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Abstract We describe a fluid model with time-varying input that approximates a multi-
class many-server queue with time-varying arrivals (specifically, the multiclass
G/GI/N +GI queue). We show how to use the restricted fluid model with constant
input rate to approximately solve scheduling control problems for a queue with
constant arrival rate. The key is to characterize the invariant states of the fluid
model, because they typically provide an approximation to the mean steady-state
behavior of the queue under a wide range of scheduling policies. The resulting fluid
control problem motivates using a static priority scheduling policy when the objective
is to minimize the long run average abandonment rate, but may motivate a different
class of scheduling policies when there are also holding costs. We end by discussing
several open problems.
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1. Introduction

Throughout a long history in the academic literature, scheduling problems have been studied
by researchers in the fields of business, engineering, and mathematics. Scheduling attracts
wide interest because of the central role it plays in many different application environments,
including manufacturing and production systems [58], large-scale computing systems [32],
service systems such as call centers [26, 1], and healthcare systems [35]. Fundamentally,
scheduling problems ask how to pair incoming requests for service or processing with the
resources available (whether they be machines or human employees). Scheduling endures as
an interesting and relevant problem because of its non-trivial impact on response time (that
is, the time between when a request arrives and when it has been handled).

This tutorial paper considers scheduling in the context of a multiclass many-server queue.
In this queue, customers request service and servers are the resources available. Each server
can provide service to at most one customer at a time. This is a one-pass system, meaning
that each customer sees a server at most once. Waiting customers are impatient, and will
abandon the system without receiving service if their wait becomes too long.
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Booth School of Business.
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The notation commonly used to describe the multiclass many-server queue we study is
G/GI/N + GI. The first “G” refers to the class specific customer arrival processes that
are general counting processes in the sense that they can be time-varying and only need
satisfy mild restrictions (see (4) and the surrounding paragraph). The second “GI” refers
to the fact that the class specific amounts of time required for servers to process customer
requests are independent and can be described by any general distribution that satisfies
mild restrictions (see Assumption 1). The third “GI” refers to the class-specific patience
distributions that govern how long customers will wait to enter service before abandoning,
which are independent and satisfy mild restrictions (see Assumption 1). The independence
assumption is more natural for situations in which the customers cannot observe the queue
than for situations in which they can. The arrival processes, service times, and patience
times are all independent of each other1. The “N ∈ {1,2, . . .}” is the number of servers,
which implies that up to N customers can be processed in parallel. If N +n customers are
present in the system for any positive integer n, then at least n customers must be waiting
(and more than n customers will be waiting if servers can idle in the presence of waiting
customers).

The scheduling policy determines the sequence in which waiting customers are served.
If customers are homogeneous, then a common scheduling policy is first-come-first-served
(FCFS), which serves customers in the order in which they arrive. However, in general,
customers are heterogeneous, and have different arrival patterns, different processing require-
ments, and different waiting time behaviors, as well as being of different importance. We
would like to have methodology that gives rise to scheduling policies that account for cus-
tomer heterogeneity.

(a)Exponential(1) patience distribution. (b)Uniform(0,2) patience distribution.

Figure 1. The simulated average queue size in the G/GI/N +GI queue with two classes, each
having Poisson arrivals with rate 60 arrivals per time unit, N = 100 servers, and Exponential service
time distributions with mean equal to one time unit.

Figure 1 emphasizes that the scheduling policy is a first order determinant of the quality
of service in a system in which the customers are grouped into two different classes2 . (Expo-
nential(1) refers to an exponential distribution with mean 1 time unit and Uniform(0,2)
refers to a uniform distribution with lower bound 0 and upper bound 2 time units.) When
priority is given to one class over the other, almost all of the adverse effects associated with
congestion (such as waiting) are experienced by the low priority class. “Fair” policies, such
as FCFS and randomizing over which class receives service by flipping an unbiased coin when

1 Although this is common in the queueing literature to assume such independence, correlation between
service and patience times has been observed empirically [55], and is studied in the recent paper [65].
2 Each simulation shown in Figure 1, and later in Figure 2, is run until 5 million customers arrive, with the
time before the arrival of the 1000th customer considered a “warm-up” period and discarded. The numbers
graphed are for one simulation run.
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customers from both classes are waiting, result in both classes experiencing similar amounts
of congestion. These observations are true regardless of the patience distributions. However,
as can be seen by comparing Figures 1 (a) and (b), the total average queue length (that
is, the number of customers waiting) is affected by the patience distribution. In contrast,
Figures 2 (a) and (b) show that the percentage of customer abandonments is not affected
by the patience distribution.

(a)Exponential(1) patience distribution. (b)Uniform(0,2) patience distribution.

Figure 2. The simulated average abandonment percentage in the G/GI/N +GI queue with two
classes, each having Poisson arrivals with rate 60 arrivals per time unit, N = 100 servers, and
Exponential service time distributions with mean equal to one time unit.

Figures 1 and 2 lead us to wonder how much the patience distribution should affect
the scheduling. Figure 2 suggests that when abandonments are costly, the system manager
should give priority to the more costly class, regardless of the patience distribution. However,
when the system manager also cares about congestion effects such as average queue lengths
(which also by Little’s law determine average wait times), then Figure 1 suggests that the
patience distribution may play a role. To study these questions, we use fluid approximation
methodology, beginning with the case that only abandonments are penalized, and later
extending to the case where queue lengths are penalized through holding costs. The value
of this methodology is supported by the following rate calculation, that is consistent with
fluid scale: When priority is given to one class, the other class’s abandonment percentage
should be approximately

low priority class arrival rate - remaining service capacity for that class

low priority class arrival rate
=

60− 40

60
= 33.33%.

The predicted 33.33% abandonment matches the simulated percentages in Figure 2.
The main purpose of this paper is to discuss a fluid model for the multiclass many-server

G/GI/N +GI queue that allows the arrival process to have a time-varying rate vector and
is valid for a wide range of natural scheduling policies. The fluid model is a first order,
law-of-large numbers, deterministic description of the system evolution. The fluid model
presented here arises in [59] as a means for characterizing fluid limit points for a general
class of scheduling policies. It has origins in the single class papers [42, 44], and in the
multiclass paper [9], which studies static priority scheduling. The fluid model presented here
is as in [9], but with more fundamental relationships replacing the static priority policy
specific equations.

The fluid model, in contrast to the discrete-event queue, is powerful because of its analytic
tractability, which makes it well suited to help inform scheduling decisions. We show how to
make these decisions when the fluid arrival process has constant arrival rate vector, but there
are also practical benefits to presenting the more general fluid model (with time-varying
rate) because of the ubiquity of time-varying arrival rates in real life (and we hope that the
more general fluid model will be helpful for future research).
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We characterize the fluid model invariant states when the fluid model (absent policy spe-
cific scheduling equations) has constant arrival rate vector. The fluid model invariant states
are those states for which a solution to the fluid model equations remains constant in time.
The importance of characterizing the invariant states is that they provide an approximation
to the mean steady-state system behavior under different scheduling policies. Then, the fluid
model invariant states can be used to formulate a fluid control problem that approximates a
scheduling control problem of interest for the multiclass many-server queue. Looking ahead,
we propose to use the fluid control problem in (23) to provide insights into what can be a
good scheduling policy for the scheduling control problem stated in (1).

The remainder of this paper is organized as follows. Section 2 details a scheduling prob-
lem formulation that penalizes only abandonments. We write the fluid model equations in
Section 3, and we characterize the fluid model invariant states when the arrival rate vector
is constant in time in Section 4. Section 5 sets up the fluid control problem and Section 6
provides the solution. We suggest some open problems in Section 7, including a discussion
of the case when congestion is penalized through holding costs. Sections 8 and 9 provide the
proofs of the results stated in this paper (Theorem 1 and Lemma 1).

2. Problem Formulation

We study the multiclass G/GI/N + GI queue shown in Figure 3. Customers from class
j ∈ J := {1, . . . , J} arrive according to a counting process Ej(t), that is independent of all
other customer arrival processes. Each customer arrives with a patience time and abandons
the system without being served if service is not commenced before the patience time expires.
The patience time is the maximum amount of time a customer will wait in the system to
begin service, and is also known as the reneging time in the literature. The N servers are
fully flexible in the sense that every server can serve every customer; however, the service
time may depend on the customer class. Upon arrival each class j customer independently
samples from the distribution determined by cdf Grj having mean 1/θj ∈ (0,∞) to find his
patience time and from the distribution determined by cdf Gsj having mean 1/µj ∈ (0,∞) to
find his service time, j ∈ J. The superscript r is mnemonic for reneging and the superscript
s is mnemonic for service.

𝑁𝑁 Servers

𝐸𝐸1

𝐺𝐺1𝑟𝑟 , 𝑐𝑐1,𝑎𝑎1
FIFO

𝐺𝐺2𝑟𝑟 , 𝑐𝑐2,𝑎𝑎2
FIFO

𝐺𝐺𝐽𝐽𝑟𝑟 , 𝑐𝑐𝐽𝐽 ,𝑎𝑎𝐽𝐽
FIFO

𝐸𝐸2 𝐸𝐸𝐽𝐽

𝐺𝐺1𝑠𝑠 𝐺𝐺𝐽𝐽𝑠𝑠𝐺𝐺2𝑠𝑠

Figure 3. The V-model: Multiple customer types and fully flexible servers.

Assumption 1. We assume Ej is a counting process (that is, a nonnegative, non-
decreasing process that assumes integer values, is right-continuous with left limits, and satis-
fies Ej(0) = 0) for each j ∈ J. We assume Grj and Gsj are absolutely continuous with density
functions grj and gsj that have (possibly infinite) right edges of support

Hs
j := sup{x∈ [0,∞) : 1−Gsj(x)> 0} and Hr

j := sup{x∈ [0,∞) : 1−Grj(x)> 0},
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for each j ∈ J. We let

hrj(t) :=
grj (t)

1−Grj(t)
for t∈ [0,Hr

j ) and hsj(t) :=
gsj (t)

1−Gsj(t)
for t∈ [0,Hs

j )

be the associated hazard rate functions, for each j ∈ J.

The scheduling policy determines what to do when a server is available. In particular,
when customers from multiple classes are waiting, the scheduling policy must specify which
class, if any, the server should next serve. Within the class selected, the customer who has
waited the longest will be served; this customer is called the head-of-line (HL) customer.
Equivalently, within any given class, the scheduling policy respects FCFS ordering. If a
server becomes available to find no waiting customers, then the server necessarily idles.

Customer abandonments are a clear indication of customer dissatisfaction. Consequently,
abandonments are costly. However, all abandonments may not be equally costly. For exam-
ple, in a revenue-generating system, the abandonment of a customer from a higher-revenue
class costs more than that of a customer from a lower-revenue class. To capture this distinc-
tion, we assume there is a class-dependent abandonment cost aj ∈ (0,∞), j ∈ J. (Later, in
Section 7, we will also allow a class-dependent holding cost cj ∈ (0,∞), j ∈ J.) The process
Rj(T,π) tracks the cumulative number of abandonments from class j ∈ J under scheduling
policy π.

Our objective is to find a scheduling policy π that minimizes the long run average cost:

C(π) := lim sup
T→∞

1

T
IE

 J∑
j=1

ajRj(T,π)

 .
The class of HL scheduling policies Π that we consider are those that (i) do not assume
knowledge of the future, (ii) enforce that once a customer enters service that customer stays
in service until completion, and (iii) satisfy a mild condition that ensures the oscillations of
the processes tracking the number of customers from each class that enter service are not
too large. The class Π allows idling scheduling policies; that is, the scheduling policy can
be such that servers sometimes idle when customers are waiting in the queue. (A precise
mathematical statement specifying Π can be found in the first Definition in Section 2.5
in [59].) Thus, we would like to find π? ∈Π such that

C(π?) := inf
π∈Π
C(π). (1)

The problem (1) is not amenable to exact analysis, and so we investigate approximate
solutions. In particular, we use the fluid model presented in Section 3 to construct an analyt-
ically tractable approximating control problem. The fluid model is more easily understood
after clearly defining the G/GI/N +GI queue state space, which we do next.

The State Space

We let R := (−∞,∞) denote the set of real numbers, R+ := [0,∞) the set of nonnegative
real numbers, and Z+ := {0,1,2, . . .} the set of nonnegative integers. For H ∈ R+ ∪ {∞},
M[0,H) is the set of finite nonnegative Borel measures on [0,H), endowed with the topology
of weak convergence, which is a Polish space. The G/GI/N +GI queue state at time t∈R+

is described as follows: For each j ∈ J,

• αj(t)∈R+ is the time elapsed since the last class j customer arrived to the system;
• Xj(t)∈Z+ is the number of class j customers in the system (either waiting in the queue

or being served);
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• νj(t)∈M[0,Hs
j ), shown in Figure 4(a), encodes the length of time every class j customer

in service at time t has been in service, and is also known as the time t age-in-service
measure;

• ηj(t)∈M[0,Hr
j ), shown in Figure 4(b), stores the amount of time that has passed between

each class j customer’s arrival time up until that customer’s potential abandonment time
(which is the arrival time plus the sampled patience time), for every class j customer that
arrived before time t, and without regard for whether or not that customer has entered
service, and is also known as the time t potential queue measure.

The measures νj and ηj track the evolution of unit atoms over time, where each atom
is associated with a particular class j customer’s time-in-service, or time-since-arrival, as
shown in Figure 4.

Customer entering service has age 0.

Each dot is a unit atom whose position represents the time elapsed 
since that customer began service.  As time evolves, each atom shifts 
to the right at rate 1, until service completion. The maximum dot 
position cannot exceed 𝐻𝐻𝑗𝑗𝑠𝑠.

0

Customer is no longer tracked once the time spent 
being served exceeds that customer’s service time.

(a)Age-in-service measure-valued process νj .

The HL 
customer 

An arriving customer has waited 0 time units.

Each dot is a unit atom whose position represents the time elapsed 
since that customer arrived.  As time evolves, each atom shifts to 
the right at rate 1 until its potential abandonment time.  The maximum 
dot position cannot exceed 𝐻𝐻𝑗𝑗𝑟𝑟.

0

Customer is no longer tracked once the time elapsed 
since arrival exceeds that customer’s patience time.

Customers with position 
at or below the HL customer 
are waiting in queue.

Customers with position 
larger than the HL customer 
have entered service.

(b)Potential queue measure-valued process ηj .

Figure 4. A graphic representation of the state space measures for a given class j ∈ J.

The fourth bullet point requires additional explanation. The measure ηj , j ∈ J, tracks
class j customers that are “potentially” waiting in the queue. Customers “potentially” in the
queue are those that have arrived, but whose potential abandonment time has not passed.
The term potential refers to the fact that such customers may or may not have entered
and/or finished service. In particular, the potential customers waiting in queue are the HL
customer and those that have waited less than the HL customer. All potential customers
that have waited longer than the HL customer have entered service (and may or may not
have finished service). The fact that the potential queue measure ηj , j ∈ J, is independent
of the scheduling policy is helpful for analytic tractability.

As our goal is to study an associated fluid model, we do not provide the full system
dynamics required to determine how the G/GI/N +GI state evolves over time here. For
further detail, we refer the reader to Section 2 of [59]. Instead, we provide some idea of how
other processes of interest can be derived from the state. Suppose the state at time t≥ 0
is (α(t),X(t), ν(t), η(t)). Then, the number of class j ∈ J customers Bj(t) in service at time
t ≥ 0 is found by integrating the measure νj(t) over x ∈ R+ to count the number of unit
atoms contained in the measure (i.e., count the number of dots on the x-axis in Figure 4
(a)), so that

Bj(t) =

∫ Hsj

0

νj(t)(dx). (2)

From the above display, the number of class j ∈ J customers Qj(t) waiting in queue at time
t≥ 0 is

Qj(t) =Xj(t)−
∫ Hsj

0

νj(t)(dx) =Xj(t)−Bj(t).
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Similar reasoning as above shows that the number of class j customers whose potential
abandonment times have not yet passed at time t≥ 0 is∫ Hrj

0

ηj(t)(dx).

The above display is also interpreted as the number of class j customers potentially in the
queue at time t≥ 0, and so is an upper bound on the number of class j customers actually
waiting in the queue at time t≥ 0; i.e.,

Qj(t) =Xj(t)−Bj(t)≤
∫ Hrj

0

ηj(t)(dx). (3)

3. The Fluid Model with Time-Varying Input

The input to the fluid model is an arrival function E having domain R+ and range
RJ+. The arrival function is continuous, and each component has initial value zero and is
non-decreasing. The arrival function arises as the fluid limit for a sequence of multiclass
G/GI/N +GI queues, as introduced in Section 2, as the number of servers tends to infinity
(N →∞) while simultaneously increasing the volume of arrivals to be of the same order,
order N . More specifically, if we consider a sequence of queues, indexed by the number of
servers N , and let ENj , j ∈ J, be the class j arrival process to the queue with N servers, then
the arrival function E arises from the functional strong law assumption

P

(
lim
N→∞

max
j∈J

sup
0≤t≤T

∣∣∣∣∣ENj (t)

N
−Ej(t)

∣∣∣∣∣= 0

)
= 1, for any T ∈ (0,∞). (4)

For example, if, for each j ∈ J, ENj is a renewal process with rate λjN for specified λj ∈
(0,∞), so that the arrival rate to each class increases linearly as the number of servers
N increases, then (4) holds with Ej(t) = λjt, t ∈ R+, for each j ∈ J. (For introductory
background on the functional strong law for renewal processes, see Sections 5.4 and the
beginning of Section 5.5 in [18].) As another example, if, for each j ∈ J, ENj is a non-
stationary Poisson process with time-dependent instantaneous arrival rate function Nλj(t)
that is nonnegative and integrable on [0, t] for all t ∈ R+, then (4) holds with Ej(t) =∫ t

0
λj(s)ds <∞ for each j ∈ J and all t∈R+, so that the resulting fluid arrival function has

time-varying rate.
The condition (4) provides an explicit connection between the G/GI/N + GI queue

described in Section 2 and the fluid model we specify in this Section. Under mild asymptotic
conditions, that fluid model has solutions that arise as limit points of sequences of functional
law of large numbers scaled state descriptors for multiclass G/GI/N +GI queues operating
under any scheduling policy in the class Π; see Theorem 4.1 in [59].

The astute reader will have noticed that in the paragraph surrounding (4) we re-used the
notation Ej , j ∈ J. In Section 2, Ej denotes the class j arrival process to the G/GI/N +GI
queue. In the paragraph surrounding (4), ENj denoted the class j arrival process to the
G/GI/N +GI queue, and Ej denotes the jth component of the arrival function E for the
fluid model. From this point forward, whenever we refer to a process, measure, or quantity
associated with the G/GI/N+GI queue, we use the superscript N . Without the superscript
N , the reader should interpret the process, measure, or quantity as being associated with
the fluid model.

The scaling assumed in (4) (that is, the division by N) is helpful to keep in mind to
understand the intuition behind the fluid model. The result of the scaling is that the cus-
tomers are no longer thought of as individual units arriving at discrete points in time but
are instead thought of as a fluid that flows continuously into the system over time, and may
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stay in the system for a positive amount of time before departing, either through service
completion or abandonment. In the remainder of this section, the term “scaled” applied to
a process, measure, or quantity associated with the multiclass G/GI/N +GI queue means
that process is divided by N .

The fluid model state space follows from the scaled state space for the G/GI/N +GI
queue when the number of servers N increase to infinity and (4) holds. Because the arrival
function E is continuous, we do not need to track the time elapsed since the last arrival.
Due to (4), this is zero in the limit. However, the other elements of the G/GI/N +GI queue
state space are relevant. The fluid model state at time t ∈ R+ is described as follows: For
each j ∈ J,

• Xj(t)∈R+ approximates the scaled number of customers in the system at time t;
• νj(t)∈M[0,Hs

j ) is a measure-valued function that approximates the scaled age-in-service
measure at time t;

• ηj(t) ∈M[0,Hr
j ) is a measure-valued function that approximates the scaled potential

queue measure at time t.

We endow the product space RJ+ with the usual Euclidean topology. We set

X :=RJ+×
(
×Jj=1M[0,Hs

j )
)
×
(
×Jj=1M[0,Hr

j )
)
,

and endow X with the product topology, which is a Polish space (recalling that M[0,Hs
j )

and M[0,Hr
j ), for j ∈ J, are endowed with the topology of weak convergence).

A fluid model solution satisfies the evolution equations presented below, as well as extra
conditions, and is defined precisely following those evolution equations in Definition 1. Any
fluid model solution is in C(X), which denotes the set of functions having domain R+ and
range X that are continuous in time. Any fluid model solution is in C(X).

We require the following notation to present a fluid model solution. For any Borel mea-
surable function f , having domain [0,H) for specified H ∈ (0,∞] and range R, that is either
nonnegative or integrable with respect to the measure ξ ∈M[0,H), let

〈f, ξ〉 :=
∫ H

0

f(x)ξ(dx).

For a simple example, if f(x) = x for all x ∈ R+ is the identity function, and ξ is the
exponential distribution with rate parameter θ, then

〈f, ξ〉=
∫ ∞

0

xθ exp(−θx)dx=
1

θ
,

which is its mean.
Given an arrival function E, a fluid model solution (X,ν, η) ∈ C(X) for E satisfies the

conditions ∫ t

0

〈
hsj , νj(u)

〉
du<∞ and

∫ t

0

〈
hrj , ηj(u)

〉
du<∞, (5)

which ensure the cumulative amount of fluid that has abandoned and departed is finite for
all t∈R+ (see (10) and (11) below), has an initial potential queue measure with no atoms〈

1{x}, ηj(0)
〉

= 0 for all x∈ [0,Hr
j ), (6)

and has auxiliary functions (defined mathematically below) interpreted as follows: For each
j ∈ J, at time t∈R+,

• Bj(t) approximates the scaled number of customers from each class in service;
• Qj(t) approximates the scaled number of customers from each class waiting in queue;
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• Rj(t) approximates the scaled cumulative number of customers from each class that have
abandoned in [0, t];

• Dj(t) approximates the scaled cumulative number of customers from each class that have
departed after being served in [0, t];

• Kj(t) approximates the scaled cumulative number of customers from each class that have
entered service in [0, t], and depends on scheduling policy.

The notation C(RJ+) denotes the set of functions having domain R+ and range RJ+ that are
continuous, endowed with the usual Skorokhod J1-topology [13]. The auxiliary functions
B,Q,R,D,K are all in C(RJ+).

The measure ν(t) determines the amount of fluid in service at time t from each class, and
so

Bj(t) := 〈1, νj(t)〉=
∫ Hsj

0

νj(t)(dx), for all j ∈ J and t∈R+ (7)

The expression in (7) is as in (2). The difference in interpretation is that the division by N
has resulted in a total service capacity of 1 (instead of N), and Bj(t) is interpreted as the
fraction of service capacity devoted to customer class j at time t.

Fluid present in the system must either be in service or waiting, and so

Qj(t) :=Xj(t)−Bj(t), for all j ∈ J and t∈R+, (8)

which we require to be nonnegative for all j ∈ J and all t∈R+. The amount of fluid waiting
is bounded above by the amount of fluid potentially in queue; that is, consistent with the
upper bound inequality in (3), we require

Qj(t)≤ 〈1, ηj(t)〉 , for all j ∈ J and t∈R+.

We use the measure ηj(t) to derive the cumulative amount of class j fluid that abandons
by time t without ever having entered service. To see how to do this, first recall from the
explanation of the potential queue measure, that the measure-valued function ηj tracks two
types of fluid, fluid waiting in queue and fluid that has entered service, but whose potential
abandonment time has not passed. Next, recognize that the assumption of a HL scheduling
policy ensures fluid is ordered by its age. Then, the function χj given by

χj(t) := inf{y ∈R+ :
〈
1[0,y], ηj(t)

〉
≥Qj(t)}, for all j ∈ J and t∈R+, (9)

represents the waiting time of the oldest class j fluid in queue at time t, and all fluid having
age less than χj(t) is waiting in queue while that having age greater than χj(t) is no longer
waiting in queue (because that fluid has entered service). We note that due to the continuity
of E and (6), ηj(t) has no atoms for all t≥ 0 and j ∈ J, which implies〈

1[0,χj(t)], ηj(t)
〉

=Qj(t) for all j ∈ J and t∈R+;

see Remark 1 below. For any j ∈ J, t ∈ R+, and w ∈ [0, χj(t)], the value of the hazard rate
hrj(w) dictates the rate at which fluid with age w abandons in the next instant. This leads
to cumulative abandonment function

Rj(t) :=

∫ t

0

(∫ χj(u)

0

hrj(w)ηj(u)(dw)

)
du, for j ∈ J and all t∈R+. (10)

For the concrete example when the patience distribution is exponential with mean 1/θj and
the system is initially empty, (10) reduces to the simpler expression

Rj(t) =

∫ t

0

θj

(∫ χj(u)

0

ηj(u)(dw)

)
du=

∫ t

0

θjQj(u)du, for all j ∈ J and t∈R+.
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Class j fluid that has been in service x ∈ R+ time units departs in the next instant at
rate hsj(x), which leads to 〈

hsj , νj(u)
〉

=

∫ Hsj

0

hsj(x)νj(u)(dx)

being the class j instantaneous departure rate at time u∈R+. Then, the cumulative amount
of class j fluid that has departed by time t after completing service is

Dj(t) :=

∫ t

0

〈
hsj , νj(u)

〉
du, for all j ∈ J and t∈R+. (11)

Mass conservation implies a natural balance relationship between the entry-into-service
function, the cumulative departure function, and the amount of fluid in service function.
This explains the definition

Kj(t) :=Bj(t) +Dj(t)−Bj(0), for all j ∈ J and t∈R+. (12)

Finally, in order to mathematically define a fluid model solution, we must specify
constraints on the evolution of (X,ν, η) ∈ C(X) and its associated auxiliary functions
B,Q,R,D,K ∈C(RJ+). First, the amount of fluid in the system must respect the conserva-
tion of flow equation

Xj(t) =Xj(0) +Ej(t)−Rj(t)−Dj(t), for all j ∈ J and t∈R+. (13)

Second, for any continuous and bounded function f having domain R+, the measure-valued
functions ν and η evolve over time according to the following equations: For all j ∈ J and
t∈R+,

〈f, νj(t)〉 =

∫ Hsj

0

f(x+ t)
1−Gs(x+ t)

1−Gs(x)
νj(0)(dx) +

∫ t

0

f(t−u)(1−Gsj(t−u))dKj(u), (14)

〈f, ηj(t)〉 =

∫ Hrj

0

f(x+ t)
1−Gr(x+ t)

1−Gr(x)
ηj(0)(dx) +

∫ t

0

f(t−u)(1−Grj(t−u))dEj(u). (15)

In (14), the first term tracks fluid departing from the system that was in service at time
zero, while the second term tracks when fluid that entered service after time zero departs
the system. In (15), the first term tracks when the patience time of every customer that is
initially present in the system at time zero expires, while the second tracks that of arriving
fluid, without regard for service entry.

Definition 1. Given an arrival function E, a fluid model solution for E is (X,ν, η) ∈
C(X) that satisfies (5) and (6), has auxiliary functions defined by (7)-(12) that satisfy
B,Q,R,D,K ∈C(RJ+), and is such that the following conditions hold:

(a) The total amount of fluid in service never exceeds capacity,
∑J
j=1Bj(t) ∈ [0,1] for all

t∈R+;
(b) The function Q satisfies 0≤Qj(t)≤ 〈1, ηj(t)〉 for all j ∈ J and t ∈R+, and the function

X satisfies (13);
(c) The function Kj tracking the cumulative amount of class j fluid to have entered service

in [0, t] is non-decreasing for all j ∈ J;
(d) The measure-valued functions ν and η satisfy (14) and (15).

A fluid model solution associated with a particular initial state is not unique. Uniqueness
requires a more precise specification of the entry-into-service function K, that would connect
to a defined scheduling policy in the class Π for the many-server queue. In order to use
fluid model solutions to develop a control problem whose solution can provide insight into
scheduling policies that perform well with respect to the scheduling problem (1), the reader
can think of replacing the optimization over the scheduling policy in (1) with an optimization
over a decision variable that uniquely dictates the entry-into-service function K.



Puha, Ward: Scheduling with Impatient Customers
Tutorials in Operations Research, c© 2019 INFORMS 11

Remark 1. (Discontinuous Fluid Model) We have restricted the arrival function E and
the entry-into-service function K to be continuous. A more general fluid model that does
not require such continuity is presented in [59]. One reason to make such a restriction in this
paper is that under the condition (6), ηj(t) has no atoms for all j ∈ J and t ∈R+; see [59,
Lemma 3.4]. Then, for all t≥ 0 and j ∈ J,

Rj(t) =

∫ t

0

θj
〈
1[0,χj(u)), ηj(u)

〉
du=

∫ t

0

θj
〈
1[0,χj(u)], ηj(u)

〉
du.

Since no such subtlety occurs with any of the auxiliary function definitions involving ν, there
is no need to require a condition equivalent to (6) for ν(0).

Remark 2. (Uniqueness when J = 1) In the case of a single customer class (J = 1), the
solution to the scheduling problem is trivial. The optimal policy is to not allow servers to
idle when customers are waiting. This amounts to adding the standard non-idling equation
max(X1(t)−1,0) =Q1(t) for all t∈R+. Then, [42, Theorem 3.5] proves that for reasonable
initial states there exists a unique solution to the fluid model equations, and [42, Theorem
3.6] establishes weak convergence to that solution for the scaled G/GI/N +GI state pro-
cesses under mild asymptotic conditions; see also [68, Theorems 3.5 and 4.4] for an extension
that does not require the absolute continuity of the service and patience distributions, [67,
Theorems 3.1 and 3.3] for an alternative approach (involving residual times rather than
ages) to developing similar results, and [41] for the equivalence of the two approaches. In
contrast, the non-uniqueness of a fluid model solution for the multiclass case is necessary
to be able to use the fluid model to formulate a control problem that approximates the
scheduling problem (1).

Remark 3. (Static Priority Scheduling) The fluid model in [9] is relevant for a multiclass
G/GI/N +GI queue that operates under a static priority scheduling rule. That fluid model
is consistent with what is presented here, except additional equations that restrict the entry-
into-service function K to that arising under static priority are added. Then, the existence
of a fluid model solution follows from the existence of a solution to the fluid model in [9];
see [9, Remark 3.1(a) and Theorem 4.3]. Furthermore, the fluid model in [9] with specified
initial state has a unique solution; see [9, Theorem 3.1]. In comparison, in order to present
a fluid model relevant for a wider range of scheduling rules, we provide minimal restrictions
on the entry-into-service function K, meaning there is no expectation of uniqueness.

Remark 4. (HL Scheduling) The assumption of HL scheduling is common, but fur-
ther thought is warranted. In the single class (J = 1) setting, HL scheduling (equivalently,
FCFS) minimizes the fluid queue-lengths [12, Corollary 1] when the patience distribution
has decreasing hazard rate. In contrast, the scheduling policy that prioritizes the customer
that has waited the least amount of time (that is, last-come-first-serve) minimizes the fluid
queue-lengths when the hazard rate is increasing [12, Corollary 1]. When the hazard rate
is quasi-concave, the optimal scheduling is either HL or last-come-first-serve, depending on
whether or not the hazard rate is such that a specified condition is satisfied [12, Proposition
5].

Remark 5. (A No Abandonment Model) For a multiclass G/GI/N queue with no aban-
donments, the relevant fluid model eliminates the measure η, and has state space X̃ :=
RJ+×

(
×Jj=1M[0,Hs

j )
)
. Then, Definition 1 is modified as follows: Given an arrival function

E, a fluid model solution for E is (X,ν) ∈ C(X̃) that satisfies
∫ t

0

〈
hsj , νj(u)

〉
du <∞, has

auxiliary functions defined by (7), (8), (11), and (12) that satisfy B,D,Q,K ∈C(RJ+), and is
such that (14), (15), the conditions (a) and (c) in Definition 1 hold, and (13) is satisfied with
Rj(t) = 0 for all j ∈ J and t ∈ R+. When J = 1 and with the standard non-idling equation
given in Remark 2 added, this is consistent with the fluid model in [44].
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4. Fluid Model Invariant States

The scheduling problem (1) minimizes the long run average cost. The long run average cost
is determined by the steady-state abandonment rate, assuming the existence of a unique
system steady-state and attractiveness to that steady-state as time becomes large. This
requires that each class’s arrival process has constant rate, which occurs when we assume
that the inter-arrival times to the G/GI/N +GI queue are independently sampled from a
given distribution. Then, the arrival processes are renewal, and the queue is a multiclass
GI/GI/N +GI queue. Recall that in this case the condition (4) holds when the renewal
arrival processes have rate λjN for each j ∈ J. The associated fluid model has linear arrival
function E; that is, each component of E is defined from a specified constant λj ∈R+ as

Ej(t) := λjt for all t≥ 0, and each j ∈ J. (16)

For the remainder of this paper, we assume (16) holds, unless explicitly stated otherwise.
We call λ := (λ1, . . . , λJ) the arrival rate vector.

In the single class case, [43, Theorem 3.3] establishes that the system steady-state, when
appropriately scaled, converges to the unique fluid model invariant state, under mild assump-
tions3. This suggests that the multiclass GI/GI/N +GI queue steady-state, when appro-
priately scaled, is well approximated by the invariant states of the fluid model given in
Section 3. This motivates us to characterize the invariant states of the fluid model, from
which we formulate a fluid control problem to approximate (1).

Definition 2. A tuple (X∗, ν∗, η∗) ∈ X is said to be an invariant state for the arrival
function (16) if the constant function (X,ν, η) given by (X(t), ν(t), η(t)) = (X∗, ν∗, η∗) for
all t ≥ 0 is a fluid model solution (i.e., satisfies Definition 1). We let Iλ denote the set of
invariant states for λ. For any invariant state (X∗, ν∗, η∗) ∈ Iλ, we let (B∗,Q∗,R∗,D∗,K∗)
denote the associated auxiliary functions.

The characterization of the invariant states uses the inverse of the patience distribution
function and its associated excess life distribution. The excess life distribution characterizes
the amount of time remaining until the next event for a renewal process in stationarity (see,
for example, Example 7.24 in [61]) and is given by

Gre,j(x) :=

∫ x

0

θj(1−Grj(y))dy, for j ∈ J and x∈R+,

recalling that 1/θj is the mean of the patience distribution.
An invariant state is uniquely specified by the allocation of server capacity given to each

class. Those allocations must lie in the set

B :=

b∈RJ+ : bj ≤ ρj for all j ∈ J and
J∑
j=1

bj ≤ 1

 ,

where, for each j ∈ J,
ρj := λj/µj

is the instantaneous fluid workload contribution from class j. The set B captures the long run
average fraction of the collective server effort that could be provided to each class. A suitable
specification of the entry-into-service function K results in a unique b ∈ B; however, there
may be many entry-into-service functions that give rise to the same b. Under reasonable
asymptotic conditions, the limit as N →∞ of the rescaled cost CN (πN )/N should give rise
to a unique b ∈ B that achieves the limiting cost, and that b uniquely specifies the fluid
model invariant states from Theorem 1 below.

3 Note that a forthcoming proof correction may require some additional assumptions not present in the
original manuscript.
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Theorem 1. (Fluid Model Invariant States) Suppose that Grj is strictly increasing for

each j ∈ J, with inverse function
(
Grj
)−1

. For b∈B, define

qj(bj) :=


λj
θj
, if bj = 0,

λj
θj
Gre,j

((
Grj
)−1

(
1− bj

ρj

))
, if bj ∈ (0, ρj ]

for j ∈ J, (17)

and, for each j ∈ J, let

(i) η∗j (dx) := λj
(
1−Grj(x)

)
dx for each x∈R+,

(ii) ν∗j (dx) := bjµj
(
1−Gsj(x)

)
dx for each x∈R+,

(iii) X∗j := bj + qj(bj).

Then (X∗, ν∗, η∗) ∈ Iλ, B∗ = b, and Q∗ = q. Conversely, if (X∗, ν∗, η∗) ∈ Iλ, then B∗ ∈ B
and (X∗, ν∗, η∗) satisfies (i)-(iii) with b=B∗.

The proof of Theorem 1 is found in Section 8. In the case of one customer class (J = 1) and
service rate µ= 1, the expression in Theorem 1 for q1 is consistent with [64, Equation (3.7)].

Henceforth, we assume the conditions for Theorem 1 hold; that is, we assume Grj is strictly

increasing for each j ∈ J, with inverse function
(
Grj
)−1

.

Remark 6. (Related Results) A version of Theorem 1 is proved in [43, Theorem 5.5] and
in [67, Theorem 3.2] when J = 1 under the non-idling condition in Remark 2. A version of
Theorem 1 is also proved in [9, Theorem 3.3] when the fluid model has added equations
relevant for a static priority scheduling policy. In both cases, not all b∈B can be achieved.
This motivates the need to understand the fluid limits associated with a wider range of
scheduling policies.

Remark 7. (Convergence to Invariant States) The long-time behavior of the fluid model
is nontrivial. In particular, we would like to know that any fluid model solution converges to
an invariant state as time becomes large, under mild conditions on the initial state. When
J = 1, this is shown in [51, Theorems 1 and 2], but requires somewhat restrictive conditions
on the initial state when there is not enough capacity to serve all fluid; see also [43, Section
7.1] for more discussion of the relevant issues. Proving such a convergence result for J > 1
is an open problem.

Remark 8. (Prediction) For prediction purposes, recalling (4), if the arrival rate to the
multiclass G/GI/N + GI queue is written in terms of the number of servers N , so that
λjN is the class j arrival rate, then the class j fluid arrival rate is λj , as shown in (16).
This results in the predicted class j ∈ J queue size Nqj(bj) when the scheduling policy is
such that on average bjN servers are busy serving class j. Following the asymptotic regime
in [59], the service rate µj and mean patience times 1/θj appearing in the formula for qj are
not scaled, j ∈ J.

Figure 5 shows the fluid queue sizes are ordered by the variance of the patience distri-
butions, for J = 1 and λ1 = µ1. Figure 5(a) assumes the patience distribution is a mean 1
Gamma distribution having both shape and rate parameters equalling p∈ {0.2,0.5,1,2,5}4.
The variance of a Gamma(p) distribution is 1/p, which is decreasing in p. Figure 5(b)
assumes the patience distribution is Lognormal(m, v), where m = 1 is the mean and v ∈
{0.2,0.5,1,2,5} is the variance. For all distributions, the queue-length when no service effort
is expended on the class (b= 0) equals the mean of the distribution, 1, and the queue-length
when full service effort is expended on the class (b= 1) is zero. Otherwise, the more vari-
able distributions result in lower queue-lengths, which has intuition as follows. The greater

4 The cdf G for the mean 1 Gamma(p) distribution is: G(x) =
∫ px
0 tp−1e−tdt∫∞
0 tp−1e−tdt
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(a)Gamma patience distributions. (b)Lognormal patience distributions.

Figure 5. For J = {1}, the effect of different patience distributions on q1(b1) for b1 ∈ [0, ρ1 = 1]
when λ1 = µ1 = 1.

variability leads to the fraction of fluid that abandons having more mass concentrated on
smaller patience times, meaning abandonment decisions are made more quickly after arriv-
ing, reducing congestion.

Given b ∈ B, we subscript the unique invariant state and associated auxiliary functions
with b when we want to emphasize that dependence. In particular, we sometimes write
(X∗b , ν

∗
b , η
∗
b ) and (B∗b ,Q

∗
b ,R

∗
b ,D

∗
b ,K

∗
b ).

5. The Fluid Control Problem

Theorem 1 suggests considering the scheduling problem approximation

inf
b∈B

lim sup
T→∞

1

T

J∑
j=1

ajR
∗
b,j(T ). (18)

When starting from the invariant state associated with b ∈ B, class j fluid arrives at rate
λj and departs via service completion at rate bjµj . Hence flow balance dictates that class j
fluid abandons at rate λj − bjµj , and so we expect

1

T
R∗b,j(T ) = λj − bjµj , for all T ∈R+, and each j ∈ J. (19)

Substituting the equality in (19) into (18) leads to the analytically tractable fluid control
problem

min
b∈B

J∑
j=1

aj (λj − bjµj) , (20)

whose solution is given in the next section.
The remainder of this section shows the derivation of (19) from the invariant state given in

Theorem 1. For this derivation, we do not use the b subscript in the invariant state notation.
From (10) and the fact that an invariant state is constant in time,

R∗j (T ) = T

∫ χ∗j

0

hrj(w)η∗j (dw) for j ∈ J and all T ∈R+. (21)

We derive the expression for χ∗j for any j ∈ J in this paragraph, which is necessary to sim-
plify (21). Fix j ∈ J. For this, from (9) and the fact that η∗j has no atoms (recall Remark 1),
χ∗j solves 〈

1[0,χ∗j ], η
∗
j

〉
=Q∗j .
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Equivalently, substituting the definitions of η∗j and Q∗j given in Theorem 1, if bj = 0, then〈
1[0,χ∗j ], η

∗
j

〉
= λj/θj , which implies χ∗j =Hr

j . Otherwise, 0< bj ≤ ρj and we have

∫ χ∗j

0

λj
(
1−Grj(y)

)
dy=

λj
θj
Gre,j

((
Grj
)−1

(
1− bj

ρj

))
.

Substituting for the excess life distribution yields

Gre,j

((
Grj
)−1

(
1− bj

ρj

))
=

∫ (Grj)
−1
(

1−
bj
ρj

)
0

θj
(
1−Grj(y)

)
dy.

The previous two displays imply χ∗j satisfies

∫ χ∗j

0

(
1−Grj(y)

)
dy=

∫ (Grj)
−1
(

1−
bj
ρj

)
0

(
1−Grj(y)

)
dy.

This together with χ∗j ≤Hr
j and

(
Grj
)−1

(1− bj/ρj)≤Hr
j implies

χ∗j =

{(
Grj
)−1

(
1− bj

ρj

)
, if 0< bj ≤ ρj ,

Hr
j , if bj = 0.

(22)

Finally, to see (19), we substitute η∗j given in Theorem 1 into (21) to find

R∗j (T ) = T

∫ χ∗j

0

hrj(y)λj
(
1−Grj(y)

)
dy.

The definition of the hazard rate, the expression for χ∗j in (22), and straightforward calcu-
lation show that

R∗j (T ) = T

∫ χ∗j

0

λjg
r
j (y)dy

= TλjG
r
j(y)

∣∣∣χ∗j
0

= Tλj

(
1− bj

ρj

)
.

Recalling ρj = λj/µj implies

λj

(
1− bj

ρj

)
= λj − bjµj ,

so that dividing by T in the above sequence of equalities yields (19).

6. Static Priority Scheduling

Recall the approximating fluid control problem in (20) and set

m∗ := min
b∈B

J∑
j=1

aj (λj − bjµj)≥ 0. (23)

We denote a solution to the linear program (LP) in (23) by b∗.
We assume

J∑
j=1

ρj =

J∑
j=1

λj
µj

> 1. (24)
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Otherwise, the solution to (23) is trivial. In particular, b∗j = ρj has b∗ ∈B and m∗ = 0, so is
feasible and attains the minimum possible objective function value of zero.

The LP (23) is equivalently written as

m∗ :=

J∑
j=1

ajλj −max
b∈B

J∑
j=1

ajµjbj .

Then, if we assume the classes are labeled so that

a1µ1 >a2µ2 > · · ·>aJµJ ,

the re-writing of the LP makes clear that its solution is to assign the maximum server effort
required to ensure no long run average cost for abandonments, bj = ρj , to as many of the
classes with lower index as possible. More precisely, define

j∗ := min

k ∈ J :

k∑
j=1

ρj > 1

 ,

which satisfies j∗ ≤ J under the assumption (24). Then,

b∗ =

ρ1, . . . , ρj∗−1,1−
j∗−1∑
j=1

ρj ,0, . . . ,0


solves (23), and the associated minimum objective function value is

m∗ = aj∗

λj∗ −µj∗
1−

j∗−1∑
j=1

ρj

+

J∑
j=j∗+1

ajλj .

In words, the classes in the set {1, . . . , j∗−1} are fully served, the class j∗ is partially served,
and the classes in the set {j∗+ 1, J} are not served at all, in an asymptotic sense.

The associated fluid queue-lengths can be found from Theorem 1 and are

• qj
(
b∗j
)

= 0 for j ∈ {1, . . . , j∗− 1};
• qj∗

(
b∗j∗
)

=
λj∗

θj∗
Gre,j∗

((
Grj∗

)−1
(

1− b∗j∗

ρj∗

))
∈
(

0,
λj∗

θj∗
Gre,j∗(H

r
j∗)
]
;

• qj
(
b∗j
)

=
λj
θj

for j ∈ {j∗+ 1, . . . , J}.

We can double-check that the solution matches the one given in (19) and (20) in [6] for an
overloaded multiclass M/M/N +M queue. In particular, if the patience distribution of class
j ∈ J is exponential, then qj∗(b

∗
j ) = 0 for j ∈ {1, . . . , j∗− 1}, and

qj∗(b
∗
j∗) =

λj∗ − b∗j∗µj∗
θj∗

and qj
(
b∗j
)

=
λj
θj

for j ∈ {j∗+ 1, . . . , J}. (25)

In words, the fluid queue length for each class j equals the amount of incoming fluid not
served multiplied by the mean patience time for that class.

The associated fluid queues are not in general linear, as can be seen by performing the
above calculation when the patience distribution of class j ∈ J is uniform with lower bound
0 and upper bound 2/θj (so that the mean of the class j patience distribution is 1/θj). In
that case,

Grj(x) =
θj
2
x, for x∈

[
0,

2

θj

]
and (Grj)

−1(x) =
2

θj
x, for x∈ [0,1] and j ∈ J.
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The associated excess life distribution is

Gre,j(x) =

∫ x

0

θj

(
1− θj

2
y

)
dy= θjx

(
1− θj

4
x

)
, for x∈

[
0,
θj
2

]
and j ∈ J.

We then calculate

Gre,j

((
Grj
)−1

(x)
)

= 2x−x2, for x∈ [0,1] and j ∈ J,

which shows

qj∗(b
∗
j∗) =

λj
θj

[
2

(
1−

b∗j∗

ρj

)
−
(

1−
b∗j∗

ρj

)2
]

=
λj
θj

(
1−

(
b∗j
ρj

)2
)

(26)

and

qj
(
b∗j
)

=
λj
θj

for j ∈ {j∗+ 1, . . . , J}.

Interpreting the Fluid Control Problem Solution as a Scheduling Policy

The fluid solution b∗ that solves (23) suggests that a static priority scheduling policy πsp
should approximately solve the original scheduling problem (1). In particular, when a server
has finished helping a customer, πsp ∈Π assigns priority to the class having waiting customer
with lowest index j (which corresponds to higher ajµj values), and serves the HL customer
in that class. This is exactly the well-known cµ-rule, except with the value of c modified to
be the class abandonment cost instead of the class holding cost.

(a)Gamma(2) service distribution. (b)LN(1,4) service distribution.

Figure 6. The abandonment rate in the GI/GI/N + GI queue with two classes, each having
Poisson arrivals with rate 60, N = 100 servers, and LN(1, v) patience distribution. The predicted
class 1 abandonment rate is 0 and that for class 2 is (λ2− b2µ2)×N = 20.

The static priority scheduling policy πsp does not depend on the patience distributions
and only depends on the service time distributions through their means. In contrast, the
objective function in (1) depends on the full details of the service and patience distributions.
This raises the question as to how well the fluid invariant states approximate the steady-state
behavior of the GI/GI/N +GI queue operating under πsp. Figure 65 shows numerically
that neither the patience distribution nor the service time distribution have much impact on
the rate at which customers abandon. In Figure 6, the two service distributions considered

5 Each simulation shown in Figure 6, and later in Tables 1 and 2, is run until 5 million customers arrive,
with the time before the arrival of the 1000th customer considered a “warm-up” period and discarded. The
numbers graphed in Figure 6 are the average over 10 runs. The difference between the largest and smallest
of the 10 run values for each class 2 value graphed is less than 1%. (For class 1, the absolute difference is
very small, but the percentage can be larger when the variance is small, due to the values being very close
to 0.)
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are Lognormal(1,4) and Gamma(2)6 defined at the end of Section 4, which both have mean 1,
but have variance 4 and 0.5 respectively, and the patience distributions are those considered
in Figure 5.

The class 2 mean steady-state queue-length does depend on the patience distribution
under the static priority scheduling policy that assigns class 1 higher priority than class 2,
which is in contrast to the abandonment percentage. (The class 1 queue-length is close to
zero, due to its priority, and so does not depend on any of the primitive distributions.) The
dependence on the queue-length is not surprising given Theorem 1. Table 1 shows that the
function qj defined in Theorem 1 for j ∈ J provides a good approximation of the class 2
queue-lengths. Specifically, for the system in Table 1, if we recall Remark 8 and write all
parameters in terms ofN = 100, then we can see that the system has class j arrival rate 0.6N ,
so that the fluid arrival rate is λj = 0.6 for j ∈ {1,2} and the class j workload contribution
is ρj = 0.6 (µj = 1 for j ∈ {1,2} because the mean service time for both classes is 1). The
proportion of server effort devoted to class 1 is exactly enough to handle all the arrivals,
meaning b1 = λ1 = 0.6. The remainder is devoted to class 2, meaning b2 = 1−0.6 = 0.4. Both
classes have patience distributions with mean 1, which implies θ1 = θ2 = 1. Then, if QN1 and
QN2 are random variables that represent the steady-state queue-lengths for each class, we
have the approximations

E
[
QN1
]
≈Nq1(0.6) = 0 and E

[
QN2
]
≈Nq2(0.4) = 0.6Gre,j

((
Grj
)−1

(
1− 0.4

0.6

))
.

Predicted Approximated
v E[QN1 ] E[QN2 ] E[QN1 ] E[QN2 ]

0.2 0 42.1120 1.5215 +/- 0.0043 39.9417 +/- 0.0637
0.5 0 33.3982 1.5130 +/- 0.0038 31.9239 +/- 0.0665
1 0 25.9555 1.4904 +/- 0.0048 25.2024 +/- 0.0789
2 0 18.8790 1.4252 +/- 0.0048 18.6306 +/- 0.0757
5 0 11.4800 1.2600 +/- 0.0054 11.5150 +/- 0.0609

Table 1. A comparison of the queue-length approximations given in Theorem 4.2 with their sim-
ulated steady-state mean (95% confidence intervals shown) in a M/LN(1,4)/100 +LN(1, v) queue
with two classes, each having Poisson arrivals with rate 60.

The reader can observe in Table 1 that the queue-lengths decrease as the variability
of the patience distribution increases, which is consistent with the theoretic prediction in
Figure 5. This effect becomes even more pronounced when the patience distribution is
Gamma(p), as can be seen in Table 2. One contributing factor may be that the Gamma(p)
distribution has an associated hazard rate function that is strictly increasing when p > 1
and strictly decreasing when p < 1, whereas the hazard rate function associated with a
lognormal distribution is not monotonic. Table 2 also shows that the prediction error is
larger when the hazard rate function is strictly decreasing rather than when it is strictly
increasing. Further simulations (not shown) confirm the prediction error does decrease as
the system size becomes larger, consistent with the underlying theory in [59]. However, we
do not know the connection between the rate at which the prediction error becomes small
and the patience distribution characteristics except in a single class M/GI/N +GI setting;
see [11, Theorem 5].

6 The service time distributions we assume in Figure 6 are the ones used in Table 1 in [64] in the single
class setting, to illustrate the lack of effect of the service distribution on steady-state system performance
measures for overloaded systems.
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Predicted Approximated
p E[Q1] E[Q2] E[Q1] E[Q2]
5 0 41.5688 1.5188 +/- 0.0043 39.2277 +/- 0.0491
2 0 30.8627 1.4863 +/- 0.0053 29.4272 +/- 0.1026
1 0 20.0000 1.3280 +/- 0.0032 18.8971 +/- 0.0718

0.5 0 8.6276 0.9225 +/- 0.0020 7.4433 +/- 0.0283
0.2 0 0.5831 0.3352 +/- 0.0012 1.0432 +/- 0.0073

Table 2. A comparison of the fluid queue approximations given in Theorem 4.2 with their simu-
lated steady-state mean (95% confidence intervals shown) in a M/LN(1,4)/100+Gamma(p) queue
with two classes, each having Poisson arrivals with rate 60.

Remark 9. (Consistency Check) We can double-check that the simulation results shown
in Figure 1 are consistent with theory. As in the examples earlier in this section, the class j
arrival rate is 0.6N , so that the fluid arrival rate is λj = 0.6 for j ∈ {1,2}, the class j workload
contribution is ρj = 0.6, the proportion of server effort devoted to class 1 is b1 = λ1 = 0.6,
and the proportion of server effort devoted to class 2 is b2 = 1− b1 = 0.4. Substituting into
the formulae (25) and (26), and noting that j∗ = 2 in this example, show that

q2(b2) =
λ2− b2µ2

θ2
= 0.6− 0.4× 1 = 0.2,

when the class 2 patience distribution is exponential with mean 1, and

q2(b2) =
λ2

θ2

(
1−

(
b2
ρ2

)2
)

= 0.6×

(
1−

(
0.4

0.6

)2
)

= 1/3,

when the class 2 patience distribution is uniform(0,2). Multiplying both of the above num-
bers by N = 100 approximately matches the queue-lengths shown in Figure 1 under the
static priority policy that assigns priority to class 1.

7. Open Problems

Holding Costs

The scheduling problem (1) does not use holding costs to penalize congestion. However,
the scheduling policy known as the cµ rule was first introduced in [62] in a setting with
holding costs and no customer abandonment (the c in cµ refers to the holding cost vec-
tor), and many works use holding costs to penalize congestion. Holding costs are a natural
way to capture the disutility associated with waiting, and, in our setting, do this in a less
extreme manner than abandonment costs. This motivates us to suppose there is an addi-
tional class-dependent holding cost cj , j ∈ J, incurred per customer per unit time. Then, if
QNj (t, πN ), j ∈ J, represents the number of class j customers waiting in queue at time t∈R+

under scheduling policy π ∈Π, the modified scheduling problem objective function is

CN (πN ) := lim sup
T→∞

1

T
IE

 J∑
j=1

ajR
N
j (T,πN ) +

∫ T

0

cjQ
N
j (t, πN )dt

 . (27)

The modified scheduling problem is easily translated to a modified fluid control problem.
Specifically, from Theorem 1, when the server effort allocation vector is b ∈ B, then qj(b)
gives the associated class j ∈B fluid queue. This leads to the modified fluid control problem

inf
b∈B

J∑
j=1

aj (λj − bjµj) + cjqj(bj). (28)
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Suppose the patience distribution is exponential. Then, similar to (25), qj(b) =
(λj − bµj)/θj for j ∈ J and b∈ [0, ρj ], and so (28) becomes

inf
b∈B

J∑
j=1

aj (λj − bjµj) + cj
λj − bjµj

θj

Define the modified cost that incorporates both holding and abandonment

c̃j = aj +
cj
θj
, for all j ∈ J

and observe that (28) becomes

inf
b∈B

J∑
j=1

c̃j (λj − bjµj) . (29)

In particular, the solution to the LP (28) is exactly as in Section 6, except with c̃j replacing
cj for j ∈ J, as observed in [6]. This suggests that the static priority c̃µ scheduling policy
that ranks classes in the order of their c̃jµj values should approximately solve (27).

The issue is that the solution to (28) is in general more complicated. However, a strong
simplification occurs when the patience distributions all have strictly increasing hazard
rate functions. For example, the Gamma distributions plotted in Figure 5(a) have strictly
increasing hazard rate functions when p > 1.

Lemma 1. Assume grj is positive and continuous on (0,Hr
j ) for all j ∈ J. If hrj is (strictly)

increasing on (0,Hr
j ), then qj is (strictly) concave on (0, ρj).

Lemma 1, proved in Section 9, implies that the objective function in (28) is concave. Then,
the solution occurs at a feasible vertex, meaning that the solution b∗ has b∗j ∈ {0, ρj} for

J − 1 of the classes and b∗ determined so that
∑J
j=1 b

∗
j = 1, under the condition (24). This

would be the solution in Section 6, except that how to order the classes is not clear, except
in special cases (for example, the calculation in (26) can be extended to J > 2).

Remark 10. (Non-Optimality of Static Priority) We do not wish to leave the impression
that the modified fluid control problem (28) always has solutions that occur at a feasible
vertex. The reader that wishes to do additional work will find that Lemma 1 can be modified
to show that when hrj is (strictly) decreasing, then qj is (strictly) convex on (0, ρj). The
implication is that the solution may occur at an interior point, which motivates the need to
study scheduling policies that have full flexibility to partially serve classes (i.e., the need for
scheduling policies more general than static priority).

Asymptotic Optimality

We would like to rigorously establish that the (modified) fluid control problem (28) arises
as the limit of the scheduling problem (27) when the number of servers becomes large and
the arrival process satisfies a functional strong law like (4). More specifically, if CN (π) is the
long run average cost when the number of servers is N , we would like to show that the class
of scheduling policies Π is such that

lim
N→∞

CN (π)

N
≥m∗, for all π ∈Π, (30)

recalling that m∗ is the minimum objective function value for the fluid control problem
in (23) (or in (28) when holding costs are positive). For GI/GI/N +M systems (that is,
when the patience distributions are all exponential), (30) has been shown to hold under
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mild asymptotic conditions; see [7, Proposition 2.1 and A.1]. This leaves open the question
of showing (30) when the patience distribution is not assumed to be exponential, which is
work in progress of the authors of this tutorial paper.

We would like to further define a scheduling policy π∗ ∈Π such that

lim
N→∞

CN (π∗)

N
=m∗. (31)

In the case that holding costs are 0, π∗ = πsp is the static priority scheduling policy defined
in Section 6. For GI/GI/N +M systems, [9, Theorem 5.1] and its proof provide conditions
under which (31) holds for the static priority policy determined from the solution to (29),
as explained towards the end of Section 6. These conditions include natural asymptotic
assumptions, and require that the system steady-state, under fluid scaling, converge to the
unique invariant state7. Work along these lines for more general patience distributions is
also work in progress of the authors of this tutorial paper.

Joint Staffing and Scheduling

The fluid control problems (23) and (28) that approximate the scheduling problems (1) and
(27) are non-trivial only when the system is overloaded in the sense that

J∑
j=1

λNj
µj

>N, (32)

recalling λNj is the class j arrival rate to the multiclass G/GI/N + GI queue given in
Section 2 when the arrival rate does not vary with time. The inequality (32) is exactly the
condition (24) used when solving the fluid control problem (23) if, for example, the arrival
processes ENj , j ∈ J, are all renewal processes with rate λNj = λjN for a specified λj ∈R+.

The issue is that the fluid control problem assumes the decision has been made to not staff
enough to serve all the customers. This can be cost effective. For example, for a system with
one customer class (J = 1) a large arrival rate, and linear staffing, holding, and abandonment
costs, a sufficient condition to ensure that a minimum cost staffing decision results in an
overloaded system (i.e., (24) holds) is that the customer patience distribution has decreasing
hazard rate; see [11, Proposition 4]. The decreasing hazard rate implies that customers
become less and less likely to abandon as they wait, modeling a situation in which the
time invested in waiting increases the customer commitment to receive the service. In other
words, taking advantage of customer-willingness-to-wait is advantageous.

We would like to understand the solution to the joint staffing and scheduling problem;
that is, the solutions to (1) and (27), when the number of servers is also a decision. A
related problem for a multiclass system with no abandonment and constraints on customer
waiting is solved in [30]. Another related joint staffing and routing problem in a system with
exponentially distributed customer patience times, one customer class, and multiple server
pools is solved in [2]. However, no joint staffing and scheduling problem has been solved
when the customer patience distributions are not exponential. In many practical settings,
customer patience times are not exponentially distributed (as was verified in the call center
setting in [15]). Therefore, one key question of interest is to determine how sensitive the
solution structure is to the exponential assumption.

7 For this, the authors cite [9, Theorem 4.4], the proof of which is incomplete due to its reliance on the proof
techniques of [43, Theorem 3.3], and an erratum is currently in progress.
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Time-Varying Arrival Rates

The fluid model in Section 3 allows for time-varying input. Moreover, the fluid model can
be modified to many-server systems in which customers do not abandon, as detailed in
Remark 5 (and when J = 1 the relevant fluid model and supporting convergence result can be
found in [44]). This implies that the fluid model in Section 3 is potentially relevant for a wide
variety of application environments, whenever many-server models are relevant. For example,
many-server models have been used to model data centers [47, 25], call centers [1, 26], and
hospital operations [16, 37, 24, 17], all of which experience time-varying demand.

The static priority aµ-rule (more commonly known as the cµ-rule), that is shown to
solve the fluid control problem in Section 6, is very appealing because it is simple, easy to
implement, and has been shown to be optimal or asymptotically optimal in a wide variety
of settings, beginning with the early work of [19, 62], continuing with the later work of
[56] (which provides an excellent literature review), [53], and this paper. However, we are
not aware of any optimality results for the aµ-rule when customer arrivals are time-varying
(although [36] discusses how to make control decisions to stabilize performance measures for
different classes). We are hopeful that the fluid model presented in Section 3 can be used
to formulate a control problem when customer arrivals are time-varying that has the static
priority aµ-rule as its solution.

Even better would be to be able to use the knowledge that a static priority scheduling
rule performs well to jointly determine scheduling and staffing in a time-varying setting.
There is work on determining staffing levels when there is time-varying demand in the J = 1
setting, as in [28, 34, 48, 50], and related papers discuss how to calculate fluid performance
measures [49], and how to develop wait-time predictors [40]. However, we are not aware of
any work that jointly considers staffing and scheduling.

Connection to Diffusion Approximations

We focus on the prelimit system described in Section 2, and drop the superscript N in this
subsection to emphasize that. Then, consistent with (32), the fluid control problems (23)
and (28) are non-trivial only when the system is overloaded in the sense that

J∑
j=1

λj
µj

>N.

Assuming N , λj , and µj for all j ∈ J are known parameters, that were, for example estimated
from data, one way to quantify the amount of system overload is to solve for β in

N =

J∑
j=1

λj
µj

+β

√√√√ J∑
j=1

λj
µj
, for β ∈R+.

The size of β can help us determine whether the fluid control problems in (23) and (28)
are most relevant, or whether a different approximation to the scheduling control problems
in (1) and (27) will be more helpful. For example, a small value of β suggests that we may
want to study the approximating control problem that arises in the regime known as the
quality-and-efficiency (QED) driven regime, first introduced in [31] for a single class (J =
1) many-server system without abandonment and later expanded to include abandonment
when patience distributions are exponential in [27], and to non-exponential distributions
in [20, 23, 52, 60, 66]; for a comprehensive review of the QED regime see the tutorial
papers [21, 46], for very recent work in the QED regime see the large deviations analysis
in [57], and for an overview of the different regimes see the survey papers [63, 22]. In
multiclass systems (J > 1), the papers [33, 45] study scheduling control problems in the
QED regime. Similarly, we may also want to study the approximating control problem that
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arises in the regime known as the non-degenerate slowdown (NDS) regime; see [4] for the
development of this regime, and [5, 8, 10, 29] for some example control problems in that
regime. In contrast to the QED regime, the NDS regime so far has only been developed
for systems without abandonment, and so a first step would be to generalize that regime
to include customer impatience. Next, we may want to investigate the ED+QED regime,
developed in [54] as a refinement to the efficiency-driven (ED) regime in which fluid models
are relevant (because the system is overloaded), and also studied in [23, 39]. We end by
observing that neither the QED regime, nor the NDS regime, nor the QED+ED regime
appears able to handle fully general systems (that is, systems with non-exponential inter-
arrival, service, and abandonment distributions), as we do here.

The recent work [14] builds on ideas in [3, 38] to provide a step in the direction of unifying
the approximating control problems that arise in the different regimes when all primitive
input distributions are exponential. The question of how to quantify the trade-offs of using
the different regimes to develop an approximating scheduling control problem for one given
system is challenging. The issue is that the different approximating control problems can
potentially motivate different scheduling policies.

8. Proof of Theorem 1

Let

fj(x) :=

{
1, if x= 1,

Gre,j

((
Grj
)−1

(x)
)
, if x∈ [0,1),

for j ∈ J.

Then, by (17),

qj(bj) =


λj
θj
, if bj = 0,

λj
θj
fj

(
1− bj

ρj

)
, if bj ∈ (0, ρj ],

for j ∈ J.

We first show that a tuple satisfying conditions (i), (ii), and (iii) in Theorem 1 is an
invariant state, as given in Definition 1. We second show the converse.

Proof of forward direction. Fix b∈B and let (X∗, ν∗, η∗)∈X be defined by (i)-(iii) in
Theorem 1. Let (X,ν, η) be the constant function such that (X(t), ν(t), η(t)) = (X∗, ν∗, η∗)
for all t ≥ 0. We must show (X,ν, η) is a fluid model solution; i.e., that (X,ν, η) ∈C(X),
that B,Q,R,D,K ∈C(RJ+), and that (5), (6), and (a)-(d) in Definition 1 hold. First observe
that (i) and (ii) imply that

〈
hrj , η

∗
j

〉
=

∫ Hrj

0

hrj(x)λj
(
1−Grj(x)

)
dx= λj <∞, for j ∈ J,

and 〈
hxj , ν

∗
j

〉
=

∫ Hsj

0

hsj(x)bjµj
(
1−Gsj(x)

)
dx= bjµj <∞, for j ∈ J,

and so (5) holds. Next, to see the desired continuity and that (a)-(d) in Definition 1 hold,
we begin by observing that, for each j ∈ J and t∈R+,

Bj(t) = B∗j = bj , by (ii) and (7), (33)

Qj(t) = Q∗j =
λj
θj
fj(1− bj/ρj), by (iii) and (8), (34)

Dj(t) = bjµjt, by (ii) and (11), (35)

Kj(t) = bjµjt, by (12). (36)

From (33)-(36), B,Q,D,K ∈C(RJ+), and from (i)-(iii) (X,ν, η) ∈C(X). The fact that R ∈
C(RJ+) follows from our argument below that (b) holds, which requires showing (13) holds.
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Equation (33) implies (a), because b ∈ B. Equation (36) shows Kj is non-decreasing for
each j ∈ J, meaning (c) holds.

In this paragraph, we argue that (b) holds. The inequality 0≤Qj(t)≤ 〈1, ηj〉 for all j ∈ J
and t ∈ R+ follows from (34), because fj has range [0,1] and 〈1, ηj〉 = λj/θj for all j ∈ J
from (i). Next, for each j ∈ J, let χj be the unique solution of

Gre,j(χj) = fj(1− bj/ρj) if bj > 0 and Hr
j otherwise.

Then, letting
(
Gre,j

)−1
be the inverse function for Gre,j ,

χj =
(
Gre,j

)−1
(fj(1− bj/ρj)) =

(
Grj
)−1

(1− bj/ρj) , for each j ∈ J such that bj > 0,

and so by (i), (9), and (10),

Rj(t) = λj

∫ t

0

∫ χj

0

grj (x)dx (37)

=

{
λjt, if bj = 0,
λjG

r
j(χj)t, if bj ∈ (0, ρj ],

=

{
λjt, if bj = 0,
(λj − bjµj) t, if bj ∈ (0, ρj ],

for all j ∈ J and t∈R+. By (37) and the expression for Dj in (35), Dj(t)+Rj(t) = λjt=Ej(t)
for all j ∈ J and t∈R+, and so (X,ν, η) satisfies (13). Thus, (b) in Definition 1 holds.

In this paragraph, we argue that (d) in Definition 1 holds; i.e., that (14) and (15) are
satisfied. By (ii) and (36), for any continuous and bounded function f having domain R+,
for all j ∈ J and t∈R+,∫ ∞

0

1−Gsj(x+ t)

1−Gsj(x)
f(x+ t)ν∗j (dx) +

∫ t

0

(1−Gsj(t−u))f(t−u)dKj(u)

= bjµj

∫ ∞
0

(
1−Gsj(x+ t)

)
f(x+ t)dx+ bjµj

∫ t

0

(1−Gsj(u))f(u)du

= bjµj

∫ ∞
0

(
1−Gsj

)
(u)du

=
〈
f, ν∗j

〉
.

Since νj(t) = ν∗j for all j ∈ J and t ∈R+, (14) holds. Finally, by (i), for any continuous and
bounded function f having domain R+, for all j ∈ J and t∈R+,∫ ∞

0

1−Grj(x+ t)

1−Grj(x)
f(x+ t)η∗j (dx) +λj

∫ t

0

(1−Grj(t− s))f(t− s)ds=
〈
f, η∗j

〉
.

Since ηj(t) = η∗j for all j ∈ J and t∈R+, (15) holds.
In summary, we have established (X,ν, η) ∈ C(X) satisfies (5) and (6), and that

B,Q,R,D,K ∈C(RJ+) satisfy conditions (a)-(d). We conclude (X∗, ν∗, η∗)∈ Iλ.
Proof of converse direction. Suppose that (X∗, ν∗, η∗) ∈ Iλ. Let (X,ν, η) be the

constant function such that (X(t), ν(t), η(t)) = (X∗, ν∗, η∗) for all t ∈ R+. By assumption
(X,ν, η) is a fluid model solution. Therefore, from Definition 1(a), 0≤B∗j ≤ 1. In order to
show that B∗ ∈B, we must also show that B∗j ≤ ρj for each j ∈ J. We will verify this in the
process of verifying that (X∗, ν∗, η∗) satisfies (i)-(iii) in Theorem 1 for b=B∗.

We first show (i) of Theorem 1 holds. By (15), for f that is continuous and bounded and
has domain R+, j ∈ J, and t∈R+,

〈f, η∗j 〉=
∫ ∞

0

1−Grj(x+ t)

1−Grj(x)
f(x+ t)η∗j (dx) +λj

∫ t

0

(1−Grj(t−u))f(t−u)du.
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For each j ∈ J, as t→∞, the first integral converges to zero by dominated convergence, and
the second to λj

∫∞
0

(1−Grj(u))f(u)du. Since f was an arbitrary continuous and bounded
function on R+, (i) of Theorem 1 holds.

We next show (ii) of Theorem 1 holds. From Definition 1(b) and the fact that we have
already established (i) of Theorem 1, 0≤Q∗j ≤

〈
1, η∗j

〉
= λj/θj for each j ∈ J. Define χj ∈

[0,Hr
j ] to be the unique solution to

Q∗j =

∫ χj

0

η∗j (u)du, for each j ∈ J.

so that χj satisfies (9). We fix j ∈ J and separate the cases that χj =Hr
j and χj <H

r
j .

Case χj =Hr
j . From (i) and (10),

Rj(t) =

∫ t

0

∫ Hrj

0

hrj(w)λj(1−Grj(w))dw= λjt, and all t∈R+.

From (13),
Dj(t) =Ej(t)−Rj(t) = 0, and all t∈R+,

and from (12),
Kj(t) = 0, and all t∈R+.

From (14), for all continuous and bounded f with domain R+,

〈f, ν∗j 〉=
∫ Hsj

0

1−Gsj(x+ t)

1−Gsj(x)
f(x+ t)ν∗j (dx)→ 0 as t→∞, (38)

noting that the dominated convergence theorem validates the limit in (38). Since (38) implies〈
f, ν∗j

〉
= 0 for all continuous and bounded f with domain R+, from (7), B∗j = 0, and so (ii)

holds trivially.
Case χj < Hr

j . From (i) and (9), Q∗j = λjG
r
e,j(χj)/θj , or, equivalently, χj =(

Gre,j
)−1

(θjQ
∗
j/λj). From (i) and (10),

Rj(t) =

∫ t

0

(∫ χj

0

hrj(w)λj(1−Grj(w))dw

)
du= λjG

r
j

((
Gre,j

)−1
(θjQ

∗
j/λj)

)
t,

for all t∈R+. Set

k∗j = λj

(
1−Grj

((
Gre,j

)−1
(θjQ

∗
j/λj)

))
.

From (13),
Dj(t) = k∗j t, for all t∈R+,

and from (12),
Kj(t) = k∗j t, for all t∈R+.

From (14), for all continuous and bounded f with domain R+,

〈f, ν∗j 〉=
∫ ∞

0

1−Gsj(x+ t)

1−Gsj(x)
f(x+ t)ν∗j (dx) + k∗j

∫ t

0

(1−Gsj(t−u))f(t−u)du, (39)

for all t∈R+. As t→∞, the first integral in (39) converges to 0, by dominated convergence,
as in (38), and the second to k∗j

∫∞
0

(1−Gsj(u))f(u)du. Hence

ν∗j (du) = k∗j (1−Gsj(u))du for all u∈R+.

From (7), B∗j = k∗j /µj , and so (ii) of Theorem 1 holds for bj =B∗j .
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The fact that B∗ ∈ B follows because for any j ∈ J such that case (i) holds, B∗j = 0, and
for any j ∈ J such that case (ii) holds, k∗j ≤ λj implies B∗j ≤ ρj .

Finally, to see (iii) of Theorem 1 holds, observe that from the argument used to establish
(ii) above, for any j ∈ J, if χj =Hr

j , then B∗j = 0 and

Q∗j = λj/θj .

Otherwise, for j ∈ J such that χj <Hr
j , the definition of k∗j and the fact that B∗j = k∗j /µj

implies

B∗j =
λj
µj

(
1−Grj

((
Gre,j

)−1
(
θjQ

∗
j

λj

)))
.

Re-arranging terms in the above equality shows that for such a j ∈ J,

Q∗j =
λj
θj
Gre,j

((
Grj
)−1

(
1−

B∗j
ρj

))
.

We conclude Q∗j and B∗j satisfy (17) for all j ∈ J, which implies (iii) by (8).

9. Proof of Lemma 1

Fix j ∈ J. By assumption, grj is positive and continuous on (0,Hr
j ). In particular, by the

fundamental theorem of calculus, Grj is continuously differentiable on (0,Hr
j ) with positive

derivative grj . Then, by the inverse function theorem, (Grj)
−1 is differentiable at each x ∈

(0,1), and
d

dx
(Grj)

−1(x) =
1

grj
(
(Grj)

−1(x)
) .

Also, by the fundamental theorem of calculus, Gre,j is continuously differentiable on (0,Hr
j )

with derivative
d

dx
Gre,j(x) = θj(1−Grj(x)), for x∈ (0,Hr

j ).

We use the chain rule in (17) to find that for b∈ (0, ρj)

q′j(b) =−µj

(
1−Grj

((
Grj
)−1

(1− b/ρj)
))

grj

((
Grj
)−1

(1− b/ρj)
) =

−µj
hrj

((
Grj
)−1

(1− b/ρj)
) .

As b ∈ (0, ρj) increases, 1 − b/ρj decreases, causing
(
Grj
)−1

(1 − b/ρj) to decrease and in

turn hrj

((
Grj
)−1

(1− b/ρj)
)

to decrease. Hence, q′j(b) is decreasing in b ∈ (0, ρj), and so qj

is concave on (0, ρj). When hrj is strictly increasing, then qj is strictly concave on (0, ρj).
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