disjoint sets, and the
BK inequality for events which occur on random disjoint sets. As discussed in the
last subsection, the ¢ > 1 free and wired random cluster measures obey an FKG
inequality. However, due to the nonlocality of the weights (7.8) and (7.10), they do
not satisfy a BK inequality. Nor of course do they satisfy an independence relation.
Here we will review the BC decoupling inequalities [BC], which are alternatives to
independence and the BK inequality for many events of interest in a general setting.

As a substitute for independence of events occuring on nonrandom disjoint sets,
we might try to use the FKG inequality as a bound, provided that the desired events
are monotone. However, many of the events we might want to consider—especially
in the low-temperature phase—are not monotone. For example, the probability of
a connection via finite clusters is the intersection of an increasing and a decreasing
event, and the FKG inequality does not hold for two events of this form. The
presence of boundary conditions, which very often complicates proofs in the random
cluster model, can be used to our advantage here. Certain boundary conditions
decouple a set from its exterior. Many events of interest carry with them decoupling
boundary conditions for the (random) sets on which they occur. [BC] make this
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notion precise by introducing the definition of a decoupling event, see below. It turns
out that, given this definition, it is possible to prove a general inequality which is
similar to the FKG inequality and which replaces independence for events whose
random boundaries occur within disjoint nonrandom sets. This inequality holds for
any FKG measure and for events which are intersections of arbitrary events with
monotone decoupling events.

As illustrated above, the BK inequality is certainly not true in general for the
random cluster model—there are numerous examples in which the occurrence of
one event enhances the occurrence of another. However, this enhancement cannot
take place if the two events are decoupled from one another, in a sense to be made
precise in the definition below. Thus [BC] prove a second inequality, which replaces
the BK inequality of independent percolation, and which holds for the intersection
of an arbitrary event, an increasing event and a decreasing decoupling event.

In the next proposition, we actually present two versions of each of the BC
inequalities: one which is easy to formulate (but not that useful), and a more
involved one which is of the form needed in most applications. The more involved
forms are simply generalizations of the simple forms to countable disjoint unions.
All of these inequalities hold for general FKG measures. In particular, they hold
for percolation, for the general ¢ > 1 random cluster model, and for the Ising
and Potts models in the spin representation. We begin with the definition of a
decoupling event.

DEFINITION: Given a probability space (2, F, p) and events Ay, Ay, D € F, we
say that D is a decoupling event for Ay and A, if

p(Ar N Ay [ D) = p(Ay | D) p(Az | D), (7.20)

that is, if Ay and As are conditionally independent, conditioned on D. For brevity,
we will sometimes say D decouples A; from As. Pictorially, we write

A

L~ A D __
\/\—\/ TSN __7 S~ -
D _-. ST D _ - _ -
I L I N Bl e N B B N
/\_/X ) AZ
AZ

While this definition makes sense in any probability space, it may be useful
to illustrate it with a typical example from the nearest-neighbor uniform random
cluster model. Consider a set B C By which divides the lattice into two components,
an interior and an exterior: By \ B = By U By, By N By = (. The event that the
bonds of B are vacant then decouples any event on the interior Ay € Fp,up from
any event on the exterior Ay € Fp,up. Such decoupling events typically occur when
B is the boundary of a finite occupied cluster. Returning to the general context of
a decoupling event, we have:

ProrosiTION 7.3. ([BC]) Let (2, F, 1) be a probability space with Q partially
ordered and p an FKG measure with respect to this order. Then the following
inequalities hold:

The Simple Versions
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(i) Consider two arbitrary events Ay, Ay € F, and two increasing (or two decreasing)
events D1, Dy € F such that Dy decouples Ay from D, while Dy decouples A
from Ay N Dy. Then Ey = Ay N Dy and E; = Ay N Dy obey the inequality

p(Er 0 Ey) = p(Ey) p(Ey), (7.21)
or pictorially
\\ Al /’_D—‘ //—_\~-”_\\ \/—\ =~
/-\\5"” l/-\./\ ~ \\——\
pl =0 Tz e (NTa, s e R Ay,
g AZ\— \\ T---T D] 2~ P4
D2\\ X -

(ii) Let Ay € F be an increasing event, Ay € F be arbitrary, and D € F be a
decreasing event which decouples A; from A;. Then

(A N DN Az) < p(Ap(D N Az) < p(Ar)p(Az), (7.22)

or pictorially

Q/\—\./
) <

T3 IR 2PN N

/\—_/X
AZ
The Disjoint Union Versions

(i) More generally, let E;, + =1, 2, be disjoint unions of the form

7

Bi= |J AinN Din, (7.23)
neN;

where N; are countable index sets, A;, € F are arbitrary events, D; , € F are
all increasing (or all decreasing) events, and Dy ,, decouples Ay ,, from D5 ,,» while
D; . decouples A; s from Ay , N Dy, for alln € Ny andn' € Ny. Then Ey and
E, obey the inequality (7.21).

(ii) Let Ay € F be an increasing event, and let Ay € F and D € F be events for
which D N A; can be rewritten as a disjoint union of the form (7.23), with D5 ,

decreasing events that decouple A, from A, , for all n € Ny. Then the bound
(7.22) remains valid.

PROOF. Rewriting the left hand side of (7.21) as
((D2) (A1 0 Dy N Az | D2)
and using the fact that Dy decouples A, from A; N Dy, we obtain

M(Al N D1 N A2 N Dz) = M(Al N D1 N DQ)M(AQ | Dz)



100 VII. THE POTTS MODEL AND THE RANDOM CLUSTER MODEL

Applying the same procedure to the term p(A; N Dy N D3 ) and using the decoupling
event Dy, we get

M(AllemAszz): Allesz)M(Az |D2)
A1 0Dy | Dy) (D1) p( Az | D2)
A1 [ Dy) p(D2 | D1) (D) p(Az | Da)

Ay | D1)p(Az | D2) p(Dy N Dy)

1u(
= 1

1u(
= 1

By the FKG inequality,

(D1 N D) p(Ay | D1) (A2 | D2) = p(D1) y(D2) p(Ar | D) (A2 | Da)
= (A1 N Dy) p(Az 0 Dy)

proving the simple version of (7.21). The more general version of the proposition
then follows from the countable additivity of the measure o and the fact that the
events E; and E; are disjoint unions of events for which (7.21) is valid.

In order to prove the simple version of (7.22), we observe that

(A1 N DN Az) = (D) pu(Ar | D)u(Az | D)

by the definition of conditional expectations and a decoupling event. Using the
FKG inequality, we have

(D) p(Ar | D) p(Az | D) = p(A1 0 D) p(A; | D)
< (D) p(Ar) p(Az | D)
= (A1) (A2 N D)
< p(Ar) p(Az)

which proves (7.22) in the simple case. Again the more general version follows from
the simple version of (7.22) and the countable additivity of the measure. O

REMARK. It is clear from the above proof that the inequality (7.21) is reversed if
one of the two decoupling events D and D is increasing and the other is decreasing.
Similarly, the first inequality in (7.22) is reversed if A; and D are both decreasing
or both increasing.

So far, there have been two types of applications of the BC decoupling inequali-
ties. One type is technical, but quite useful: The inequalities allow us to establish
convergence of certain quantities in the random cluster model, for example conver-
gence of the so-called finite-volume connectivity function ([BC], Proposition 3.4):

TV%E = /«Lwir(w =Y, |C($)| < OO)
= Ah/r%d Pwir A(T <y, x> ON). (7.24)

The observant reader might at first assume that this convergence would follow imme-
diately from the existence of the infinite-volume limiting measure (7.11). However,
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the problem here is the nonlocality of the event {x « y}—the event may not be
contained in any given bounded region. This leads to an interchange of limits:
namely, the limit defining the event {x « y} and the limit defining the measure
twir- The interchange is not entirely technical; it is related to the way the infinite
cluster emerges from large clusters in a finite volume. In fact, the analogue of (7.24)
for free boundary conditions is actually false. Technically, the way the BC decou-
pling inequality is used to establish (7.24) is to show that the probabilities of the
finite-volume events defining {x « y} are monotone in the volume. A second type
of application of the BC inequality is less technical, and will be discussed in some
detail in Subsection 7.7.

7.5 Comparison Principles

The comparison principles are another set of non-standard correlation inequalities
for the random cluster model. They allow us to compare Potts models at different
values of p and ¢g. Given these principles, if we can prove the existence of a phase
transition at one value of ¢, we will automatically have a similar result for other
values of ¢. However, our estimates on the temperature at which the transition
occurs will deteriorate.

DEFINITION: Let (2, F, 1) and (§2, F, v) be probability spaces, and suppose there

exists a partial order on {2. We say that ¢ FKG dominates v and write p > v if
FKG

p(f) 2 v(f)

for all increasing functions f : Q — R.

In the theorem below, we will use p, , to denote a random cluster measure with
parameter values ¢ and p = {p;}. The inequality p; < ps will mean p; < pj for
every bond b € Ky.

THEOREM 7.4. ([ACCNZ2|) Suppose pp, 4, and jip, 4, are both free or both wired

(infinite-volume) random cluster measures. Let ¢1 > ¢z > 1.
(i) If p1 < py, then

Eprgr S Hpogo
FKG

(ii) while if q1(fip1) > q2(1pip2), then

Eprqr = Hpogs -
FKG

PRrOOF. First note that it suffices to establish the dominance relations for finite-
volume measures, since these relations are inherited by the corresponding infinite-
volume measures.

We will use the fact that the measure p is FKG if for all increasing events A,
B e F,

W(AN B) > u(A)(B).
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Equivalently, u 1s FKG if for every nonnegative, increasing function f with finite
expectation p(f) < oo,
p(-f)

— = ().

u(f) ria

Note that, in (i), ¢1 > ¢2 > 1 so that p,, 4, is FKG, while, in (ii), ¢o > 1 so that
Lps.q 18 FKG. In order to simplify notation, let g = pp, 4, and po = iy, 4,-
Now for either p,

poc g [ o (1 —po)t =
b

(Note that this product makes sense since we are assuming p is a finite-volume
measure.) Thus pq can be written as

with

()43, wh L —p )\
) T(dei=)

q2

Observe that
(a) #(w)is decreasing in w since occupying more bonds might connect clusters, while
(b) #(w) + >_,ws is increasing w since occupying a single bond decreases #(w) by
at most 1 but increases ), wy by 1.
Hence, in case (i), f is decreasing, while in case (ii), f is increasing, which proves
the theorem. O

Now let us briefly discuss the applications of the comparison principles to estab-
lish the existence of phase transitions in certain Potts models. These applications
are a consequence of the following corollary.

COROLLARY 7.5. ([ACCNZ2]) Suppose {J, 4} is a fixed set of couplings. Let
Bi(q) denote the inverse transition temperature defined in (7.6) for the random
cluster model with parameter ¢q. Then

Bi(q) > Bilq) > %(q')

forallq' > ¢ > 1.

PROOF. Using the random cluster expression (7.12) for the magentization, the
corollary is a straightforward application of the two comparison principles. O
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This implies that whenever we know the existence of a phase transition at a
model with one value of ¢ > 1 (e.g. percolation), we automatically know it at all
others, although our estimate of the transition temperature will deteriorate by the
ratio of the ¢’s. In particular, in [ACCN2] it was pointed out that this corollary,
combined with previous results, immediately leads to a proof of a phase transition
in the following systems:

Long-range One-dimensional Models.

Consider a one-dimensional model with long-range ferromagnetic couplings
JIay ~ C/|$ - y|87

¢ > 0. The proof of existence of a phase transition and the nature of the phase
transition in Ising models with couplings of this form, particularly the model with
s = 2, was the subject of intense investigation for over 15 years. Dobrushin ([Dol],
[Do2]), Ruelle [Rue], and Dyson ([Dyl], [Dy2]) established that the critical power
for a phase transition is s = 2: [Dol], [Do2] and [Rue] showed that there is no
long-range order if Jy , &~ |z|7* with s > 2, while [Dy1], [Dy2] showed that for any
s < 2, long-range order will occur for sufficiently large 3. That a phase transition
actually occurs in the delicate s = 2 case was finally established by Frohlich and
Spencer [FrS], inspired by the renormalization group analysis of Anderson, Yuval,
and Hamann [AYH]. Meanwhile, Newman and Schulman [NS2] showed the exis-
tence of percolation in 1/2? systems. We now realize that the [FrS] and [NS2]
results can be obtained from each other using Corollary 7.5. Moreover, we can also
automatically establish the existence of a transition for any ¢ > 1 from either of
these results.

Next, motivated by Thouless’ prediction [Th] for the 1/2? Ising model, Aizen-
mann and Newman [AN2] established the nature of the phase transition in 1/2?
percolation model. Namely, they showed that the percolation probability is dis-
continuous at the transition point (i.e., Psx(p:) > 0). This jump is known as the
Thouless effect. It is remarkable in that the system behaves in most respects like
a system with a second-order phase transition (e.g., the correlation length diverges
at the transtion point), but nevertheless the order parameter is discontinuous. Fi-
nally, using the techniques discussed here—although unfortunately not simply the
corollary—Aizenmann, Chayes, Chayes, and Newman [ACCN2] proved the Thou-
less effect for all the ¢ > 1 state models with Jy , &~ ¢/2?. In fact, many of the
techniques discussed here were developed to solve that problem.

Dilute and Random Ferromagnets.

An important and surprisingly easy application of the corollary is to study the
phase transitions in dilute and random Ising and Potts ferromagnets. As described
earlier, these are models in which the coupling J, , are i.i.d. variables distributed
according to some distribution p(.J) supported entirely on non-negative .J. They
are called dilute ferromagnets if p has an atom at J = 0; otherwise, they are just
said to be random ferromagnets. By the corollary, if we can prove the existence of
a phase transition in such a system with one value of ¢ > 1, then we have it for
all others. Obviously, the easiest case is ¢ = 1. For example, if we look at simple
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bond dilution (i.e., p(.J) has two atoms: one at J = 0 and another at J = .J, > 0),
the effect of the dilution is just a shift in the effective bond density, so that we
again have a pure percoaltion model. More complicated distributions are also quite
tractable. Not only can we use the corollary to establish the existence of a phase
transition in all the corresponding Ising and Potts models. We can also use these
methods to study the so-called crossover, when the dilution density is close to the

natural threshold, see [ACCN1].

Percolation on Wedges.

Grimmett [Grim1] studied nearest-neighbor bond percolation on slices of Z? of
the form

Sp={x €7Z%: x4 > 0, |z2| < flz1)}

where f is some strictly positive function. He showed that if

f(2) ~ alog(z),

then percolation occurs on Sy, but p.(a) — 1 as a — 0. These results were extended
to higher dimensions by Hammersley and Whittington [HW] and to Ising systems
by Chayes and Chayes [CC2]. [CC2] also showed that m. # p. for percolation on
these logarithmic wedges. Using the corollary and the aforementioned results, it
follows that if we consider ferromagnetic nearest-neighbor ¢ > 1 state Potts models
on
Sy={z € VARE T O,irriaxd|:1;i| < f(a1)}
with
f(2) = (alog z)TT,

then spontaneous magnetization occurs on Sy, but f.(a) — oo as a — 0. On the
other hand, provided that lim._.. f(2) = oo, the analogue of 7. in the system
(i.e., the point at which the correlation length diverges) coincides with that of the
full lattice Z?¢ at the same temperature. Thus there is an intermediate phase in
logarithmically growing wedges.

7.6 The DLR Equation and States of the Random Cluster Model

In this subsection, we discuss states of the random cluster model. First, we follow
almost verbatim the treatment of Borgs and Chayes [BC] and introduce the notion
of DLR (Dobrushin-Lanford-Ruelle) states for the random cluster model. We then
review the proof of Grimmett [Gr3] and Pfister and Vande Velde [PV] that the
free and wired random cluster measures are DLR states. Finally, we return to the
[BC] treatment, showing that the DLR condition implies ergodicity of the free and
wired states, and drawing some other conclusions about the structure of states in
the random cluster model.

However, before discussing DLR states of the random cluster model, let us pause
to discuss the general notion of DLR states. Given an arbitrary spin model, one
would like to find the smallest set of states G having the following properties: (1) G
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contains all limits of finite-volume Gibbs states that can be obtained with various
boundary conditions; (2) G is convex, i.e. closed under “statistical mixtures”; and
(3) G is closed under weak limits. Dobrushin ([Dol], [Do2]) and, independently,
Lanford and Ruelle [LR], proposed conditions which can be shown to lead to such a
set of states. These states are now known either as DLR states or equilibrium states
or (infinite-volume) Gibb states; the three terms are usually used interchangeably.
Basically, Dobrushin, Lanford and Ruelle showed that equilibrium states are pre-
cisely those which have the correct finite-volume conditional probabilities, where
the conditioning is the result of the boundary condition induced on the finite vol-
ume by the infinite-volume state. (That is, we draw configurations according to the
infinite-volume measure and use these configurations to specify boundary conditions
on a finite volume.) Thus, in order to define DLR states for the random cluster
model, we must see how measures in a larger volume induce boundary conditions
on a smaller volume, and we must guarantee that the measures so induced are con-
sistent with each other. This is precisely what is done in [BC], and is the treatment
we follow here.

The DLR condition is the infinite-volume analogue of the consistency condition
described above. One usually shows existence of infinite-volume measures satisfy-
ing the DLR condition by invoking the general theory of Gibbs states (see e.g. [Pr]
and [Ge]). However, the general theory requires that the finite-volume expecta-
tions used to construct the DLR equations are quasilocal functions of the boundary
conditions. Below we will define quasilocality and show that it fails to hold here
due to the nonlocality of the random cluster weights. Thus the DLR equation has
to be established explicitly. This is done for the free state by Borgs and Chayes
[BC], and for both the free and wired states by Grimmett [Grim3] and Pfister and
Vande Velde [PV]. The crux of the Grimmett and Pfister-Vande Velde proof is to
use uniqueness of the infinite cluster to show that although the specification is not
pointwise quasilocal, it is in fact almost surely quasilocal.

Here we will review uniqueness and almost sure quasilocality. We then omit the
explicit proof of the DLR condition, since given a.e. quasilocality, the remainder
of the proof is rather standard. Finally, we will return to the treatment of [BC],
showing how the DLR condition implies ergodicity of the free and wired states, and
drawing some other conclusions about the structure of states in the random cluster
model.

For simplicity, in this subsection we will restrict attention to the nearest-neighbor
random cluster model on the hypercubic lattice with uniform bond density, i.e. here
Ly = Z%, we consider B, instead of Ky, and py = p for all b. We let B(A) denote the
nearest-neighbor bond graph on A and B+(A) denote B(A) plus the bonds which
connect A to JA;:

+
B (M)={(v,y):|le—y|=1,x €A, andy € AUIA;}.

We start by defining finite-volume measures with general unconstrained boundary
conditions—conditions which permit any component to be connected to any other
component (see the second remark at the end of this subsection). The set of states
generated by all such boundary conditions is quite natural in the random cluster
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model. A larger class including constrained states will be discussed briefly at the
end of this subsection. Each measure is defined on an arbitrary finite set of bonds
B C B; with boundary

OB = {z € 2| Jy,~ € Z? with (z,y) € B, (x,z) € B°}.

[BC] specify the boundary condition by introducing a wiring diagram, W, which is
a disjoint partition of 0B into ny = 1,--- , |0B| components:

nw
W= {Wi, - Wa,} with 0B=| Wi, WinW,; =0ifi#;.

=1

They denote by W(9B) the set of all such wiring diagrams—i.e. the set of all disjoint
partitions of dB. Each component, W;, of the wiring diagram W is considered to
be preconnected or wired, so that all bonds b € B connected to points of W, are
regarded as being connected to each other. The number of components #(w) is
then computed as usual. The random cluster weight

1

= Zom L (7.25)

Gw.p(w)

defines the finite-volume measure pw g(-). Denoting by Wiee the partition with
nw = |0B| components and by Wy, the partition with only a single component,
we see that fifree,A(1) = Mwpne.,B(A)(*) and fwira(1) = pw,,,,B+a)(-), so that the
free and (fully) wired measures are just special cases of pw g(-). Note that among
the measures pyw, g(+) are some that cannot be obtained as transforms of any finite-
volume states in the spin system, namely those in which W has more than ¢ com-
ponents W; with |W;| > 2.

There is a natural partial order on the set W(9B). If W, W' € W(9B), we say
that W' is coarser than W, denoted by W' = W if for each W/ € W' there exist
Wi , Wiy, W, € W such that W/ = UL, Wi;. Notice that Wiee is the least
coarse and Wy, is the most coarse of all wiring diagrams. Moreover if W' = W,
then pw p dominates pw, g in the sense of FKG.

One of the fundamental ideas in the theory of DLR states is that configurations
on larger sets naturally induce boundary conditions on smaller sets. Here, each
configuration w € () induces a wiring diagram on each finite set B C By. The
induced wiring diagram W(B,w) is a partition into components of 9B, each of
which is connected using occupied bonds in wpe. Thus each w € {2 gives rise to a
sequence of induced finite-volume measures iy (g .),p for any increasing sequence
of sets B C By;. Henceforth we will extend the induced finite-volume measure
1w (B,w),B to a measure on the full space (€2, F) by declaring all bonds in B¢ agree
with the configuration specified by w. Using the form (7.25) of the weights Gw g
and the [BC]| definition of induced wiring diagrams, it is straightforward to check
that the (extended) induced finite-volume measures obey the consistency condition

0.504) = [ 10.0,5(05) sy, 5(4) (7.26)
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for all local events A € F (i.e. events which depend on only a finite number of bonds),
any finite set B and all B C B. This consistency condition says that the expectation
of A on the larger set is obtained by averaging its conditional expectation over
smaller sets, where the conditioning is precisely the boundary condition induced by
the configuration on the larger set. In other words, the configuration on the smaller
set 1s in equilibrium with its exterior.

Let w € Q. For each finite B, we may extend the random cluster measure
1w (B,w),B(*) to a measure Tg(+,w) on F by requiring
(i) VA€ Fp, m18(A,w) = tw(B.w),B(4),
(ii) VA € Fpe, mp(A,w) = 1 4(w), where 14 is the indicator function of A, and
(iii) 7g(+,w) is a product measure on Fp x Fpe.

For each finite B, we therefore have a function

g (F,Q) = R.

Consider the family
v=A{mg|B C By, |B| < c0}. (7.27)

By the consistency condition (7.26), the family ~ is what is called a specification
in the sense of [Pr]. (By definition, a specification is simply a family of probability
kernels obeying a measurability condition, an indicator condition of the form (ii)
and a consistency condition of the form (7.26). Here the measurability condition
amounts to the requirement that for each A € F, mp(A,w) depends only on the
part of the configuration w in B°.)

A DLR equation ([Dol], [Do2], [LR]) is just an infinite-volume analogue of a con-
sistency condition like (7.26). Thus we introduce the (unconstrained) DLR equation
for an infinite-volume random cluster state pu:

u(A) = [ 0o} i m4) (7.28)

where A € F is any local event and B C By is any finite set. As usual, the DLR
equation (7.28)—if it holds—allows us to write the infinite-volume expectation of
A as an average over finite-volume expectations. It is closed in the sense that the
average is computed with respect to the given measure p.

Let us denote the set of states obeying (7.28) by G = G(~), where as above ~
denotes the specification. States p € G will be called DLR states or Gibbs states or
equilibrium states. A prioriit is not clear whether G is nonempty, i.e. whether there
exists any p satisfying (7.28). One might try to construct such a p as a subsequential
limit of finite-volume measures pw, g—which clearly exists by compactness—but
the question of whether such a limit obeys (7.28) involves a delicate interchange of
limits. The theory of Gibbs states ([Pr], [Ge]) provides general conditions under
which (7.28) is satisfied, one of which is quasilocality of the specification.

A function f is quasilocal if it can be approximated in the supremum norm by
local functions, a property which is equivalent ([Ge], Remark 2.21) to the statement

sup | flw)—f(n)|— 0 as B — By .

W, :wWB=T1B



108 VII. THE POTTS MODEL AND THE RANDOM CLUSTER MODEL

A specification {mp} is quasilocal if the functions wg(A,-) are quasilocal for all
finite B C By and all local events A € F.

Unfortunately, due to nonlocality of the weights Gw, g, our specification is not
quasilocal. For example, the probability of the simple event {w; = 1}, conditioned
on the bonds in By \ {b}, changes discontinuously depending on whether or not the
endpoints of b are connected by a path (of any length) in By \ {b} (see (7.18) or
next paragraph). The general theory of Gibbs states therefore can not be applied
here. [BC] circumvented this difficulty by explicitly showing that the measure pigec
is a Gibbs measure.

Here we follow instead the tack of Grimmett [Grim3] and Pfister and Vande
Velde [PV] and show that uniqueness of the infinite cluster implies almost sure
quasilocality of the specification. In order to prove uniqueness, we will use the
Burton and Keane theorem. To this end, we first note that both the free and wired
measures, fifee and flyir, are stationary. Thus it remains to establish finite energy.
Now, it 1s easy to see that finite energy is equivalent to the statement: for each bond
b, the conditional probability of the event that b is occupied, given the configuration
on all the other bonds, is nontrivial:

0 < /,L(wb:1|w5,g7éb) < 1.

For the free and wired measures, it was observed already that this probability can
be explicitly calculated:

if the endpoints of b are connected,
p
. g . regardless of w(b)
plow = 1w b7 6) = { —F - otherwise
p+q(1—p) ’

where (f = fifree OF fiwir. Thus for all ¢ > 1 and all p # 0,1, the random cluster
measures e and fiwiy have finite energy. Note that this is not true in all ran-
dom cluster measures: Boundary conditions can impose constraints which exclude
certain configurations.

Let S, , the closed convex hull of the set of all stationary infinite-volume random
cluster measures at parameters p and ¢ which can be obtained as the weak limits
of induced finite-volume measures iy (g, p for some configuration w. Then each
(€ Sp 4 is stationary and has finite energy, and thus obeys the Burton and Keane
[BuK] theorem:

PROPOSITION 7.6. For any ¢ > 1 and any p € (0,1), any random cluster state
p € S, 4 has at most one infinite cluster with probability one. In particular, the
free and wired states have at most one infinite cluster with probability one.

Since the basic Burton and Keane theorem requires only stationarity, it applies
also to non-extremal states, and therefore allows the possibility of a convex combi-
nation of states with zero and one infinite cluster. If, in addition, the measures are
ergodic, then at any given value of p, there is either zero or one infinite cluster with
probability one. It will turn out that this is the case for both the free and wired
measures, although in order to prove it, we will have to use uniqueness to establish
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a.s. quasilocality and thus satisfaction of the DLR condition (which together with
the FKG ordering will then imply extremality and ergodicity). Of course, ergodic-
ity does not exclude the possibility that, for a fixed value of p, the wired state has
an infinite cluster and the free state does not—indeed, for ¢ large enough, this is
exactly what happens at the transition point.

THEOREM 7.7. ([Grim3], [PV]) Let ¢ > 1 and p € (0,1). Let p € S, 4. Then
the specification v defined in (7.27) is Q-a.s. quasilocal.

ProOOF. We follow the proof of [Grim3]. Let g(w) = pw(p,w),B(A) and define
the corresponding “discontinuity set” by

p-() {oi sw lotn) gl > 0}

NNA=wWA

where the intersection is over all boxes A containing B. Now let DA g be the event
that two points x,y € 0B are each connected to A by occupied paths of w in the
annulus A\ B, but these two paths are not connected to each other. It is easy to
see that |g(n) — g(w)| > 0 only if such an event Da p occurs. Thus

D C ﬂDA,37
A

so that
(D) <p (ﬂDA,B> -
A

But the right-hand side is zero since QDA,B can only occur if there are at least two

infinite clusters. O

It is now rather standard to show that . and pwi, satisfy the DLR equation.
We have

ProproSITION 7.8.  ([Grim3]) Let ¢ > 1 and p € [0,1]. Then pgpee € G and
Hwir S g

Moreover, this easily implies that these measures are ergodic:

THEOREM 7.9. ([BC]) Let H be any nontrivial subgroup of the translation
group and let G, C G be the set of all H-invariant DLR states. Then for all ¢ > 1,

firee and fiwiy are extremal in G, and hence are H-ergodic.

PROOF. As noted earlier, Wiee is the least coarse and Wi, is the most coarse
of all wiring diagrams, so that

[Whee B < pW,B < W,  forall W e W(IB),
F

and thus by convergence of the measure (7.11)

firee < 0 < fwir forall peg. (7.29)
FKG FKG
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Given that firee, twir € G by Proposition 7.8, it follows immediately from (7.29)
that piyree and pwiy are extremal in G and hence also in G, (since the measures
are of course H-invariant). Ergodicity then follows from the fact that all extremal
measures in G, are H-ergodic ([Pr], Theorem 4.1). O

REMARKS. (i) The Size of G: By Proposition 7.8, pifree and fiwiy are in G so
that |G| > 1 for all ¢ > 1 and all inverse temperatures 5. According to a result of
[ACCN2]| (Theorem A.2), whenever M(f3) =0 (i.e. § < 3y for systems with second-
order transitions and § < 3 for those with first-order transitions) fifree = flwir, SO
that by (7.29) and Proposition 7.8, |G| = 1. It is expected that |G| = 1 also for
B > B¢, but there are only incomplete results for d = 2: The two-dimensional dual
of the [ACCN2] result says M(p*) = 0 implies |G| = 1, i.e. there is one state for
B > ff, which presumably coincides with ;. (Recall that we expect 5 = [, in
d = 2; see equations (7.3) and (7.6).)

However, one expects more states at the transition point in systems with first-
order transitions. For ¢ large enough and d = 2, convergent expansions ([KoS],
[LMR]) can be used to show that there are ¢ 4+ 1 distinct translation-invariant
spin states (which transform into two distinct translation-invariant random cluster
states—the free and the wired). There are presumably no non-translation-invariant
states. Thus we expect |G| = 2 for = f; and ¢ large enough in d = 2. In three
dimensions, convergent expansions [MMRS] can be used to show that for ¢ large
enough, in addition to the translation-invariant states discussed above, there are in-
finitely many non-translation-invariant “Dobrushin-type” states corresponding here
to states constructed from wiring diagrams which coincide with Wy, above a cer-
tain hyperplane and with Wy, below that plane. We expect that these expansions
can also be used to show that these non-translation-invariant states satisfy the DLR
equation (7.28), so that at 5 = /3, |G| = oo for ¢ large enough in d > 3.

(ii) States with Constraints: In the remark above, we mentioned “Dobrushin-
type” states which we expect to be in G; these states were constructed from a
combination of wired and free boundary conditions. There are, however, many
Dobrushin-type states in the spin system whose transforms are not in G: namely,
mixed states in which various components of the boundary have different values of
the spin. In the random cluster model, these correspond to states with constraints—
certain components cannot be connected to other components. Therefore, in order
to formulate DLR equations for these states, one has to supplement our wiring
diagrams with some notion of constraints. While this is possible for individual
finite-volume states, it is not clear how constraints should be induced by a given
configuration w € 2, nor whether the resulting measures would obey even finite-
volume consistency conditions.

7.7 Length Scales in the Potts Models

The final subsection of these notes concerns an application of the FK represen-
tation and the methods reviewed here, particularly the decoupling inequalities, to
the question of length scales in the two-dimensional Potts models. As we already
discussed in Subsection 7.1, for ¢ sufficiently large (presumably for ¢ > 4 in d = 2),
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the ¢-state Potts model has a first-order transition, so that in particular the cor-
relation length is finite at the transition temperature: £(/3;) < oo. The results of
this subsection were motivated by a discrepancy which arose in the determination
of £(f).

In 1993, the correlation length at the self-dual point s, cf. (7.3), was explicitly
calculated using a mapping of the critical Potts model into the exactly solvable six-
vertex model ([BW], see also [KSZ], [Kl]). However, this explicit value was roughly
twice the value measured in previous numerical experiments ([PL], [GI]). In an
attempt to resolve the apparent inconsistency, Borgs and Janke [BJ] suggested that
the exact calculations might be relevant for the correlation length £_(/3) coming from
the low-/3, or disordered, phase, while the numerical work might be measuring the
correlation length £4(/) coming from the high-3, or ordered, phase. Furthermore,
they suggested the relation

4(85) = 36-(82). (7.30)

A continuous transition analogue of this relation was already known for two-dimen-
sional bond percolation, where

€)= 5601 -p) (7.31)

for all p > p. was rigorously established by [CCGKS], and for the two-dimensional
Ising magnet, where

£09) = 5€08") (7.32)

for all 5 > (3, was established via exact solution by [MW]. However, it was initially
quite unexpected to have a relation of this form at a discontinuous transition.

Let us contrast the situations. At a second-order (continuous) transition, the
correlation length diverges coming both from above and below threshold.

(),

N

[t

FIGURE 7.5. The expected behavior of £ in a system with a second-order
transition.

As we have learned, one typically assumes power laws:

EB)m&|B— B as BN By
EB)mENB—=Bl™" as B P
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Not only is it expected that

vy = V-,

(which is Widom scaling in two dimensions), but also that the amplitude ratio

E+(Be)/E—(B¢) is universal, i.e. £4(¢)/E—(B¢) depends only on the universality class
of the model. This is expected to hold in all dimensions. The two-dimensional

relations (7.31) and (7.32) of course guarantee that vy = v_.

At a first-order (discontinuous) transition, the correlation length coming from
either direction is finite. Clearly, there is no reason for these lengths to be equal.
In fact, since there is no universality at first-order transitions, it was expected that

E+(B¢) and €_(/;) should be entirely unrelated.
Op@

/‘\m@

[

[t

FIGURE 7.6. The expected behavior of {4 and £_ in a system with a first-order
transition.

The insight of [BC| was that maybe the percolation and Ising relations, (7.31)
and (7.32), are a consequence not of universality, but of two-dimensional duality, so
that such a relation could also hold for models with two-dimensional discontinuous
transitions. This turned out to be the case. The proof required extensive use of
the FK representation, including the development of the decoupling inequalities to
extend the percolation proof of relation (7.31) to the random cluster model, which
had neither independence nor a BK inequality.

The first step in the proof of the relation (7.30) is to determine exactly what we
mean by the correlation length. This part of the proof holds in all dimensions, not
just in d = 2. Clearly, the correlation length is the decay rate of some two-point
function. But which two-point function should we choose? For each set of boundary
conditions ¢, [BC] considered the full covariance matrix

Ggm(l’ - y) = <q(5(aw,m); qé(ay, n)><.0

where (A; B), = (AB), — (A),(B), is the truncated expectation of the functions
A and B. The nontrivial eigenvalues of this ¢ x ¢ matrix are the invariant two-point
functions, and their decay rates are therefore the correlation lengths.

In the disordered phase (i.e. for # < f3;), it is appropriate to consider the covari-
ance matrix with free boundary conditions, G{'t (v — y). For ¢ > 1, [BC] find that

free
this is proportional to the standard two-point function, which in turn is equal to
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the connectivity function in the random cluster representation:

B = ) = (@00m.n) = D (3(7r.0) = D e

= (qé(m, n) - 1)Tfree($ - y)7 (733)

see equation (7.13). Here the connectivity, Tiee(®—Yy) = Tiree(2, y), is the probability
with respect to the free boundary condition random cluster measure that = and y
lie in the same component. It is easy to establish relation (7.33) in a finite volume.
Taking the infinite-volume limit requires monotonicity, which is guaranteed by the
FKG inequality. We note that, in the disordered phase, the covariance matrix
contains no more information than the standard two-point function, or equivalently,
the connectivity function. The matrix (7.33) can easily be diagonalized, yielding a
simple eigenvalue zero and a (¢ — 1)-fold degenerate eigenvalue

Gfree(x - y) = qTfree(x - y)- (734)

The problem is more subtle in the ordered phase, where it is appropriate to
consider the matrix GI""(x — y) with fixed constant boundary conditions, ¢ € S =
{1,--- ,q}. Defining the finite-cluster connectivity, 7 (z —y) = 71l (2, y), to be the
probability, in the wired random cluster measure, that = and y lie in the same finite
component, and the infinite-cluster covariance, Cyi(z — y), to be the covariance,
again in the wired measure, of the events that = and y lie in the infinite component,
[BC] prove that for ¢ > 1 the matrix elements G'"(x — y) are linear combinations
of 7l (z —y) and Cyi(z — y), namely
G (@ —y) = (¢6(m,n) = 1) 7gh (@ — y) + (¢8(m, ¢) — 1)(gé(n, ¢) — 1)Cyir(a (— y)-)

7.35

We remark that while the finite-volume analogue of (7.35) is a straightforward
consequence of the FK representation, the proof of the infinite-volume limit involves
some subtleties related to how the infinite cluster emerges from large finite clusters
in the wired problem. This time, the required monotonicity is a consequence of
the BC decoupling inequalities (see the discussion at the end of Subsection 7.5, in
particular equation (7.24)).
Percolation analogues of 711
conditions—arose previously in the percolation proof of [CCGKS], where they ap-

(r —y) and Cyir(x —y)—in the absence of boundary

peared as a natural decomposition of the truncated percolation connectivity in the
ordered phase. There, however, they did not have independent significance, appear-
ing only as a sum. The question naturally arises whether they have independent
significance here. Obviously, this is not the case for ¢ = 2, for which (7.35) can be
rewritten as

G (x —y) = (26(m,n) — 1) (rgh(z — y) + Cwir(z — y)) ,

involving again only the sum 72 (2 — y) + Cyir(z — y).

wir
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For ¢ > 3, however, the fixed boundary condition covariance matrix GI'"(«x
y) has a richer structure. [BC] prove that it has a simple eigenvalue zero and a
nontrivial simple eigenvalue

Gin(x —y) = (e —y) + a(q — 1)Cuin(z — y) (7.36)

both corresponding to the trivial representation of the unbroken subgroup S,—; of
permutations of S\ {c}, as well as one (¢ — 2)-fold degenerate eigenvalue

GO(e—y) =gz —y), (7.37)

corresponding to the remaining orthogonal subspace.! Thus we see that for ¢ > 3,
the finite-cluster cluster connectivity, i (z — y), has independent algebraic signifi-
cance as an eigenvalue of the covariance matrix, and hence also physical significance
in terms of the associated one-particle spectrum. As for the infinite cluster covari-
ance Cyi(z —vy), it can be shown ([BC], Theorem 4.3) that its decay rate is equal to

the decay rate of the eigenvalue vali)r whenever the magnetization is positive. Thus
although Cyir(@ — y) does not have independent algebraic significance, its decay
rate does.

Given the eigenvalues (7.34), (7.36), and (7.37) one naturally defines the inverse
correlation lengths:

1
= — lim —lo Giree(), 7.38
gfree(ﬂ) |z|—o0 |$| Bt ( ) ( )
L i L 0e6W(a) (7.39)

G bl
and .
— lim — logG'? 7.40
€)= g . o
In all cases, the limits are taken so that x lies along a coordinate axis. [BC] show
that existence of the limits (7.38) and (7.40) can be established for all ¢ > 1 by using
a random cluster analogue of the subadditivity argument we discussed in Chapter
2. Unfortunately, however, the existence of the limit (7.39) does not follow from
subadditivity. Instead, [BC] use a so-called reflection positivity argument in the
spin representation; see the paper for more details.

All three correlation lengths coincide in the high-temperature regime, where as
we mentioned earlier, their common value is often denoted by £qis(f). In the low-
temperature regime, we expect {pee(J) = 0o. Also as mentioned above, the non-
trivial correlation length in this regime is often denoted by &,a(). Here, however,

we see that for ¢ > 3, there are two a priori different non-trivial lengths, fsvlli(ﬂ)

and fwn(ﬂ). Equations (7.36) and (7.37) immediately imply that

By > €@ ), (7.41)

! For the Ising model (¢ = 2), G7"(z —y) has only the trivial eigenvalue zero and the eigenvalue

Gl (@ —y).
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so that the correlation length .fgvlli of the symmetric state (i.e. symmetric with re-
spect to S,_1) is not smaller than those of the unsymmetric states. An interesting
open question is whether or not the inequality is strict. It is worth noting that in
percolation, analogues of Cyi(z — y) and 7% (2 — y) in the absence of boundary
conditions have equal exponential decay rates [CCGKS], which here would imply
equality of fsvlli(ﬂ) and fsvzli(ﬂ) However, it is not at all clear whether the Potts
models for ¢ > 3 should have analogous behavior. In fact, motivated by the [BC],
there is recent numerical evidence [JK] suggesting that the two lengths are indeed
different. We consider strictness of the inequality (7.41) to be a fascinating open
question.

We return finally to our original question, namely the discrepancy between the
exact and numerical correlation lengths of two-dimensional Potts models with dis-
continuous transitions. [BC]’s resolution of the discrepancy is a relation of the con-

jectured form (7.30) in terms of the smaller ordered correlation length, .fgvzli Their
result follows from a dichotomy which they prove for all two-dimensional random
cluster models with ¢ > 1. In addition to the conjectured relation, the dichotomy
implies v = v_ for Potts models with continuous transitions. Let PI*¢(3) be the

percolation probability in the free boundary condition random cluster measure. The

[BC] dichotomy is: If PIe¢(3*) =0, then

1 *
55&721;(6) - §‘€free(ﬂ ) 9 (742)
whereas if PI¢(3*) > 0, then

Enee(B) = EL(B) = €GN(B). (7.43)

In order to interpret the dichotomy, we supplement it with the two-dimensional
relation

P () PIe(5%) = 0, (7.44)

where PY(3) is the percolation probability in the wired measure, which is of
course equal to the spontaneous magnetization M(/3). Note that (7.44) shows that
Pree(3*) > 0 implies M(3) = 0, so that (7.43) is simply the equality of the three
correlation lengths in the high-temperature regime, as mentioned earlier.

The more interesting corollaries follow from the first branch of the dichotomy, i.e.
the duality relation (7.42). In order to see this, we combine (7.44) with the obvious
bound PY*(3) > Ple¢(3) to obtain PIe¢(3) Plee(3*) = 0, so that PIe¢(5,) = 0.

Since PI'*¢(3*) is an increasing function of 4*, this in turn implies
Plree(p*)y =0 for all 3> f,. (7.45)

Equation (7.45) implies in particular that PZe¢(3) is left continuous at the self-
dual point 5. Moreover, it means that that the first branch of the dichotomy (i.e.
equation (7.42)) holds throughout the low-temperature phase 3 > ;. For systems
with first-order transitions, this implies the conjectured relation at 3,:

‘55&/2&(58) = %‘gfree(ﬂs)-
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For systems with second-order transitions, (7.42) is a generalization of the afore-
mentioned results on two-dimensional percolation [CCGKS] and the Ising magnet
[MW]. In particular, it gives a strong form of Widom scaling as 3 — Fs: If {ee( %)
diverges with critical exponent v, £pee(3%) ~ |% — 35| 7" as 8* /7 35, (7.42) implies
that fsvzli(ﬂ) diverges with the same exponent: f&ii(ﬂ) ~ |3 — Bs|77 as B\, Bs with
v = v. Moreover, the amplitudes are related by a factor of 2.

As noted above, the interpretation (and in fact, the proof) of the dichotomy
(7.42) and (7.43) requires the relation (7.44), which [BC] obtain as a special case of
a general two-dimensional result of Gandolfi, Keane and Russo [GKR]. However, in
order to apply the [GKR] theorem, they need to know that the free random measure
is ergodic, a result which [BC] establish in all dimensions. We have of course already
seen most of the proof of this result in Subsection 7.6, based on the theorems of

Grimmett [Grim3] and Pfister and Vande Velde [PV].

We close these notes with a heuristic, pictorial proof of the more interesting
branch of the dichotomy, namely relation (7.42), under the hypothesis PXe¢(3*) = 0.
The actual proof is dozens of pages and involves technicalities which we certainly
do not want to address here. Instead, we will simply indicate arguments for upper
and lower bounds of the form

Twin(8) S (Tiree( 8%))?

and

Tuir(8) 2 (Tiree(87))?

based on duality and the two decoupling inequalities. The desired relation (7.42)
follows as the exponential decay rate of the resulting equality

Tuie ()@ = y) ~ (Treec (") (@ — ))?.

Here <, 2 and ~ are meant in the sense of logs and limits; see [BC] for the precise
statements and proofs.

The Upper Bound.

Begin by writing 718 (3)(x —y) graphically and noting that the decay rate fsvzli(ﬂ)
is the result of a double limit—first taking the volume to infinity and then taking
|# — y| — oo. Here we would like to “almost interchange” these two limits, which
turns out to be impossible since the desired inequality goes in the opposite direction
from the a priori inequality. However, with a good deal of work involving the first
decoupling inequality and the finite energy condition, we can essentially take these
two limits simultaneously—which we will represent graphically as pulling in the
boundaries:
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Ta(B) ~ /“L\f/ir,/\ (\\ '/\/' 3

8
~ /LLWiI“,A N 7z

Here, of course, solid lines represent bonds and dotted lines represent dual bonds.
Next we use duality, which tells us that

bonds — dual bonds,
dual bonds — bonds,
B — B

and

wir — free.

PR (8) ~ il s "

But this is exactly of the form needed to apply the second BC decoupling inequality.
We obtain

We have

Ay <ul, [¢7 N\

~ Tfiiclele(ﬂ*)zv
as desired.
The Lower Bound.

Again we begin by writing 718 (3)(x —y) graphically. For a lower bound, we note

that we need only devise one mechanism to ensure that the desired event occurs. The
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desired events is, of course, a direct bond connection from x to y and a dual bond
“bubble” around the connection. Let us require that the “bubble” be in the form
of four paths: two horizontal paths, each confined to rectangles of length roughly
|z — y| (and width independent of |x — y|), and two vertical paths connecting the
horizontal paths. Since the horizontal dual bond paths are confined to rectangles,
it follows that each of them must be surrounded by paths of direct bonds which
are the boundaries of the dual clusters in the rectangles. Thus the direct bond
connection from x to y is essentially (i.e. up to factors which are uniform in |z — y|)
ensured by the requirement that the horizontal paths stay in their rectangles. We

have

fin

W

Next, using finite energy, we remove the vertical paths (noting that the cost is

uniform in |z — y|):

ir

fin

T

Note that we have now explicitly drawn the direct bond boundaries of the dual

bond clusters.

As in the proof of the upper bound, we now use duality, which gives us

fi

Tw

wir

n
1T

(8) ~ /“L\f/ir,/\

B
Z /“Lwir,A

(8) 2 /“L\f/ir,/\

*

(6) Z /“Lfﬁree,/\
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But this is exactly of the form needed to apply the first BC decoupling inequality.
We have

fi :
Twﬂ(ﬂ) Z /“Lfﬁree,/\ ‘\\ /\/ /"

~ Thee(B7)%.

This is almost what we want, except that the connections are forced to be finite,
i.e. we have 7{il (3*) rather than Tgeo(*). However, we have not yet used our
hypothesis PI¢¢(3*) = 0. This ensures that bonds are not percolating in the free
measure at temperature 4%, which means that the event we want is equal to the

fi
event we have, up to a set of measure zero. Thus 7020 (%) = Tiree( ") and we have

Twie (8) 2 (Tieee(5))7,

which completes our heuristic argument.
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