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ABSTRACT OF THE DISSERTATION

A Reversible Interacting Particle System

on the Homogeneous Tree

by

Amber Lynn Puha

Doctor of Philosophy in Mathematics

University of California� Los Angeles� ����

Professor Thomas M� Liggett� Chair

An interacting particle system is a stochastic processes in which particles live

on the vertices of some in�nite graph� They are created and destroyed over time

via local probabilistic rules� One feature of the rules for the system studied here is

that if all of the particles are destroyed� then no more particles can ever be created�

This leads one to consider the notion of survival whereby the set of particles avoids

absorption into the empty set in �nite time� More speci�cally� one wants to know

if survival occurs with positive probability�

Another feature of the rules for this system is that the creation of particles

is controlled by a growth parameter �� In fact� it turns out to be the case that
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the survival probability is an increasing function of �� This has the consequence

that there is critical value �c of the growth parameter� The process survives with

positive probability when � is larger than �c� while the does not survive when �

is smaller than �c � The central objective of this work is to devise a method for

obtaining good bounds on �c� Furthermore� one would like to ascertain how well

the process survives when it does so�

Interest in the local rules chosen for study here arises from the fact that they

lead to a reversible interacting particle system� Reversibility admits tools applica�

ble to studying the survival properties of the system� For example� the Dirichlet

principle can be used to express the survival probability as an in�mum of a certain

variational functional over all functions in some class� Using these tools� upper

and lower bounds are obtained on the critical value �c of the growth parameter�

The results are the sharpest on the binary tree where the bounds are su�ciently

good to completely determine the critical value� It is also shown that if the process

survives� then it survives in a fairly strong sense� Moreover� these tools are used

to obtain estimates on the rate at which the survival probability tends to zero as

the growth parameter approaches the critical value �c�
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CHAPTER �

Introduction

Interacting particle systems are probabilistic models that are de�ned in terms

of local interactions� Such models are useful for modeling physical and biological

systems� Often times these systems undergo a sudden change in the long run

behavior as some parameter varies� For instance� water held at a temperature

below freezing turns to ice after a long period of time� while water held at a

temperature slightly above freezing remains liquid inde�nitely� The freezing point

is what is known as a critical value of the temperature parameter� In a biological

system� whether or not a given species survives may depend on the reproduction

rate� so that the notion of the freezing point can be replaced by the notion of the

survival threshold� These abrupt changes in the long run behavior of the system

are known as phase transitions� Understanding the nature of phase transitions

motivates much of the interacting particle systems research� A widely accept notion

called universality declares that the behavior of these systems near the critical value

is very robust� the near critical behavior should depend very little on the details of

the local interaction and should be determined by the universality class to which

the system belongs� This suggests that simple mathematical models can provide

accurate predictions about the near critical behavior of real systems�
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One of the most widely studied interacting particle systems is the contact pro�

cess� Harris ���� introduced the contact process in ��
� to model the spread of

an infection through a population� The population structure is represented by a

graph with the vertices denoting individuals� Infected individuals �particles� infect

their neighbors at rate �� Once infection sets in� recovery occurs at rate one� On

a global scale� the infection either dies out with probability one or persists forever

with positive probability� Furthermore� the probability s��� that the infection per�

sists forever starting with a single infected individual is an increasing function of

�� Therefore� it is natural to de�ne the critical value �c � inff� � s��� � �g� It is

not di�cult to show that � � �c ��� that is that the contact process undergoes

a phase transition� An active area of research concerns �ndings good bounds on

�c for various graphs�

The notion of survival makes sense for the �nite system� the system in which

the number of infected individual at any given time is �nite� One might ask about

the long run behavior of the system when an in�nite number of individuals are

infected initially� This question leads to the study of invariant measures for the

interacting particle system and their domains of attraction� In this context� the

interacting particle system undergoes a phase transition if there exist values of the

parameter � for which the the sets of extremal invariant measures have distinct

structures� In the case of the contact process on the d�dimensional integer lattice

Zd� � � �c implies that the pointmass on the state with all healthy individuals is
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the only invariant measure� However� for � � �c� there exists exactly one nontrivial

extremal invariant measure� In particular� the critical values for the in�nite and

�nite system coincide� See ��
� for more background on these these topics�

Spitzer ���� proposed a natural generalization of the contact process on the

one dimensional integer lattice Zby allowing the infection rates to depend on the

distances to the nearest infected individuals� Such systems are known as nearest

particle systems� Without making any additional assumptions on the rates� little

can be said about the behavior of these systems� However� by restricting attention

to the nearest particle systems that are reversible� tools become available that

lend themselves to the study of phase transitions� Furthermore� understanding

the behavior of the reversible class may provide insight into the nonreversible

situation� Spitzers de�nition of nearest particle systems depends on the fact that

the underlying graph is Z� This leads us to ask what a reversible nearest particle

system is in higher dimensions� or on other graphs� While there have been some

attempts to de�ne and study reversible systems on graphs besides Z�see �	�� ����

and ������ the theory is not well developed�

Here a reversible interacting particle system called the uniform model is intro�

duced and studied� The process evolves on the homogeneous tree Td� a graph with

no cycles in which each vertex has degree d� �� The infection rate is the same as

for the contact process� while the recovery rate is modi�ed� infected individuals

are prevented from recovering when at least two neighbors are infected� otherwise�
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infected individuals recover at rate one� It turns out that this modi�cation leads

to a reversible interacting particle system� as we will see in Section ����

Before presenting the treatment of the uniform model� we pause to make some

of the aforementioned notions more precise and to give more background on the

related processes� Section ��� contains the formal de�nition of an interacting parti�

cle system and de�nes much of the notation that will be used throughout� Section

��� summarizes some of what is known about the contact process� and in so doing�

introduces the key ideas that motivate the questions that are addressed for the

uniform model� Section ��� gives the formal de�nition of a reversible interacting

particle system and outlines much of what is known about Spitzers reversible near�

est particle systems� In Section ���� we return to the uniform model� Here� the

problems that will interest us are described� This section contains the statements

of the main theorems that will be proved in the ensuing chapters and a pointer to

where each theorem is proved�

�	� Notation and Preliminaries

Interacting particle systems are continuous time Markov processes� Each sys�

tem has a spin space S and an underlying graph G � �V�E�� where V denotes

the set of vertices of the graph and E denotes the set of edges� Typically� ver�

tices are referred to as sites� The process takes values in the space X � SV of all
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possible labelings of vertices �or sites� of the graph with elements in S� Typically�

elements of S are called spins� or spin values� In all of the examples discussed

here S � f�� �g and the spin value � is associated with being infected� or being

occupied� An element � � X is referred to as a con�guration� Con�gurations

can be viewed as functions � � V � S with ��x� denoting the spin at site x in

con�guration �� They can also be viewed as subsets of V via the identi�cation

� � fy � V � ��y� � �g� For future reference� note that there is a natural partial

ordering on X that is given by � � � if and only if ��x� � ��x� for all x � V �

The evolution is determined by a nonnegative rate function c�x� �� that speci�es

the rate at which the spin at site x changes �or �ips� from ��x� to � � ��x� in

con�guration �� Notice that only one spin value changes in a single transition�

Systems with this property are called spin systems� It is certainly possible to have

models in which more than one spin �ips in a single transition� The discussion

here is restricted to spin systems and the rate function is often referred to as the

collection of �ip rates�

Given a collection of �ip rates� one can de�ne a generator G on a certain dense

subset D�X� of the continuous functions C�X� on X�

Gf��� �
X
y

c�y� ��
�
f��y�� f���

�
for all f � D�X��

Here the con�guration �y agrees with � except at y� where it takes the value

� � ��y�� Under appropriate assumptions on the rates� the generator G uniquely

determines a Feller Markov process with state space X� A su�cient condition is

	



that the rates are uniformly bounded and that for all x� c�x� �� depends on the

values of � within some �nite distance R of x� See ��
� for a more detailed account

of the construction�

We denote the semigroup and state of the process at time t by S�t� and �t

respectively� Also� P � is the probability measure that puts mass one on sample

paths with �� � �� Accordingly� ��t is the value of the process at time t when

�� � � almost surely� It is instructive to note that the rates are related to the

measure P � by the equation

P � ��t�x� �� ��x�� � c�x� ��t� o�t� as t	 ��

The expected value with respect to the measure P � is denoted by E� � For � in

the set of all probability measures P on X� �S�t� denotes the distribution of the

process at time t when the initial distribution is ��

�	� The Contact Process

For the contact process� the rate function is given by

c�x� �� �

�������
������
�
P
fy�kx�yk��g ��y� if ��x� � ��

� otherwise�

Here � � � is the growth parameter and kx� yk denotes the length of the shortest

path from x to y in the graph� The rates for the contact process satisfy a very
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useful property known as attractiveness� In order to de�ne an attractive process�

say that f � C�X� is increasing if f��� � f��� for all � � �� An attractive �or

monotone� process obeys the following condition� if f increasing� then S�t�f is

increasing for all t 
 �� For spin systems� attractiveness is equivalent to the rate

function satisfying

c�x� �� � c�x� �� if ��x� � � and c�x� �� 
 c�x� �� if ��x� � ��

�������

for all � � �� Typically� this condition is easy to verify and in particular it holds

for the contact process� One powerful consequence of attractiveness is that for any

� � � there exists a coupling ��t� �t� of two copies of the process such that

P �������t � �t� � � �������

for all t 
 �� In Section ���� this coupling will be reviewed�

As a consequence of attractiveness� the process converges in distribution when

the initial measure is the pointmass 	V on the state with all sites occupied� The

limiting measure is invariant and stochastically dominates all other invariant mea�

sures for the process� To see this� note that 	V 
 	VS�t� so that by attractiveness

	VS�s� 
 	V S�t � s�� In particular� the measures 	VS�t� are decreasing in t and

therefore converge� The limiting measure 
 is called the upper invariant measure�

The term invariant means that 
S�t� � 
 for all times t� The measure 
 is invariant

because it is obtained as a limit� 
 � limt�� 	VS�t� � limt�� 	VS�t� s� � 
S�s��

It dominates all other invariant measures because 	V 
 � implies that 	VS�t� 







�S�t�� If � is invariant� then this inequality becomes 	VS�t� 
 �� Letting t tend

to in�nity gives 
 
 ��

The upper invariant measure is intimately connected to the behavior of the

�nite system� It turns out that 
 is nontrivial if and only if the probability of

survival is nonzero� Moreover� the �nite system often times converges in distri�

bution to a convex combination of 	� and the upper invariant measure� This is

a phenomenon known as complete convergence and the constant is given by the

probability of survival�

PAS�t�� PA��t �� � � t�
 � PA��t � � some t�	��

It is immediate that complete convergence holds whenever s��� � �� In particular�

it holds for � � �c� One of the most important results about the contact process

on Zd is that complete convergence holds for all �� Durrett ��� proved a one

dimensional version of this result that applies for � � �c in ����� A proof can be

found in ��
�� It relies on the notion of edge speeds which are only de�ned in one

dimension� Next came many partial results that hold in all dimensions� but only

for � su�ciently large� see ����� ����� and ���� In ����� Bezuidenhout and Grimmett

��� proved that the contact process obeys complete convergence for all dimensions

and all �� Their work includes a proof that the critical contact process dies out�

s��c� � ��

To this point� the discussion has centered around a notion of global survival�

the event that the process is not absorbed into the empty set in �nite time� There
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is also a notion of local survival� the event that a given site is infected at an

unbounded collection of times� On Zd� global survival implies local survival as

a consequence of complete convergence� however� this is not true for all graphs�

Pemantle ��	� �rst observed this fact by investigating the behavior of the contact

process on the homogeneous tree� He proved that on these graphs the contact

process experiences an intermediate phase� provided that the degree is su�ciently

large� This intermediate phase is characterized by nonlocal� global survival� Fix

a distinguished vertex O in the tree that will be referred to as the origin� or the

root� Let

�� � inff� � PO ��t �� � � t � � �g and

�� � inff� � PO �O � �t for unbounded t � � �g�

Notice that �� � �c� Global survival without local survival is called weak survival�

In particular� weak survival occurs with positive probability if � � ���� ���� By

obtaining upper bounds on �� and lower bounds on ��� Pemantle showed that

�� � �� for d 
 �� leaving the case d � � open� This case was handled by Liggett

���� using a similar but more sophisticated approach� Shortly after� Stacey ����

came up with a proof that �� � �� that did not yield explicit bounds� but worked

for all d 
 ��

A central feature of these arguments involves �nding a suitable function of the

state space that is a nonnegative supermartingale with respect to the evolution of

the contact process� Two supermartingales turned out to be extremely useful� In
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order to de�ne these two supermartingales� a level ��x� is assigned to each vertex

x in the tree such that ��O� � �� The level is assigned inductively to the d � �

neighbors of the vertex x by setting the level of one of the neighbors equal to

��x� � � and the level of the other d neighbors equal to ��x� � �� Let � � � � �

and de�ne

f��A� � �jAj and g��A� �
X
x�A

���x�� �������

for �nite A � X� Notice that if f���t� converges to zero� then j�tj tends to in�nity�

Furthermore� if g���t� tends to zero� then the process dies out locally� These

observations indicate why these functions would be good candidates� The game

is to determine for which � these functions are in fact supermartingales for some

�� As the degree decreases� it becomes more di�cult to obtain bounds su�ciently

good to separate �� and ��� Pemantles original theorem was that

�� �
�

d � � and
�

�
p
d
� ���

which is enough to prove that �� � �� provided d 
 �� He then went on to improve

the bounds enough to separate �� and �� for d � �� Eventually� Liggett showed

that �� � ���	 and ���� � �� for d � � which barely separates the two� Soon after�

Stacey discovered an alternative approach involving the function g� that did not

produced bounds� but that did show the existence of an intermediate phase for all

d 
 ��

Later it was observed by Liggett ���� that
�
EO�g���t��

���t
converges to a �nite

limit� He initiated a study of this limiting function ��� �� which depends on both

��



� and �� One objective of this work was to describe the behavior of the function

u�n� � PO�xn � �t some t � as n���

where kxn�Ok � n� This probability turns out to decay exponentially if ��� �� �

� for some � �which holds if and only if � � �� �� It is even possible to determine

the critical rates of decay�

u�n���n  �

d
at �� and u�n���n  �p

d
at ���

It is immediate that there is no decay if � � ��� The critical rate of decay at ��

comes from combining an upper bound in ���� and results of Schonmann ����� The

critical rate of decay at �� was originally conjectured to be an upper bound by

Liggett� Lalley and Sellke ��	� proved Liggetts conjecture and ultimately� their

proof was simpli�ed by Schonmann and Salzano ����� A good place to read about

this work is �����

An important property of the contact process that is essential to the afore�

mentioned analysis of g���t� is that it is additive� This means that there exists a

coupling such that

�A
t
� �x�A�xt for all t 
 �� �������

The existence of this coupling comes from a graphical construction of the contact

process that we will not go over here� Instead the reader is referred to ����� Su�ce

it to say that additivity implies that Eg��A
t
� � Eg��x�A�xt � �

P
x�A Eg��xt �� which

��



is both a �rst step toward constructing a supermartingale and a �rst step towards

showing that
�
EO�g���t��

���t
converges to a �nite limit�

In the intermediate phase complete convergence must fail� Here the infection is

�wandering o� to in�nity so to speak and therefore the �nite process is converging

in distribution to 	�� This peaked interest in the set of invariant measures for

the contact process on Td in the intermediate phase� Durrett and Schinazi ����

discovered that there are in�nitely many extremal invariant measures in this phase�

These measures have the property that the density of particles tends to a nonzero

constant on some signi�cant proportion of the boundary of the tree� Liggett ����

also produced a spherically symmetric collection of invariant measures for which

the density of particles tends to zero near the boundary�

By this time� Zhang ��	� had proved that the contact process on Td obeys com�

plete convergence for � � ��� It is not obvious from the de�nition of complete

convergence that survival together with complete convergence is a monotone in�

creasing property of �� Nevertheless� it turned out to be the case on both Zd and

Td� This interested Schonmann and Salzano ���
� and ����� who undertook a study

of the contact process on arbitrary graphs with monotonicity of complete conver�

gence in mind� One consequence of their work was a criterion for survival together

with complete convergence on homogeneous graphs that is obviously monotone

increasing in ��

lim
n�� lim inft�� PB�O�n���t �B�O�n� �� �� � ��

��



where B�O�n� is the ball centered at the origin of radius n� This leads to the

de�nition of yet another critical value

�� � inff� � limn�� lim inft�� PB�O�n���t �B�O�n� �� �� � �g� �����	�

In these terms� the Zhang result states that �� � ��� For a proof that �� � ��� the

reader is referred to �����

Turning our attention to the near critical behavior of the contact process on

Td� if

lim
����

logPO��t �� � � t�
log��� ����

� ��

then the survival probability decays like a power law with exponent �� This expo�

nent � is said to be the critical exponent of the survival probability� For the contact

process on the homogeneous tree� Barksy and Wu ��� showed that if a condition

called the triangle condition holds� then the exponent takes its mean �eld value

which is one� Wu ���� veri�ed that this condition holds for d 
 	� Later Schon�

mann ���� completed the story by verifying that this condition holds for d 
 ��

Another quantity that typically displays power law behavior is the expected total

space time occupation measure� or the susceptibility� It is de�ned as

���� � EO
Z �

�
j�tjdt�

Letting � be the time of absorption into the empty set� we see that

EO� � �����

��



and consequently EO� � � implies that ���� � �� The question then becomes

at what rate does ���� diverge� Let

�� � inff� � EO� ��g�

For the contact process on Td� it is known that �� � �� and that

lim
����

log ����

log��� �����
� ��

for � � �� Here again � � � is the mean �eld value� The fact that the exponent

exists and takes mean �eld value follows from the fact that the triangle condition

holds as veri�ed by Wu ���� for d 
 	 and Schonmann ���� for d 
 ��

�	� Reversible Nearest Particle Systems

A �nite interacting particle system is said to be reversible if there exists a

measure � supported on the states with �nitely many infected individuals such

that

��A�c�x�A� � ��A� x�c�x�A� x� �������

for all states A �except possibly a single absorbing state� with �nitely many infected

sites and all x �� A� The equations in ������� are known as the detailed balance

equations� If there is no exceptional state� then the detailed balance equations are

equivalent to self�adjointness of the operator S�t� with respect to the measure ��

��



Given the de�nition of a reversible interacting particle system� the next objec�

tive is to give a more formal description of a reversible nearest particle system� As

previously mentioned� a nearest particle system on Zhas a rate function of the

form

c�x� �� �

�������
������
f�lx���� rx���� if ��x� � ��

� otherwise�

Here f � N	 � N	 � R	 with N	 � f�� �� �� � � � g and R	 � ft � R � t 
 �g� Also�

lx��� �resp� rx���� is the distance to the nearest particle to the left �resp� right� of

x in con�guration �� The function f satis�es some mild conditions that prevent

explosions and has the properties that f�l��� � f��� l� � � and f����� � ��

In particular� the empty set is an absorbing state� Requiring the detailed balance

equations to hold �except at the empty set� for some measure � is equivalent to

the function f taking the form

f�l� r� �
��l���r�

��l� r�

for some strictly positive function ���� on N	� This function ���� is also assumed

to satisfy
P�

n��
��n� ��� In case r ��� f�l��� � ��l�� The measure � is given

�up to constant multiples� by ��x� � � for all x �Zand

��A� �
n��Y
i��

��xi	� � xi�

for A � fx�� � � � � xng with xi � xi	� for � � i � n� � and n 
 ��

In contrast to the contact process� critical values for both the �nite and in�nite

reversible nearest particle systems can be computed exactly� This is achieved by

�	



taking advantage of the additional tools that become available in the reversible

setting �e�g� the Dirichlet principle for the �nite system� that will be discussed at

some length in Sections ��
 and ���� Let � �
P�

n��
��n��

Theorem �	�	� The �nite process survives if and only if � � �� Furthermore�

�� �
�

� P ���t �� � � t� �
������ log

�
�� �
�

������
��

for � � ��

Thus� not only has the critical value been computed exactly� the theorem pro�

vides estimates on the rate at which the survival probability decays as � decreases

to ���

Originally� Spitzer ���� was interested in the in�nite system� the system in which

P
x�� ��x� �

P
x�� ��x� ��� In this context� a measure is said to be reversible if

the semigroup is self�adjoint with respect to that measure for all times� Reversible

measures are also invariant measures� In order to state the simplest version of the

results about reversible measures� the function ���� is assumed to satisfy

��n�

��n� ��
	 �� �������

It turns out that the monotonicity in assumption ������� is equivalent to saying

that the system is attractive� For the in�nite system� the fact that the limit in

������� is taken to be one is not a restriction since the function ���� can be replaced

��



with �����	 without a�ecting the �ip rates� Suppose that there exists a � such that

�X
l��

��l��l � � and
�X
l��

l��l��l ��� �������

In particular� this is the case whenever � � � and this not the case whenever

� � �� If assumption ������� holds� then �����	 is a strictly positive probability

distribution on N	 that determines a stationary renewal measure �� on Zwith

increments that are distributed according to this measure�

Theorem �	�	� Assume that �����	
 holds� Then the upper invariant measure is

	� whenever there exists no � satisfying assumption ������
� If assumption ������


is satis�ed for some �� then the stationary renewal measure �� is both the upper

invariant measure and the unique nontrivial reversible measure for this process� In

particular� the critical values for the �nite and in�nite system coincide�

In view of Theorem ������ one might like to know if there are other invariant

measures that are not reversible� Under the additional assumption that

X
n

��n���n�

���n�
��� �������

Liggett ���� proved that �� is the unique nontrivial translation invariant� invariant

measure� This condition turns out to hold for most ���� of interest� Mountford

���� later built on this result and proved a complete convergence theorem under

assumption �������� His proof takes advantage of ideas introduced in ����

�




The subcritical approach to critical for reversible nearest particle systems is

very well understood� In fact� as a consequence of reversibility� the expected ex�

tinction time and susceptibility are exactly computable as functions of �� One

consequence of these computations is that �� � ���

Theorem �	�	� Assume that � � �� Then

E��� � � ��� ���� and ���� � ��� �����

The proofs of all of the theorems stated in this section can be found in ��
�� with

the exception of the complete convergence result� For that the reader is referred to

the original paper ����� Theorems ����� and ����� are due to Gri�eath and Liggett

����� Theorem ����� follows from work of both Spitzer ���� and Liggett �����

Two important obstacles prevent a direct generalization of reversible nearest

particles to graphs other than Z� Firstly� on what quantity should the rate at

which a vacant site becomes occupied depend� that is� how should one generalize

the notion of the nearest particle to the left and right� Secondly� there is no gener�

alization of a renewal measure even to Zd for d 
 �� Liggett ���� introduced what

he called the uniform model in an e�ort to extend the theory of reversible nearest

particle systems to Td� It has two parameters rather than one and henceforth

will be referred to as the two parameter uniform model� Some other work in this

direction includes �	�� ���� and �����

��



�	� The Uniform Model

The �ip rates for the uniform model are given by

c�x� �� �

�������������
������������

�
P
fy�kx�yk��g ��y� if ��x� � ��

� if ��x� � � and
P
fy�kx�yk��g ��y� � ��

� otherwise�

As for the contact process� � � � is the growth parameter and kx�yk denotes the

length of the shortest path connecting x and y� These dynamics can be viewed

as a modi�cation of the contact process� there the rate at which an occupied site

becomes vacant is one regardless of the spin values in the neighborhood� Notice

that these rates also satisfy �������� In particular� the uniform model is attractive�

One e�ect of the modi�cation is that connected components remain connected

until absorption into the empty set� To see this� note that the rate at which a �

�ips to a � is zero unless there are some �s in the neighborhood of the �� Thus�

new connected components cannot appear due to a birth� Also note that� if a �

�ips to � at a positive rate� then at most one of neighbors of the � is occupied�

Therefore� anything in the connected component of this � is connected through

this occupied neighbor� In particular� removing this � cannot break the connected

component into two pieces� This leads to the observation that the con�guration

with all sites occupied is absorbing so that the measure 	Td is the upper invariant

��



for the process�

Another important distinction between the two processes is that the uniform

model is reversible� Consider the measure ��A� � �jAj for all �nite� connected

A � Td� where jAj denotes the number of vertices in the set A� If A is connected

and nonempty� then c�x�A� � � if and only if c�x�A � x� � �� Therefore�

c�x�A���A� � c�x�A � x���A � x� for all x �� A�

It is easy to see that the contact process is not reversible since isolated particles

die at positive rate and cannot be reborn at positive rate until some neighboring

vertex becomes occupied�

A third fundamental di�erence between these two processes is that the uniform

model is not additive� In fact� it is superadditive in the sense that there exists a

coupling such that

�x�A�xt � �A
t
�

and no such coupling holds with an equality� This has the consequence that the

supermartingales that were so useful for analyzing the behavior of the contact

process on the tree are not supermartingales for the uniform model� Therefore�

the techniques used to prove results about this process will di�er greatly from those

used for the contact process� The methods take advantage of reversibility and tend

to be more like those used to prove results about reversible nearest particle systems�

Liggett ���� �rst introduced the two parameter version of this process in ���	�

It has both an interior growth parameter � and an exterior growth parameter

��



� � ��d� Given a con�guration �� let G��� be the minimal connected subgraph of

Td containing �� The rate at which a vacant site becomes occupied in con�guration

� decays exponentially with the distance to G���� while occupied sites become

vacant at rate one� The �ip rates are given by

c�x� �� � ��kx�G���k��� ��x�� � ��x��

where kx � G���k � minfkx � yk � y � G���g� The two parameter model is

reversible with respect to the measure ��A� � �jG�A�j�jAj for �nite A � Td� Liggett

studied the survival properties of the �nite system and gave bounds on the critical

value of the interior growth parameter in terms of the exterior growth parameter�

The connection between the single and double parameter models is that the single

parameter uniform model can be regarded as a limit of the double parameter

version� To see this� set the double parameter nearest neighbor birth rate ��

constantly equal to � while letting the exterior growth parameter � tend to zero�

In particular� the rate at which vacant sites at a distance strictly greater than one

from G��� become occupied tends to zero� Since the interior growth parameter

� � ���� the interior birth rate tends to in�nity� Thus� any occupied site in the

interior of G��� that becomes vacant is instantaneously reoccupied�

The uniform model is also closely related to another process that arises in the

computer science literature� In this arena� binary search trees are a common way

to store and retrieve data� The search process is modeled by a Markov chain that

evolves by adding a vertex at random to the current state� This vertex is chosen

��



from those at distance one from the current state� The state space for the search

process is not quite subsets of T�� It is actually subsets of a subgraph B � of T��

This subgraph B � contains a distinguished vertex called the root that has degree

two� All other vertices have degree three� This distinguished vertex is the �rst

vertex to be occupied with probability one� Such a process can be view as a discrete

time uniform model without deaths� The main interest is the asymptotic height

of these trees which was studied independently by Pittel ���� and Devroye �
�� Let

Hn be the distance to the farthest vertex from the origin that is in the current

state after n additions� Also� let hn be the distance to the nearest vertex to the

origin that is not in the current state after n additions� Both of these quantities

grow like lnn� but with di�erent constant rates� With probability one

lim
n��

hn
lnn

� L� and lim
n��

Hn

lnn
� L��

where L� and L� are the two distinct roots of the equation L exp ��� � L��L� � ��

Barlow� Pemantle� and Perkins ��� later studied more general versions of pure

growth processes on trees�

A major objective of this work is to exploit reversibility to provide a complete

analysis like that available for reversible nearest particle systems� Motivated by

the contact process on Td� we consider the following critical values of the birth

parameter� As before� � denotes the time of absorption into the empty set and O

��



is a distinguished vertex referred to as the origin� or the root� Let

���d� � inff� � EO �� � ��g�

���d� � inff� � PO ��t �� � � t � � �g�

���d� � inff� � PO �O � �t for unbounded t � � �g� and

���d� � inff� � limn�� lim inft�� P �O � �
B�O�n�
t � � �g�

It is immediate that ���d� � ���d� � ���d� � ���d�� The de�nition of ���d� is

a modi�ed version of de�nition �����	� that de�ned �� for the contact process�

In Section ���� will we see that ���d� is the threshold for survival and complete

convergence� For the contact process on Td� we know that �� � �� � �� � ���

provided d 
 �� The process is said to be subcritical if EO �� � �� and supercritical

if limn�� lim inft�� P �O � �
B�O�n�
t � � ��

Theorem ����� summarizes the main results regarding critical values for the

�single parameter� uniform model� On the binary tree� all critical values are com�

puted exactly paralleling the results for reversible nearest particle systems on Z�

The analysis itself is similar in the sense that it uses certain tools associated with

reversibility� However� many new ideas are required in order to obtain these results�

The proof of this theorem is the subject of Chapter ��

Theorem �	�	�

a
 For d 
 �� ���d� � ���d��

��



b
 For d 
 ��

���d� �
�

d

�
d � �
d

�d��
�

Furthermore� at ���d� the expected extinction time is �nite�

c
 For d 
 ��

���d� �
d

��d � ��� �

d
 For d � �� ����� � ����� �
�
�
�

Theorem �����a� states that in contrast to the contact process onTd the uniform

model has no intermediate phase characterized by weak survival for all d 
 ��

The key factor that will be taken advantage of in the proof of Theorem �����a�

is connectedness of the uniform model� By b�� ���d� is asymptotically ��ed and

the bound given in c� is asymptotically ���d� These values are close� but not

close enough to rule out an intermediate phase� Part d� states that there is in

fact no intermediate phase in d � � and identi�es the exact location of the phase

transition�

The technique used to push the upper bound on ����� down to ����� may work

for general d� The remaining obstacle is to show that a certain set of equations

has a solution that is absolutely bounded by one �see Lemma ������� A limiting

version of these equations yields a partial di�erential equation� This PDE does in

fact have a solution that is absolutely bounded by one�

��



Theorem �	�	� For d 
 �� let �
 � Rd
	
� R be de�ned by

�
�x�� � � � � xd� �

dX
i��

�x� � xi��x�� � ��x�xi � x�
i
��x� � � � �� xi�� � xi	� � � � �� xd�

d�d � ���x� � � � �� xd��x� � xi��
�
�

d
�

Then �
�x�� � � � � xd� is symmetric in the variables x�� � � � � xd� absolutely bounded by

one� and a solution to

dX
i��

�
�xi� x�� � � � � xi��� xi	�� � � � � xd� � �

dX
i��

�
�

�xi
� �

�xi

�
�
�xi� x�� � � � � xi��� xi	�� � � � � xd� �

�

��x� � � � �� xd�
�

The analysis of the PDE that is presented in Chapter � may be of independent

interest� Firstly� the PDE relates values of the function and its derivatives at dis�

tinct �not necessarily close� points in the positive orthant� Furthermore� simple

inspection of the PDE does not suggest a particular form for a candidate solu�

tion� Therefore� some strategy must be implemented in order to �nd the solution

exhibited in Theorem ������

Theorem ����� suggests that the next conjecture holds� The conjecture implies

that the uniform model undergoes exactly one phase transition on all homogeneous

trees�

Conjecture �	�	� For d 
 �� ���d� � �
d

�
d��
d

�d��
�

�	



In Chapter �� our attention turns to the behavior near the critical value ���d�

which� as the conjecture indicates� we believe to be the only critical value for the

uniform model� We prove the following theorem�

Theorem �	�	� On Td�

lim sup
����

PO��t �� � � t�

�� � ���
��
� C� �������

for some constant � � C� ��� On the binary tree�

lim inf
�����

PO��t �� � � t�

�� � �����	p����

 C� �������

for some constant � � C� ���

One might be tempted to conclude that inequality ������� implies that the

survival probability is continuous at the critical value ���d�� However� this follows

from other considerations� There is relatively elementary argument that shows that

the survival probability is right continuous that will be given in Section ���� Since

Theorem �����a� states that the survival probability is zero at ���d�� this together

with right continuity implies continuity at ���d�� For d 
 �� inequality ������� is

only interesting if ���d� � ���d�� which we believe to be true� Together the two

inequalities in the theorem give bounds on the rate at which the survival probability

tends to zero as the growth parameter tends to ����� � ���� The theorem says that

on the binary tree the critical exponent for the survival probability of the uniform

model lies in the interval �	��� � �
p
����� �if it exists�� For d 
 �� a similar result

��



may hold� The main obstacle is proving that the hypothesis of Lemma ����� are

satis�ed� This is explained more fully at the end of in Chapter ��

In Chapter 	� the collection of extremal reversible measures is identi�ed� In

order to parameterize this collection of measures� we need to introduce the notion

of a backbone in Td� Say that b � Td is a backbone if b is nonempty and for all

x � b� there exist at least two neighbors of x that are also in b�

Theorem �	�	� For � � ���d�� fb � Td � b is a backboneg � � is in one�to�one

correspondence with the collection of extremal reversible measures�

This correspondence is made precise in Chapter 	� Theorem ����	 suggests

many open questions� For example� it would be interesting to determine if there

are any invariant measures that are not reversible� Another possibly more di�cult

question is to determine the domain of attraction for each of these measures� A

preliminary step in that direction might be to begin with a product measure at

density p and to determine for which p the process converges in distribution to 	Td�

An easy upper bound on the critical p is the percolation threshold for independent

site percolation on Td� which is ��d� It would even be interesting to show that the

process converges in distribution to 	� for p in a su�ciently small neighborhood of

zero� This would establish that there is a phase transition for �xed � � ���d� as p

varies�

�




CHAPTER �

Critical Values

The critical values ���d�� ���d�� ���d�� and ���d� signify abrupt changes in

strength with which the uniform model survives� We have already observed that

���d� � ���d� � ���d� � ���d�� This raises the question as to whether or not

any of these inequalities is strict� One approach to resolving this issue is to devise

a method for �nding bounds su�ciently good to separate two critical values� or

su�ciently good to prove that they are equal� The main portion of this chapter is

is devoted to obtaining such estimates and thereby proving Theorem ������

Before proceeding to obtain these estimates� we investigate the behavior of the

uniform model in the survival regime� f� � PO��t �� � � t� � �g� In Section ����

qualitative di�erences in the nature of the survival from one phase to the next

are described� These notions apply quite generally� Section ��� is devoted to the

proof of part a� of Theorem ������ Here basic properties of the uniform model are

exploited to rule out weak survival� The remainder of the chapter is dedicated to

proving parts b�� c�� and d� of Theorem ������ Reversibility plays an essential role

in many of the proofs�

��



�	� Some Background on Coupling and Positive Correlations

In the introduction� it was noted that the rates for the uniform model satisfy

c�x� �� � c�x� �� if ��x� � � and c�x� �� 
 c�x� �� if ��x� � �� �������

for � � �� An important consequence of this is that there exists a coupling of two

copies of the uniform model so that � � � implies that

P �������t � �t� � �� �������

for all t 
 �� From this coupling� it readily follows that if f is increasing� then

S�t�f is also increasing for all t 
 �� Equivalently� if two probability measures on

X satisfy �� � ��� then ��S�t� � ��S�t� for all t 
 �� A process that satis�es

these two equivalent conditions is said to be attractive�

The coupled process has the following rates� For � � �� let

��� ��� ��x� �x� at rate

�������
������
c�x� �� if ��x� � ��x� � ��

c�x� �� if ��x� � ��x� � ��

��� ��� ��� �x� at rate

�������
������
c�x� ��� c�x� �� if ��x� � ��x� � ��

c�x� �� if ��x� � �� ��x� � ��

��� ��� ��x� �� at rate

�������
������
c�x� ��� c�x� �� if ��x� � ��x� � ��

c�x� �� if ��x� � �� ��x� � ��

For � �� �� the two processes evolve independently� The fact that these rates are

nonnegative follows from condition �������� Observe that if � � � and ��� �� �

��



��� �� at positive rate� then � � � which guarantees that equation ������� holds�

Also note that � � �x at rate c�x� �� and � � �x at rate c�x� �� so that the marginal

processes both have the same distribution as the original spin system�

One very useful fact about attractive spin systems is that the evolution pre�

serves positive correlations� More precisely� if � has positive correlations in the

sense that Z
fhd� 


Z
fd�

Z
hd�

for all increasing functions f and h in C�X�� then �S�t� also has positive correla�

tions� This holds as a consequence of Harris Theorem�

Theorem �	�	� Suppose that S�t� and G are respectively the semigroup and gen�

erator of an attractive Feller process on X� Assume further that G is a bounded

operator� Then the following statements are equivalent�

Gfh 
fGh � hGf for all increasing f� h � C�X�� �������

�S�t� has positive correlations whenever � does� �������

A proof Harris Theorem can be found in ��
�� In order to see that condition

������� holds for any spin system� note that

�f��x�� f���� �h��x�� h���� 
 ��

��



whenever f and h are increasing� This together with the observation that

G�fh����� f���Gh���� h���Gf��� �����	�

�
X
x�V

c�x� �� �f��x�� f���� �h��x�� h����

implies that condition ������� holds�

Harris Theorem has the following corollary� a proof of which can also be found

in ��
��

Corollary �	�	� Suppose that the assumptions of Theorem 	���� are satis�ed� and

that equivalent conditions �	����
 and �	����
 also hold� Let �t be the corresponding

process� where the distribution of �� has positive correlations� Then for t� � � � � �

tn� the joint distribution of ��t�� � � � � �tn�� which is a probability measure on Xn�

has positive correlations�

The state space for the coupled process X� also has a natural partial ordering�

��� �� � ��� �� if � � � and � � �� Therefore� the notions of attractive processes

and positive correlations apply in this context� For the coupled process ��t� �t�

with �� � ��� equation ������� implies that there are three possible spin values at

any given site� ��� ��� ��� ��� and ��� ��� In light of this observation� one can make

the identi�cation

��� ��� �� ��� ��� �� and ��� ��� ��

��



and take the spin space to be f�� �� �g� Con�gurations in the space f�� �� �gV

will be distinguished from con�gurations in f�� �gV with an overbar as follows�

�� � f�� �� �gV � The aforementioned partial ordering can be expressed as �� � �� if

���x� � ���x� for all x � V � Let ci�x� ��� be the rate at which the spin at x �ips to

i in con�guration ��� Also� let ��� �� be corresponding representation of �� in the

space X�� In particular� let ��x� � � if ���x� � �� otherwise� ��x� � �� Also� let

��x� � � if ���x� � �� otherwise� ��x� � �� We have

c��x� ��� � c�x� �� if ���x� �� ��

c��x� ��� �

�������
������
c�x� ��� c�x� �� if ���x� � ��

c�x� ��� c�x� �� if ���x� � ��

�������

c��x� ��� � c�x� �� if ���x� �� ��

Here it is understood that ci�x� ��� � � in the remaining cases�

The �rst objective is to show that the coupled process satis�es condition ��������

In this context� �����	� becomes

G�fh������ f����Gh����� h����Gf���� �����
�

�
X
x�V

�X
i��

ci�x� ���
�
f���i

x
�� f����

� �
h���i

x
�� h����

�
�

where �i
x
agrees with � except at x� where it takes the value i� As before�

�
f���i

x
�� f����

� �
h���i

x
�� h����

�

 ��

whenever f and h are increasing� Therefore� ������� holds for the coupled process�

��



Next� one would like to know that the coupled process is also attractive� For

�� � ��� the rates of the coupled process satisfy

c��x� ��� 
 c��x� ��� if ���x� �� ��

c��x� ���� c��x� ��� � c��x� ��� 
 c��x� ��� if ���x� � ��

c��x� ��� � c��x� ���� c��x� ��� 
 c��x� ��� if ���x� � ��

c��x� ��� 
 c��x� ��� if ���x� �� ��

In a similar manner as for the original spin system� one can use these inequalities

to de�ne a coupling ���t� ��t� such that

P �����	����t � ��t� � �� �������

for all time t 
 � whenever �� � ��� This has the consequence that the coupled

process on f��� �� � X� � � � �g is attractive� Therefore� by Theorem ����� the

evolution of the coupled process also preserves positive correlations on this space�

One �nal note regarding Harris Theorem and the coupled process� Suppose

that death at the origin is suppressed in the smaller of the two processes� Then

clearly one cannot expect to �nd a coupling such that �t � �t for all t 
 �� However�

one can maintain this inequality until the stopping time R � infft � O �� �tg� In

particular� a modi�ed coupling ��t� �t� is de�ned whereby for t � R� the rates for

the coupled process are given by ������� and for t 
 R� the two process evolve

independently� Thus�

�t � �t for all t � R�

��



and there is no particular ordering relation that is guaranteed to hold after time

R� It turns out that this modi�ed coupled process is also attractive and satis�es

�������� The fact that this modi�ed coupled process satis�es ������� follows from

the same argument as for the original coupled process� Attractiveness is not much

harder to verify� Obey the rates that give rise to ������� until time R�� which is

the R corresponding to the smaller of the two coupled processes� In the interval

�R�� R��� three �nonindependent� copies of coupling ������� are used� Here R� is

the R corresponding to the larger of the two coupled processes� The primary copy

applies to the second of the two coupled processes� Then the �rst coordinate in

the smaller of the two coupled processes is coupled to �rst coordinate in the larger

of the coupled processes via coupling �������� Similarly� the second coordinates of

each coupled process are coupled using �������� After time R�� two independent

copies of ������� continue to preserve the appropriate relations between the �rst

coordinates of each coupled process and between the second coordinates of each

coupled process respectively� Therefore� this modi�ed process ��t� �t� in which

O � �t for all t 
 � satis�es the hypotheses of Harris Theorem�

�	� Characterizations of the Survival Phases

In this section� we study the model when PO��t �� � � t� � �� We begin by

asking whether or not weak survival can occur above the local survival threshold�

��



Salzano and Schonmann ��
� proved that weak survival does not occur for the

contact process on homogeneous graphs in the local survival phase� The properties

of the contact process that their proof uses are that it is translation invariant�

strong Markov� and attractive� Therefore� the probability of weak survival is zero

above the local survival threshold for any translation invariant� attractive� strong

Markov process on a homogeneous graph G taking values in f�� �gG� In particular�

when P ��A
t
�� � � t� � ��

P ��A
t
�� � � t� � P �O � �A

t
for unbounded t�� �������

for any �nite initial con�guration A�

Here is the main idea behind their proof� Let Xt be an attractive� strong Markov

process taking values in f�� �gG� They make the observation that local survival

is almost surely equivalent to the event that for every n � N there exists a �nite

time Tn such that the process contains a �fully occupied� ball of radius n centered

at the origin� Using this fact� they prove that P �O � XA
t
for unbounded t� � ��

implies that

lim
n�� P �O � X

B�O�n�
t for unbounded t� � �� �������

where B�O�n� denotes the ball of radius n centered at the origin� On the event

that the process survives� a ball of size n must become occupied somewhere� By

the strong Markov property� the process can be restarted at this random time�

Homogeneity of the graph and equation ������� imply that the probability of weak

�	



survival tends to zero as n tends to in�nity� For a complete proof� see Salzano and

Schonmann ��
� Theorem ��i� �

Next we turn our attention to the supercritical uniform model� Here the process

converges in distribution to a measure that is a nontrivial convex combination of

	� and 	Td� In fact�

PA��t � ��� PA��t �� � � t�	Td � PA��t � � some t�	�� �������

for all �nite� connected con�gurations A� This behavior is known as complete

convergence� When PA��t �� � � t� � �� it is immediate that complete con�

vergence holds� It turns out that survival together with complete convergence is

equivalent to supercriticality� In particular� complete convergence fails in the inter�

val ����d�� ���d��� This equivalence has the interesting consequence that survival

together with complete convergence is a monotone increasing property of the pa�

rameter �� a fact that is not apparent from the de�nition of complete convergence�

Salzano and Schonmann ��
� also investigated the question of monotonicity of

the complete convergence property for the contact process on general graphs� They

determined that homogeneity of the graph� attractiveness of the process� and self

duality could be used to prove the desired result� The de�nition of supercritical�

ity for the uniform model is actually a modi�ed version of the criterion given in

Theorem ��b� of ��
� for complete convergence of the contact process� Here� the

ideas used to prove Theorem ��b� in ��
� are adapted to prove the equivalence of

supercriticality and complete convergence for the uniform model�

��



Lemma �	�	� If P ��O
t
�� � � t� � �� then complete convergence holds if and only

if

lim
n�� lim inft�� P �O � �

B�O�n�
t � � ��

In particular� if P ��O
t
�� � � t� � � and complete convergence holds at �
� then the

same is true for all � � �
�

Proof� First assume that P ��O
t
�� � � t� � � and that complete convergence holds�

Then limt�� P �O � �
B�O�n�
t � � P ��B�O�n�

t �� � � t�� This together with equations

������� and ������� gives the if direction of the implication�

Assuming that limn�� lim inft�� P �O � �
B�O�n�
t � � �� it is immediate that

P ��O
t
�� � � t� � �� Given �nite A � Td� let Tn � infft � B�O�n� � �A

t
g� For s � t�

P �O � �A
t
� 
 P �O � �A

t
j Tn � s�P �Tn � s�


 inf
t�s�u P �O � �B�O�n�

u
�P �Tn � s��

where the �nal inequality follows from the strong Markov property and attractive�

ness� Therefore� for all s � R	 and n � N�

lim inf
t�� P �O � �A

t
� 
 lim inf

t�� P �O � �
B�O�n�
t �P �Tn � s��

Recall the observation that was made in ��
��

lim
n�� lim

s��P �Tn � s� � P �O � �A
t
for unbounded t��

�




This together with equation ������� implies that

lim inf
t�� P �O � �A

t
� 
 P ��A

t
�� � � t��

Since P �O � �A
t
� � P ��A

s
�� � � s � t�� it follows that lim supt�� P �O � �A

t
� �

P ��A
t
�� � � t�� Thus�

lim
t��P �O � �A

t
j �A

t
�� � � t� � ��

It follows that for all �nite B � Td limt�� P �B � �A
t
j �A

t
�� � � t� � �� which

completes the proof�

�	� Absence of a Weak Survival Phase

As a consequence of connectedness and attractiveness� it turns out that ���d� �

���d�� Hence� the uniform model does not have an intermediate phase that is

characterized by weak survival� Combining this with the fact that weak survival

cannot happen above the local survival threshold� if the process survives� then it

survives locally�

Proof of Theorem �����a
� It su�ces to show that P ��O
t
�� � � t� � � implies that

P �O � �O
t
for unbounded t� � �� Let B d

i
� fx � Td � kx � xik � kO � xkg � O

where x�� � � � � xd	� denote the d�� nearest neighbors of the root O� By rotational

symmetry�

P �B d
i
� �O

t
�� �� 
 P ��O

t
�� ��

d� �

 P ��O

s
�� � � s�

d� �
�

��



Using the fact that the uniform model is an attractive spin system and that 	O is

positively correlated�

P �B d
i
� �O

t
�� �� B d

j
� �O

t
�� �� 
 P �B d

i
� �O

t
�� ��P �B d

j
� �O

t
�� �� i �� j

by Theorem ������ Since �O
t
is connected� P �O � �O

t
� 
 P �B d

i
��O

t
�� �� B d

j
��O

t
�� ���

Therefore� the assumption that P ��O
s
�� � � s� � � implies that P �O � �O

t
� is

bounded away from zero� Hence� P �O � �O
s
for unbounded s� � ��

Remark� A slight modi�cation of this proof works for the double parameter uni�

form model� There connectedness of the single parameter model is replaced by

connectedness of G����

�	� The Rooted Chain

In order to obtain actual estimates on the critical values� it will be convenient

to analyze the behavior of the uniform model on a single branch B d of Td� Recall

that B d
i
� fx � Td � kx� xik � kO � xkg �O where x�� � � � � xd	� denote the d� �

nearest neighbors of the root O� Take B d � B d
�
and consider the initial con�guration

�� � �Td n B d� �O� By connectedness� �t � �� for all t 
 �� Therefore� it su�ces

to keep track of the intersection with B d � namely At � �t � B d � First� note that

At is a connected subset of B d since B d and �t are both connected and there is

a unique path connecting any two vertices in B d � Also� O � At for all t 
 �

since O � ��� Furthermore� jAtj is �nite for all t 
 �� where jAj � jfx � x �

��



A n Ogj� To see this consider the rate at which jAj � jAj � �� This is given by

� jfx � Ac � kx�Ak � �gj� where Ac � B d nA�

Proposition �	�	� For all �nite� connected A � B d containing O�

jfx � Ac � kx�Ak � �gj � �d� ��jAj� �� �������

Proof� If jAj � �� then A � fOg and jfx � Ac � kx�Ak � �gj � �� Assume that

������� holds for all jAj � n� Given jAj � n� choose x � A such that A n x is

connected and contains O� By induction�

jfy � �A n x�c � ky �A n xk � �gj � �d� ���jAj � �� � ��

Adding x back into the set deletes one element from

fy � �A n x�c � ky �A n xk � �g�

namely x� and adds the d neighbors of x to this set� Therefore�

jfy � Ac � ky �Ak � �gj � jfy � �A n x�c � ky �A n xk � �gj � � � d�

which proves the assertion�

Let Yt be a pure birth process such that

n� n� � at rate � ��d� ��n� �� �

��



As a consequence of Proposition ������ we can couple At and Yt such that

jAtj � Yt for all t 
 ��

Let �n be the length of time that Yt spends in state n� Then �n is exponential with

mean ��� ��d� ��n� ��� Since

E

� �X
n��

�n

�
���

it follows that
P�

n��
�n � � almost surely� Therefore� Yt � � almost surely for

all t 
 � and consequently� jAtj �� almost surely for all t 
 ��

The Markov chain At will be referred to as the rooted chain� As noted above� it

is irreducible with state space Cd � f�nite� connected A � B d containing Og and

rates

q�A�B� �

�������
������
c�x� �� �A� if B � A � x or B � A n x�

� otherwise�

for A� B � Cd� Let ��A� � �jAj� where we have made the convention that the

cardinality of A is the number of vertices in A nO� Since

��A�q�A�A� fxg� � �jAj	� � ��A � fxg�q�A � fxg� A�

for all x � B d such that kx � Ak � �� the rooted chain is reversible with respect

to the measure ����� For A � Cd� say that x � A is a leaf if x �� O and jfy � A �

kx� yk � �gj � �� Denote the set of all vertices in A that are leaves by �A� The

connection between the behavior of the �nite interacting particle system and the

the rooted chain is outlined in the next theorem�

��



Theorem �	�	�

a
 If the rooted chain is positive recurrent� then the uniform model is subcritical�

i�e� EO �� � ���

b
 If the rooted chain is transient� then uniform model is supercritical� i�e�

lim
n�� lim inft�� PB�O�n��O � �t� � ��

Proof� Let �t denote the product of d � � independent copies of the rooted chain

with initial state fOg� Paste together the d�� roots� one on top of the other� and

locate the roots at the origin of Td� By this correspondence� the product chain is

equal in distribution to a uniform model on Td with death at O suppressed� Let

�O
t
denote the uniform model on Td with initial state O� By attractiveness� we can

couple �O
t
and �t such that

�O
t
� �t � t 
 �� �������

Furthermore� for any initial con�guration A containing O we can couple �A
t
and �t

such that

�t � �A
t

� � � t � R� �������

where R � infft � O �� �A
t
g �see the �nal paragraph of Section �����

��



The positive recurrence of the rooted chain is equivalent to positive recurrence

of the product chain� This follows from the fact that the reversible measure for

the product chain is the product of d � � copies of the reversible measure for

the rooted chain� which is certainly summable� Let T� � �� For i 
 �� set

T �
i�� � infft � Ti�� � �t �� fOgg and Ti � infft � T �

i�� � �t � fOgg� Thus

Ti denotes the time at which the product chain makes its ith visit to fOg� Let

N � minfn � �O
Tn
� �g� By the strong Markov property and containment ��������

N is geometric with parameter p � P ��O
T�
� ��� Therefore�

EO �� � � E�TN � � E
�

NX
i��

�Ti � Ti���

�
� E �N� E �T�� � �������

where the �nal equality is an application of Walds Lemma� Positive recurrence of

the product chain implies that E�T�� ��� Therefore� a� follows from ��������

Assume that the rooted chain is transient� As before� xi i � �� � � � � d�� denote

the d� � nearest neighbors of the origin� Let

S � inffs � �t � fO�x�� � � � � xd	�g for all t 
 sg�

Since the rooted chain is transient� P �S ��� � � and P �S � u� � � for all u � ��

By containment ��������

P �O � �A
t
for all t 
 �� � P �O � �A

t
for all t � S�


 P �O � �A
t
for all t � S j S � u�P �S � u�

� P �O � �A
t
for all t � u j S � u�P �S � u��

��



for any initial con�guration A containing O and u � �� By the remarks in the �nal

paragraph of Section ���� ��t� �t� is also attractive and satis�es condition ������� of

Harris Theorem� Since fO � �A
t
for all t � ug and fS � ug are increasing events

and 	A � 	O is positively correlated� it follows� by Corollary ������ that

P �O � �A
t
for all t � u j S � u� 
 P �O � �A

t
for all t � u��

Thus�

P �O � �A
t
for all t 
 �� 
 P �O � �A

t
for all t � u�P �S � u�� �����	�

By bound �����	� and Lemma ������ it su�ces to show that

lim
u�� lim

n��P �O � �
B�O�n�
t for all t � u�P �S � u� � �

If the origin becomes vacant at some time t � u� then there exists a time s � u

such that �B�O�n�
s

� B d
i
� fOg for at least d indices� Since dn��

d�� is the number of

vertices in B�O�n� � B d n fOg�

P �� s � u � �B�O�n�
s

� B d � fOg� � ��� e�u�
dn��
d�� �

It follows that P �� s � u � �B�O�n�
s

� B d
i
� fOg for at least d indices� tends to zero

as n tends to in�nity� Therefore�

lim
n��P �O � �

B�O�n�
t for all t � u�P �S � u� � P �S � u��

Letting u tend to in�nity completes the proof�

Remark� The positive recurrence of the rooted chain is in fact equivalent to �nite

expected extinction time of the uniform model� In order to prove this� one would

��



construct the shape chain for the uniform model� a Markov chain on the �nite

subsets of Td where isomorphic sets are identi�ed and that has a transition from

the empty set to the singleton at rate � �see Section ��� for the details of the

construction�� The following string of equivalences proves the assertion� positive

recurrence of the rooted chain is equivalent to positive recurrence of the product

chain� which is equivalent to positive recurrence of the shape chain� which is equiv�

alent to �nite expected extinction time� The only statement that needs proof is

the equivalence of positive recurrence of the product chain and the shape chain�

Given the construction of the shape chain� verifying that the reversible measure of

the shape chain is summable if and only if the reversible measure of the product

chain is summable proves the assertion�

By Theorem ������ the behavior of the uniform model is determined except

for the values of � for which rooted chain is null recurrent� A priori� one might

be inclined to think that null recurrence can only happen for at most one value

of the parameter �� For instance� translation invariant random walks on Zwith

�nite mean step size are null recurrent if and only if the mean step size is zero�

Additionally� one might be tempted to think that there are general theorems that

have been� or can be� proved in this regard� The next example is designed to show

that some chains do in fact exhibit an entire interval of null recurrent behavior�

�	



Example� Consider a collection of birth and death chains indexed by a parameter

�� The rates are given by

q��k� k � �� � � b�k� and q��k� k � �� � d�k� for k � N�

Here� both b and d are positive functions with domain N� except that d��� � ��

This chain is positive recurrent if and only if

�X
k��

k��Y
j��

b�j�

d�j � ��
�k ���

and this chain is transient if and only if

�X
k��

�

b�k�
Qk��
j��

b�j�
d�j	��

�k	�
���

Therefore� null recurrence is equivalent to both series diverging� A su�cient con�

dition for both series to diverge is that

�

lim supk��
�Qk��

j��
b�j�

d�j	��

���k � � �
�

lim infk��
�
b�k�

Qk��
j��

b�j�
d�j	��

���k �

Therefore� in order to produce an interval of null recurrent behavior it su�ces to

choose b and d such that that the liminf and the limsup are di�erent� Take b � ��

Fix � � 	 � � and set

d�k� �

�������������
������������

� if k � ��

�k���	k if k 
 � and k is even�

	k����k if k is odd�

So� for � � �	� ��� this chain is null recurrent�

��



This example raises a question as to when such intervals can be ruled out�

The natural context in which to ask this question seems to be attractive Markov

chains on partially ordered spaces for which the one step transitions are between

comparable states� the context of Harris Theorem� In this setting� all of the

rates for increasing transition can be scaled by a parameter so that the model

is stochastically increasing in this parameter� The issue is to determine under

what conditions on the state space and the rates does null recurrent behavior

happen for at most one of value of the parameter� The forthcoming analysis for

the rooted chain will demonstrate that even for speci�c examples this question can

be challenging�

�	� The Finite Expected Extinction Time Threshold

By Theorem ����� and the remark following its proof� the positive recurrence

threshold for the rooted chain agrees with ���d�� In this section� we compute

the positive recurrence threshold for the rooted chain and thereby compute ���d��

In fact� two proofs of Theorem �����b� are given� The �rst takes advantage of

generating function arguments� while the second is combinatorial in nature�

Proof of Theorem �����b
� It su�ces to show that the rooted chain is positive

recurrent if and only if � � �
d

�
d��
d

�d��
� Since the rooted chain is reversible with

respect to the measure ����� positive recurrence is equivalent to the summability

�




of the series

C��� �
�X
n��

c�n��n� ���	���

where c�n� is the number of A � Cd such that jAj � n� The unique set of cardinality

zero is fOg so that c� � �� For n 
 �� the following recursion holds�

c�n� �
X

�k��


�kd�

c�k�� � � � c�kd�� ���	���

where the sum is taken over all d�tuples in Nd such that k��� � ��kd � n��� To see

this� note that n 
 � implies that x�� the nearest neighbor of the root O� is in the

set� otherwise� the set would be disconnected from O� Given that both O and x�

are in the set� there are n�� additional vertices in the set� Regarding x� as the root

of d distinct copies of B d � choose �k�� � � � � kd� in Nd such that
Pd

i��
ki � n� � and

place ki � � vertices �including x�� on the ith copy of B d � The number of distinct

arrangements of ki � � vertices on B d is c�ki�� which proves recursion ���	����

Multiplying recursion ���	��� by �n�� and taking the sum from n � � to �

gives

C���� �
�

� �C����d � ���	���

Let p�y� �� � �yd � y � �� If C��� � �� then p�C���� �� � �� For each � � ��

p��� �� is a strictly convex function on R	 with a unique minimum at ��d���d�

There exists a y � R	 such that p�y� �� � � if and only if p���d���d� �� � ��

Furthermore� p���d���d� �� � � if and only if � � �
d

�
d��
d

�d��
� establishing the only

if part�

��



Multiplying recursion ���	��� by �n�� and taking the sum from n � � to N

gives

CN ���� �
�

� �CN ����
d � ���	���

where CN ��� denotes the partial sum to the Nth term of the series ���	���� Assume

that � � �
d

�
d��
d

�d��
and let y���� � y���� denote the two positive roots of p��� ���

By inequality ���	���� p�CN ���� �� � �� Therefore� CN��� � ��� y������ �y��������

At � � �
d

�
d��
d

�d��
� y���� � �� As � decreases to �� y���� increases to in�nity�

while CN��� tends to �� Hence� the statement that CN��� � �y������� for some

� � �
d

�
d��
d

�d��
contradicts the continuity of CN ��� in �� Therefore� CN��� �

��� y����� for all � � �
d

�
d��
d

�d��
and for all N � N� Let N tend to in�nity to

obtain C��� � y���� ���

It is well known in the Combinatorics literature that� in case d � �� the unique

solution to recursion ���	��� is the Catalan numbers� i�e�

c�n� �
�

n� �

�
�n

n

�
� ���	�	�

Solving ���	��� for C���� gives

C��� �
� �p�� ��

��
�

We choose the root with the negative sign since lim���C��� � �� Computing the

power series for C��� centered at zero shows that c�n� is in fact the nth Catalan

number� By Stirlings formula�

c�n� � �np
��n���

��



which gives an alternate proof of summability up to and including ��� in case

d � �� Here� � means that the ratio tends to one�

The technique used to compute c�n� in case d � � becomes complicated and

eventually breaks down� At d � 	� the Galois group is the entire symmetric group

and therefore the roots are no longer computable by radicals� Therefore� one does

not obtain an explicit expression for C��� from recursion ���	���� However� a simple

combinatorial argument can be used to compute c�n� for all d 
 �� Consider the

correspondence

fA � Cd � jAj � ng � fA � Cd � jAj � dn� � and j�Aj � �d � ��n � �g

that is given by mapping a set A of size n to the set B of size dn� � obtained by

adding all vertices within distance one of A� The number of A � Cd of cardinality

dn � � with �d � ��n � � leaves is known to be �dn
n
�� ��d� ��n� ��� see Lemma

��	�� below� Therefore�

c�n� �
�

�d � ��n � �

�
dn

n

�
� ���	���

Again� an application of Stirling provides the desired summability� Verifying that

���	��� satis�es recursion ���	��� directly is not easy�

Lemma �	�	� Let Cd�n� �� � fA � jAj � n and j�Aj � �g and let c�n� �� �

jCd�n� ��j� For n � N�

c�dn� �� �d� ��n� �� � �

�d� ��n� �

�
dn

n

�
�

	�



Proof� The �rst step in the proof is to show that there is a one�to�one correspon�

dence between A � Cd�dn��� �d� ��n��� and �dn����tuples with n entries that

are d and �d� ��n� � entries that are zero such that Pk
j��

yj 
 k for � � k � dn�

Therefore� in order to prove the assertion� it will su�ce to count the number of

�dn� ���tuples with these properties� This is the second step in the proof�

In order to prove the one�to�one correspondence� we �rst need to �x an ordering

of the vertices of B d � Associate to each x � B d a level ��x� that is given by kx�Ok�

Say that y is a child of x �or equivalently that x is the parent of y� if ��y� � ��x���

and ky�xk � �� Without loss of generality� �x an ordering of the children of each

vertex� This induces a total ordering on the vertices of B d that is given by x � y

if one of the following holds�

�� ��x� � ��y��

�� ��x� � ��y�� x and y are children of a common vertex z� and x � y� or

�� ��x� � ��y� and the level of the parent of x is less than the level of the parent

of y�

For m 
 � and A � Cd�m� � fA � Cd � jAj � mg� let fxigmi�� be the vertices in

AnO ordered so that xi � xi	� for i � �� � � � �m��� For x � A� let �c�x� � fy � A �

y is a child of xg be the children of x that are in A and let yi � j�c�xi�j� Associate

	�



to A the m�tuple�

 �A� � �y�� � � � � ym��

In particular� A � Cd�m� can be mapped into Nm� First note that
Pm

i��
yi is the

number of edges in AnO� which is m��� A less obvious fact about this m�tuple is

that
Pk

i��
yi 
 k for � � k � m��� To see this� let Ak � fO�x�g

Sf�k
i��
�c�xi�g and

note that Ak � Cd is a subset of A� If Pk
i��

yi � m� �� then the assertion clearly

holds� Otherwise� there exists i � k such that yi � �� Ak is strictly contained

in A� and more vertices must be added to Ak in order to obtain A� There are

at most � �
Pk

i��
yi � k possible vertices to which these children may be added�

This follows from the observation that � �
Pk

i��
yi is the total number of vertices

in Ak n O and no more children of the vertices fx�� � � � � xkg can be added to the

set� Therefore� � �
Pk

i��
yi � k 
 � as desired� If in addition m � dn � � for

some n � N and j�Aj � �d � ��n� �� then yi � � for exactly �d � ��n� � indices�

Since
Pdn	�

i��
yi � dn and yi � d� it must be the case that the remaining n indices

satisfy yi � d� Therefore�  �A� is a �dn � ���tuple with n entries that are d and

�d� ��n� � entries that are zero such that Pk
i�� yi 
 k for � � k � dn�

Let �y�� � � � � ydn	�� be a �dn����tuple with n entries that are d and �d���n��

entries that are zero such that

kX
j��

yj 
 k for all � � k � dn� ���	�
�

We will construct a subtree A � Cd�dn � �� �d� ��n� �� from this �dn � ���tuple

by constructing a sequence of subsets of vertices fOkg� The set Ok will be called

	�



the open vertices at step k� The construction begins by setting O� � fx�g� where

x� denotes the nearest neighbor of the root� For k 
 �� if Ok�� �� �� then construct

Ok from Ok�� by deleting the smallest element and adding the yk children of the

smallest element of Ok��� Since yk � � or d� it is not ambiguous which yk children

to add� In particular� jOkj � jOk��j��yk���� Iterating this relation and using the

fact that jO�j � �� gives jOkj � ��
Pk

j��

�
yj � �

�
� Assumption ���	�
� implies that

jOkj 
 � for all � � k � dn� The fact that
Pdn	�

i��
yi � dn implies that jOdn	�j � ��

Set

!�y�� � � � � ydn	�� � O
	f�dn	�

k�� Okg�

To see that !�y�� � � � � ydn	�� � Cd� let Ak � O
Sf�k

i��
Oig� In particular� Adn	� �

!�y�� � � � � ydn	��� It is immediate that A� � Cd� Since Ak	� is Ak together with

the yk	� children of the smallest element of Ok and since Ok � Ak� it follows

by induction that Ak	� � Cd� In order to verify that jAdn	�j � dn � �� observe

that jA�j � � and that jAk	�j � jAkj � yk	�� Iterating this equation gives the

result� After ordering the vertices of !�y�� � � � � ydn	��� the construction implies

that j�c�xi�j � yi� Therefore� j�Adn	�j � �d� ��n� � and  is ! inverse�

We have shown that there is a one�to�one correspondence between �dn � ���

tuples with n entries that are d and �d � ��n � � entries that are zero such that
Pk

j��
yj 
 k for � � k � dn and A � Cd�dn� �� �d� ��n � ��� Therefore� in order

to prove the assertion� it su�ces to count the number of �dn����tuples with these

properties� This is accomplished by showing �rst that for any �dn����tuple with n

	�



entries that are d and �d���n�� entries that are zero there exists a unique cyclic

permutation of this �dn����tuple that satis�es assumption ���	�
�� Given this� the

number of �dn� ���tuples with n entries that are d and �d � ��n � � entries that

are zero is �dn	�
n
�� Given any such �dn����tuple� there are exactly dn�� distinct

cyclic permutations of this �dn � ���tuple� otherwise� two distinct permutations

satisfy assumption ���	�
�� Therefore� the number of �dn����tuples with n entries

that are d and �d� ��n� � entries that are zero that satisfy assumption ���	�
� is

�dn	�
n
���dn� ���

In order to show that this cyclic permutation exists� �x a �dn����tuple with n

entries that are d and �d���n�� entries that are zero and assume that assumption

���	�
� does not hold� Let k� be the minimum k such that
Pk

j��
yj � k� If ki � dn�

�� then proceed by letting ki	� be the minimumk � ki such that
Pk

j�ki	�
yj � k�ki�

Repeat this procedure until no such k exists� This determines a �nite collection

of indices fk�� � � � � kmg� Cyclically permute the �dn� ���tuple so that ykm	� is the

�rst entry�

�ykm	�� � � � � ydn	�� y�� � � � � ykm��

Since
Pk

j�ki	�
yj 
 k � ki for ki � � � k � ki	�� it follows that

Pki��

j�ki	� yj �

ki	� � ki � �� Therefore� Pkm
j��

yj � km �m� Using the fact that
Pdn	�

i��
yi � dn�

Pdn	�
j�km	�

yj � dn � km � m� Thus� assumption ���	�
� holds for the reordered

�dn����tuple� In particular� there is at least one cyclic permutation of this �dn����

tuple that satis�es assumption ���	�
��

	�



We now proceed to show that there is exactly one such permutation� Fix

�y�� � � � � ydn	�� with n entries that are d and �d � ��n � � entries that are zero�

Without loss of generality� assumption ���	�
� holds� Consider

�ym	�� � � � � ydn	�� y�� � � � � ym� � � m � dn�

By assumption�
Pm

i��
yi 
 m� Since

Pdn	�
i��

yi � dn� it follows that

dn	�X
i�m	�

yi � dn �m�

which is strictly less than the number of terms that appear in that summation�

Consequently� assumption ���	�
� does not hold for this permutation�

�	� The Complete Convergence Threshold
 An Easy Bound

Since ���d� is explicitly known� this gives a lower bound on the other critical

values� Our attention now turns to obtaining upper bounds� If the total birth rate

at a leaf is greater than the death rate� the boundary of the occupied set should

have a net drift outward� Furthermore� it seems reasonable to expect this drift out

at the boundary to force the occupied set to expand in all directions resulting in

total occupation of the tree� We formalize this intuition and obtain an easy upper

bound on ���d��

Theorem �	�	� For d 
 �� ���d� � ��d�

		



Proof� By Theorem ������ it su�ces to show that the rooted chain is transient

for � � �
d
� Modify the rates q�A�B� by suppressing all births at neighbors of

nonleaves� To be precise� let Ld � fA � Cd � A has exactly one leafg � fOg and for

A�B � Cd de�ne

�q�A�B� �

�������
������
q�A�B� if A�B � Ld�

� otherwise�

Let Lt denote the Markov chain with state space Ld and rates f�q�A�B�g� If

A� � Ld� A� � Cd� A� � A�� x � A�� and y �� A�� then

�q�A�� A� n x� 
 q�A�� A� n x� and �q�A�� A� � y� � q�A�� A� � y��

Therefore� we can couple Lt and At such that Lt � At for all t 
 �� Consequently�

if Lt is transient� then so is At� Since jLtj is a birth and death chain with birth

rate d� and death rate one� Lt is transient for � � ��d�

The positive recurrence and easy transience bounds of Theorems �����a� and

����� respectively are the analogs of the lower and upper bounds

�

d�

�
d � �

d��� ��

�d��
� � � ���d� �� �

�

d

�
� � �d

�

�
�������

given by Liggett ���� for the two parameter uniform model� To see this� multiply

by � and let � decrease to zero� The technique used here to compute the positive

recurrence threshold is almost the same as that used by Liggett to compute the

lower bound for the double parameter uniform model� However� Liggett used a

more sophisticated technique to obtain the upper bound that involved the Dirichlet

	�



principle and a notion that he called monotonicity� Essentially� he used these tools

to restrict attention to the evolution of an embedded line process� Unfortunately�

the simple coupling argument given here does not extend to the double parameter

model�

�	� The Complete Convergence Threshold
 Improved Bounds via Flows

For reversible Markov chains� there is a very nice characterization of transience

in terms of �ows� A �ow is a collection of real numbers corresponding to ordered

pairs of states of the chain� It turns out that the existence of a �ow with certain

properties is equivalent to transience ����� Therefore� in order to prove that � is in

the supercritical phase� it su�ces to exhibit a �ow for the rooted chain with the

desired properties�

The purpose of this section is to outline a method for constructing �ows for the

rooted chain that have these special properties� We begin with the de�nition of

an antisymmetric� incompressible �ow� Then� a method for constructing an entire

class of such �ows is described� Finally� the condition for transience in terms of

�ows is given� Thus the problem of transience is reduced to exploring particular

instances of the construction and determining for which values � this condition

holds�

	




De�nition �	�	� Given a Markov chain with state space S� an anti�symmetric�

incompressible �ow on S is a collection of real numbers� or weights� fw�x� y�g

indexed by S � S that satisfy the following properties�

i
 �Anti�Symmetry
 For all x� y � S� w�x� y� � �w�y� x�

ii
 �Existence of a Source
 There exists a x� � S

X
y�S

w�x�� y� �� �� ���
���

iii
 �Incompressibility
 For x � S n x��

X
y�S

w�x� y� � �� ���
���

For the rooted chain� the following construction leads to a class of �ows on Cd

that satisfy i� ii�� and iii� above� Given a collection of weights fw�A�B�g� let

f�A� �
X

fB�B�Ag
w�B�A� for A �� fOg ���
���

be the net �ow into A �from below�� Given A � Cd� denote the neighbors of A that

contain A by Nd�A�� For A � Cd� say that r�A� �� is a routing vector if the support

of r�A� �� is contained in Nd�A� and
P
fB�B�Nd�A�g r�A�B� � �� Note that r�A� ��

is not required to be nonnegative� Given a collection of routing vectors� construct

the �ow recursively�

�� Set f�fOg� � ��

	�



�� If f�A� is de�ned for all jAj � n� for each B such that jBj � n set

w�A�B� � f�A�r�A�B� ���
���

for all A such that jAj � n� where it is understood that f�A�r�A�B� � �

when jAj � jBj � n� Using equation ���
���� f�B� is now de�ned by equation

���
��� for each B such that jBj � n� Thus� �� may be repeated for all

jBj � n� �� jAj � n� ��

�� For A� B � Cd such that jAj � jBj� set w�A�B� � �w�B�A��

Denote the collection fw�A�B�g by F � Property �� guarantees that F satis�es

the anti�symmetry condition� By construction�
P

Aw�fOg� A� � w�fOg� fO�x�g� �

� so that F has a source� Take B �� fOg and combine equations ���
��� and ���
���

to obtain

X
fC�Cd�C�Bg

w�C�B� � f�B�

� f�B�
X

A�Nd�B�

r�B�A�

�
X

A�Nd�B�

w�B�A�� ���
�	�

Since w�B�A� � � for all A such that A �� Nd�B� and B �� Nd�A�� equation ���
�	�

proves incompressibility� This proves the next proposition�

Proposition �	�	� Specifying a collection of routing vectors determines an anti�

symmetric� incompressible �ow�

	�



Theorem �	�	� �Lyons�� Given a continuous time irreducible� reversible Markov

chain Xt with state space S� transition rates q�x� y�� and reversible measure �� tran�

sience of Xt is equivalent to the existence of an anti�symmetric� incompressible �ow

fw�x� y�g on S such that

X
x�y�S

w��x� y�

��x�q�x� y�
��� ���
���

where� by convention� ��� � � and a�� �� when a � ��

The series given in condition ���
��� is known as the kinetic energy series� or

simply the energy series� Thus� if condition ��
�� holds� the �ow is said to have

�nite energy� We denote the energy by K�F �� The existence of such a �ow is

equivalent to the existence of a nonconstant bounded function on the state space

of the Markov chain that is harmonic� except at a single state x� where it attains

its minimum value� The existence of such a function is a well known criterion

for transience� The connections between these ideas will be more fully developed

in Section ���� For now� we investigate some applications of this theorem to the

rooted chain�

�	� The Uniformly Routed Flow

With the general method of constructing �ows on Cd outlined in Section ��
�

we attempt to a construct a �ow that proves the transience of the rooted chain

��



for � � �d� ��d���dd� Using the fact that ��A�q�A�B� � �max�jAj�jBj�� the kinetic

energy series is

K�F � � �
�X
n��

�
�

�

�n	� X
A�Cd�n�

X
B�Nd�A�

w��A�B��

Recall that Cd�n� � fA � Cd � jAj � ng� Since � appears in the denominator� it is

natural to try to maximize the radius of convergence by minimizing the coe�cients�

As a �rst attempt� �x A � Cd�n� and

minimize
X

B�Nd�A�

w��A�B� subject to f�A� �
X

B�Nd�A�

w�A�B��

The solution to this minimization problem is to set

w�A�B� �
f�A�

jNd�A�j
�

By Proposition ������ jNd�A�j � �d� ��jAj� � so that

r�A�B� �
�

�d � ��jAj� � � B � Nd�A�� �������

In this case� the routing vectors are nonnegative� Let h�n� �
P

A�Cd�n� f
��A�� If

r�A�B� is de�ned by equation �������� then

K�F � � �
�X
n��

h�n�

�n	���d� ��n� �� �

By Theorems ��
�� and ������

���d� � lim sup
n��

h�n���n� �������

Theorem �����c� will be a consequence of obtaining bounds on the limiting behavior

of the sequence h�n���n�

��



The �rst thing to note is that f can be computed exactly �see the next lemma��

However� we will not be able to compute h explicitly� Instead� using the expression

for f � h is expressed as a ratio� The goal is to prove that the sequence h�n� is

bounded above and below by sequences for which the associated power series have

the same radius of convergence� Therefore� determining the radius of convergence

of K�F � will be equivalent to determining the radius of convergence for a power

series with coe�cients equal to either the upper or lower bound� The bounds are

chosen so that the numerators agree with the numerators of h�n�� The reason

for choosing the bounds this way is to exploit the fact that the numerators of

h�n� satisfy a nice recursion� By choosing the denominator of the lower bound

appropriately� the numerator recursion will guarantee that the lower bound satis�es

a related recursion� The fact that the lower bound satis�es this related recursion

allows one to obtain bounds on the radius of convergence of the power series with

coe�cients that agree with the lower bound�

We begin by �nding an explicit expression for f � Then a combinatorial lemma

is presented� As a consequence of this lemma� the numerator recursion for the

sequence h�n� is obtained� Next� the sequences that bound h�n� are introduced�

Finally� bounds on the radius of convergence of the power series with coe�cients

that agree with the lower bound are obtained for d 
 �� This bound is an im�

provement over the easy transience bound of ��d if and only if d 
 ��

��



De�nition �	�	� An increasing path from fOg to A in Cd is a collection fBigjAji�� of

sets in Cd such that B� � fOg� BjAj � A� and Bi	� � Nd�Bi� for i � �� � � � � jAj���

Let N�A� be the number of paths that increase from fOg to A�

Lemma �	�	� If r�A�B� is de�ned by equation �	����
� then for A such that jAj �

n 
 ��

f�A� �
N�A�Qn��

k�� ��d � ��k � ��
�

Proof� If jAj � �� then A � fO�x�g� Since r�fOg� fO�x�g� � �� equation ���
���

gives f�fO�x�g� � � as desired� Assume that the assertion holds for jAj � n� If

jAj � n� then� by equations ���
��� and ���
����

f�A� �
X

fB�B�Ag
w�B�A� �

X
fB�B�Ag

f�B�r�B�A�

�
X

fB�A�Nd�B�g

N�B�Qn��
k��

��d� ��k � ��
�

�d � ���n � �� � �

�
�Qn��

k�� ��d� ��k � ��
X

fB�A�Nd�B�g
N�B�

�
N�A�Qn��

k��
��d� ��k � �� �

Lemma �	�	� For n 
 �� there exists a one�to�one correspondence between Cd�n�

and the disjoint union t�j��


�jd�Cd�j��� � � �� Cd�jd�� where the union runs over all

��



d�tuples in Nd with j� � � � �� jd � n� �� such that under this correspondence

N�A� �

� jAj � �
jA�j� � � � � jAdj

�
N�A�� � � �N�Ad�� �������

Proof� Let fy�� � � � � ydg denote the d nearest neighbors of x� in B d � Set B d�i � fy �

kyi � yk � kx� � ykg � x� and Ai � A � B d
�i
� Since B d

�i
�� B d for � � i � d�

A� �A�� � � � � Ad��

Equation ������� is an immediate consequence of this correspondence�

Squaring equation ������� gives

N��A� �

� jAj � �
jA�j� � � � � jAdj

��

N��A�� � � �N
��Ad� �������

for A � Cd such that jAj 
 �� For n � N� let Nn �
P

A�Cd�n�N
��A�� Summing

������� over all ordered d�tuples �A�� � � � � Ad� � Cd� � � � � Cd such that jA�j� � � ��

jAdj � n� � gives

Nn �
X

�j��


�jd�

�
n� �

j�� � � � � jd

��

Nj� � � �Njd for n 
 �� �����	�

where the sum runs over all d�tuples in Nd with j�� � � �� jd � n��� By de�nition

of h�n�� Lemma ������ and de�nition of Nn�

h�n� �
NnQn��

k�� ��d� ��k � ���
�

If we could solve recursion �����	�� then we would be able to compute h�n� exactly�

We pursue an alternate strategy and use recursion �����	� to obtain information

��



about the asymptotic behavior of h�n�� For n 
 ��

�d� ��n���n� ��" �
n��Y
k��

��d� ��k � �� � �d� ��nn"�

Set ���� � � and u��� � �� For n 
 �� set

��n� �
Nn

�d� ���nn"� and u�n� �
Nn

�d� ����n����n� ��"� �

Then

��n� � h�n� � u�n� for all n � N� �������

Furthermore� for n 
 �� u�n� � �d� ���n���n� so that

lim sup
n��

��n���n � lim sup
n��

u�n���n� �����
�

Combining inequality ������� and equation �����
� proves the next proposition�

Proposition �	�	� lim supn�� h�n���n � lim supn�� ��n���n�

Proposition �	�	� For n 
 ��

��n� �
�

�d� ���n�
X

�j��


�jd�

��j�� � � � ��jd�� �������

where the sum runs over all d�tuples in Nd with j� � � � �� jd � n� ��

Proof� Divide recursion �����	� by �d� ���nn"��

�	



Finally� solving recursion ������� is equivalent to solving a modi�ed recursion�

Suppose that ����� � � and for n 
 �� ���n� satis�es

���n� �
�

n�

X
�j��


�jd�

���j�� � � � ���jd�� �������

where the sum runs over all d�tuples in Nd with j� � � � � � jd � n � �� Then

��n� � ���n���d � ���n satis�es recursion �������� Therefore� obtaining bounds on

the solution of recursion ������� gives bounds on the solution of recursion ��������

Theorem �	�	� For n 
 ��

���n� � �

n

�
d

�

�n��
�

Proof of Theorem �����c
� By Theorem ������ the relationship between solutions

of recursions ������� and �������� Proposition ������ and inequality �������� ���d� �

d����d � �����

Theorem ����� is proved by induction� In order to execute the induction step�

the following lemma is needed� This lemma is a special case of a well known

expansion of the binomial coe�cient �k	n��
n
� with k � ��

Lemma �	�	� For any positive integer n�

nX
j��

�j

j"

X
����n�j�

�

�� � � ��j
� n� �� ��������

��



where #�n� j� is the set of all ordered partitions of n of into j parts and �i is the

ith element in the partition ��

Proof� Writing � log�� � x� as a power series centered at zero gives

�� log��� x��j �

� �X
k��

xk

k

�j
�

�X
n�j

X
����n�j�

�

�� � � ��j
xn for jxj � ��

Let k � N be such that k 
 �� For jxj � ��

�X
n��

�
k � n� �

n

�
xn �

�

��� x�k
� �

� e�k log���x� � �

�
�X
j��

��k log�� � x��j

j"

�
�X
j��

kj

j"

�X
n�j

X
����n�j�

�

�� � � ��j
xn

�
�X
n��

nX
j��

kj

j"

X
����n�j�

�

�� � � ��j
xn�

Taking k � � completes the proof�

Proof of Theorem 	����� By recursion �������� ����� � � which veri�es the assertion

for n � �� Assume that the assertion holds for m � n� We have

���n� �
�

n�

X
�m��


�md�

���m�� � � � ���md�

�
�

n�

min�d�n���X
j��

�
d

j

� X
����n���j�

������ � � � ����j��

�




since ���mi� � � when mi � �� By assumption�

���n� � �

n�

min�d�n���X
j��

�
d

j

� X
����n���j�

�
d

�

�n���j
�

�� � � ��j

� �

n�

min�d�n���X
j��

dj

j"

�
d

�

�n���j X
����n���j�

�

�� � � ��j

�
�

n�

�
d

�

�n�� min�d�n���X
j��

�j

j"

X
����n���j�

�

�� � � � �j

� �

n�

�
d

�

�n�� n��X
j��

�j

j"

X
����n���j�

�

�� � � ��j
�

By Lemma ����
�

���n� � �

n

�
d

�

�n��
�

A simple computation provides evidence that for large d the bound given in

Theorem �����c� is close to the best that this �ow achieves� Thus� not so much is

lost in the inequality in Theorem ������ Let An be the discrete time Markov chain

on Cd with transition probabilities de�ned by ������� and let �n be the number of

leaves in the set An� By conditioning on �n��� one gets a recursion that leads to

E ��n� �
�d� ��n� �
�d � � n 
 ��

In other words� the typical set that the uniform �ow visits has a death rate that

is roughly the birth rate divided by ��d � ���� In d � �� these sets are not only

typical� but rather uniform �ow visits them with very high probability�

E

�
��
n

�
�
�n� �� �	n� 
�

�	
n 
 �� d � ��

and therefore�

�n
�d� ��n� �

P�� �

�d� � for d � ��

��



For small d the bound given in Theorem �����c� is much worse than ����d � ���

However� by handling the cases d � � and d � � separately� the bound induced

on ��n� by Theorem ����� can be improved to ���n � �������n	� and ���	�n��

respectively� We conjecture that ����d � �� is the optimal bound for this �ow�

Numerical evidence suggests that one cannot hope for much better�

�	� The Uniformly Distributed Flow

In the previous section� the main goal became to determine the asymptotic

behavior of h�n�� This resulted from the fact that

X
B�Nd�A�

r��A�B� �
�

�d� ��n � � �

and therefore� the presence of this factor did not a�ect the radius of convergence

of K�F �� If we require the routing vectors to be absolutely bounded by b� then

�

�d� ��n� � �
X

B�Nd�A�

r��A�B� � b���d� ��n� ��� �������

Thus� under the assumption that routing vector are bounded� the asymptotic be�

havior of h�n� governs the radius of convergence of K�F ��

As a consequence of the construction�
P

A�Cd�n� f�A� � �� Hence� we seek

to minimize a quadratic function subject to a linear constraint� If this linear

constraint were the only constraint� then the solution would be to partition �

into equal parts� i�e� distribute the �uid uniformly over sets of size n� However� we

��



require the �ow to be incompressible which introduces many additional constraints�

Notice that if a �ow exists with bounded routing vectors such that f�A� � ��c�jAj��

then by inequality ��������

K�F � � �b�

�

�X
n��

�d � ��n � �
c�n��n

� �������

This series is summable for � � �
d

�
d��
d

�d��
since� except for the factor of �d���n���

each term is the exact reciprocal of the terms appearing in series ���	���� Due the

these observations� we attempt to construct a uniformly distributed �ow with

bounded routing vectors�

Suppose that one has constructed routing vectors bounded by b such that

f�A� � ��c�jAj� for all A � Cd such that jAj � n� Exploit the fact that Cd�n�

is in one�to�one correspondence with t�k��


�kd�Cd�k���� � ��Cd�kd� where the union

runs over all d�tuples in Nd such that k��� � ��kd � n�� and use the routing vectors

fr�A� ��gjAj�n to construct the routing vectors for Cd�n�� More speci�cally� associate

to each set a preliminary routing vector ��A� i� that determines the amount of �uid

routed to branch i in set A� In particular� let ��A� �� be such that Pd
i��

��A� i� � ��

Again� ��A� i� is not required to be nonnegative� If A corresponds to �A�� � � � � Ad��

B corresponds to �B�� � � � � Bd�� B � Nd�A�� and Ai �� Bi� then let

r�A�B� � ��A� i�r�Ai� Bi��


�



Since

X
fB�Nd�A�g

r�A�B� �
dX
i��

X
fBi�Nd�Ai�g

��A� i�r�Ai� Bi�

�
dX
i��

��A� i�
X

fBi�Nd�Ai�g
r�Ai� Bi�

�
dX
i��

��A� i� � ��

it follows that r�A� �� is a routing vector� Furthermore� if j��A� i�j � �� then r�A�B�

is bounded by b� Therefore� in order to specify a collection of bounded routing

vectors� it su�ces to specify a collection ��A� i� of preliminary routing vectors that

are absolutely bounded by one�

A priori� one might expect ��A� �� to depend on the entire structure of A�

However� it is reasonable to expect dependence only on the cardinalities of Aj for

� � j � d� One explanation for this is that the distribution that we are trying

to achieve depends only on cardinality� A more practical reason for making this

assumption is that it simpli�es the set of equations that ��A� �� must satisfy by

allowing a second application of the induction hypothesis� For k � Nd such that

k� � � � �� kd � n � �� let f�i�n� k�gdi�� be a preliminary routing vector in a set A

when jAj � n and jAjj � kj for � � j � d� Thus� the function �i�n� k� must satisfy

���n� k� � � � �� �d�n� k� � � and j�i�n� k�j � �� �������

for all n 
 � and k � Nd such that k� � � � � � kd � n � �� Also� require that for

all permutations � of d objects ���i��n���k�� � �i�n� k� where � acts on a d�vector

in the usual manner by permuting the indices� This condition simply states that


�



the preliminary routing vectors are invariant under automorphisms of B d � For all

A � Cd�n� and B � Nd�A�� set

r�A�B� � �i�n� k�r�Ai� Bi� if Ai �� Bi� �������

where jAj � n and jAjj � kj for all � � j � d� The goal is to choose �i�n� �� such

that the �ow is distributed uniformly over sets of size n� ��

For B � Cd�n � ��� set ki � jBij� Make the convention that c���� � �� Since

c��� � �� f�fOg� � ��c��� by de�nition� Proceeding inductively� the net �ow into

B is given by

f�B� �
X

fA�B�Nd�A�g
f�A�r�A�B�

�
�

c�n�

dX
i��

X
fAi�Bi�Nd�Ai�g

�i�n� k � ei�r�Ai� Bi�

�
�

c�n�

dX
i��

�i�n� k � ei�c�ki � ��
X

fAi�Bi�Nd�Ai�g
f�Ai�r�Ai� Bi�

�
�

c�n�

dX
i��

�i�n� k � ei�
c�ki � ��
c�ki�

� �����	�

where ei is the d�vector with all entries equal � except the ith which is ��

Lemma �	�	� If� for each n 
 �� there exists �i�n� �� satisfying �	����
 and

c�n�

c�n� ��
�

dX
i��

�i�n� k � ei�
c�ki � ��
c�ki�

�������

for all k � Nd such that k� � � � �� kd � n� then ���d� � ���d��


�



Proof� Set r�fOg� fO�x�g� � �� For jAj 
 �� de�ne r�A� �� recursively by equation

�������� By induction� jr�A� ��j � �� By equation �������� r�A� �� makes up a

collection of routing vectors� By equations �����	� and �������� f�A� � ��c�jAj�

for all A � Cd� Therefore� inequality ������� implies �nite kinetic energy for � �

�
d

�
d��
d

�d��
� By Theorems ����� and ��
��� ���d� � �

d

�
d��
d

�d��
� Combining this

with Theorem �����b� and the fact that ���d� � ���d� completes the proof�

Restrict attention to the case d � �� Set ��j� � c�j��c�j � ��� By the as�

sumption that �i�n� �� is invariant under automorphisms of B d � it su�ces to de�ne

���n� k� for all n 
 � and for all k � N� such that k�� k� � n� �� If� for all n 
 ��

�i�n� �� is a solution of

� � ���n� �j� n� �� j�� � ���n� �j� n� �� j�� j�i�n� �j� n� � � j��j � �

��n� � ���n� �n� �� �����n � ��� �����
�

��n� � ���n� �j � �� n� j����j � �� � ���n� �j� n� j � �����n � j � ��

where � � j � n��� then Lemma ����� implies that ����� � ������ By substituting

�����n� �j� n���j�� for ���n� �j� n�j���� in the �nal equation� solving equations

�����
� is equivalent to solving

���n� �j� n� �� j�� 
 � for � � j � n� ��

���n� �n� �� ��� �
��n�

��n� �� �������

���n� �j � �� n� j�� �
��n�� ��n� j � �� � ���n� �j� n� �� j����n� �� j�

��j � �� �

for � � j � n� � and n 
 ��


�



Theorem �	�	� The unique solution of equations �	����
 is

���n� �j� n� �� j�� �
�j � ����j � ����n� �j�

n�n � ����n � ��
� �������

In particular� ����� � ������

Proof� Using the fact that c�j� � ��j
j
����j���� it follows that ��j� � �j������j���

and therefore that

��n�

��n� �� �
��n� ���n� ��
�n� ����n � ��

�

Take j � n � � in the righthand side of ������� to verify the base case� Assume

that ������� holds for all m such that j � m � n� �� Then

���n��j � �� n� j��

�
��n�� ��n� j � �� � ���n� �j� n� j � �����n� �� j�

��j � ��

�
�j � �
j � �

�
��j � ��

��n� � �jn� �j � � �
�j � ����j � ����n � �j��n� j � ��

n�n� ����n � ����n� �j � ��

�

�
�j � �
j � �

j�j � ����n � ��j � ���
�n� � �n� �n

�
��j � ��j��n � ��j � ���

n��n� ���n� ��
�

which proves the result�

Theorem ����� together with Theorem �����a� imply that part d� of Theorem

����� holds� For d 
 �� Lemma ����� reduces proving Conjecture ����� to proving

that a solution to ������� and ������� exists� It is not hard to show that� disre�

garding the absolute bound of one requirement� there is a solution to ������� and


�



�������� The di�culty is that the solution is not unique� Therefore� verifying that a

suitably bounded solution exists for all n � N becomes more challenging� Chapter

� is devoted to providing heuristic support for the existence of a solution that is

absolutely bounded by one� We conclude this section with a proof of the existence

of solutions that are not necessarily absolutely bounded by one�

Equations ������� and ������� make up a collection of linear algebra problems

indexed by N that have the additional constraint that the solution is absolutely

bounded by one� Farkas Lemma provides an equivalent condition for proving that

a system of linear equations has a solution� In the context of Linear Programming�

Farkas Lemma links dual programs� Essentially� the Duality Theorem is a trans�

lation of Farkas Lemma into the language of Linear Programming� Almost any

undergraduate text will discuss the connections between Farkas Lemma and du�

ality� See ���� Chapter 
 for example� Here the equivalent condition is veri�ed for

all n � N� Thus� disregarding the absolutely bound of one requirement� equations

������� and ������� have a solution for all n � N and all d 
 ��

Lemma �	�	� �Farkas�� Let A be an m� n matrix and b an m�vector� Then

Ax � b for some x � Rn

if and only if

bTy � � for all y � Rm such that ATy � ��


	



In our context� equations ������� and ������� determine the rows of the matrix

A� To each equation� associate the �unordered� partition from which the equation

originated� In particular�

dX
i��

�i�n� k�� � � � � kd� � ��� �k�� � � � � kd�

and

dX
i��

�i�n� k�� � � � � ki � �� � � � � kd�
c�ki � ��
c�ki�

�
c�n�

c�n� ��
�� �k�� � � � � kd��

It is not hard to see that each column of A has exactly two nonzero entries� This

comes from the fact that each variable �i�n� k�� � � � � kd� appears once in the collec�

tion ������� and once in the collection �������� Thus� each row of AT has exactly

two nonzero entries� The entry that corresponds to the variable �i�n� k�� � � � � kd�

in ATy is given by

�� � jfj � kj � ki � �gj�
c�ki�

c�ki � ��
y�k�� � � � � ki � �� � � � � kd�

� jfj � kj � kigjy�k�� � � � � ki� � � � � kd��

��������

This easily implies that the dimension of the null space of AT is at most one� To

verify this� consider a graph in which the vertices correspond to the d�tuples in

Nd with entries that add up to n or n � �� There is an edge between the vertices

�k�� � � � � ki� � � � � kd� and �l�� � � � � li� � � � � ld� if and only if ki � li for all except one

index j and jlj�kjj � �� In particular� the edges are in one�to�one correspondence


�



with the equations in the collection ��������� Since this graph is connected� there

is at most one solution to equations ��������� Let

y�k�� � � � � kd� � ����k�					kd
c�k�� � � � c�kd�Qd�k��


�kd�

j��
jfi � ki � 	jgj"

where d�k�� � � � � kd� denotes the number of distinct entries in �k�� � � � � kd� and 	j is

the jth largest of these distinct entries� Then y � Null�AT � and since y �� �� y is

a basis for Null�AT �� Using the fact that

�
d

jfi � ki � 	�gj� � � � � jfi � ki � 	d�k��


�kd�gj

�

is the number of distinct orderings of the partition �k�� � � � � kd�� it follows that

d"bTy � ����n c�n�

c�n� ��

X
k�					kd�n

c�k�� � � � c�kd������n��
X

k�					kd�n��
c�k�� � � � c�kd��

The Catalan recursion �recursion ���	���� implies that

c�n�

c�n� ��

X
k�					kd�n

c�k�� � � � c�kd��
X

k�					kd�n��
c�k�� � � � c�kd� � ��

Therefore� d"bTy � �� Farkas Lemma implies that equations ������� and �������

have a solution� However� the lemma does not guarantee that there is a solution

with the desired boundedness properties�

There is a form of Farkas lemma that gives rise to the existence of a nonnegative

solution� This involves verifying that bTy 
 � for all vectors y such that ATy 
 ��

Furthermore� the author believes that a nonnegative solution exists for d 
 ��

Nevertheless� attempts to use this version of Farkas lemma to prove it have been

unsuccessful� except in d � �� Since Theorem ����� provides an explicit nonnegative







solution when d � �� using Farkas Lemma to prove existence gives less information

than Theorem ������ Therefore� Theorem ����� and its proof were presented here�


�



CHAPTER �

The Continuous Problem

As previously noted� equations ������� and ������� make up a collection of linear

algebra problems indexed by N� Each problem has a distinct set of variables�

Therefore� a solution to the n � 	 problem need not relate to a solution of the

n � � problem� However� given the similarity of the equations it seems reasonable

to expect that there exists a collection of solutions that are consistent in some

sense� Any reasonable consistency condition will imply that the limit as n tends

to in�nity of �i�n� �� exists�

We investigate the limiting version of the equations ������� and �������� Under

the limiting operation� equation ������� becomes a �rst order partial di�erential

equation� It turns out that for all d 
 �� the limiting version of ������� and �������

has a solution that is absolutely bounded by one� The existence of such a solution

provides evidence that solutions to ������� and ������� exist that are absolutely

bounded by one� Proving that such solutions exists� in turn proves Conjecture

������

Here� a study of the limiting version of ������� and ������� is presented as

support for Conjecture ������ In Section ���� the continuous problem is derived� In

Section ���� the method used to �nd the solution is explained� The main idea is to


�



assume that the solution can be expressed as a series and to devise a method for

computing the coe�cients� As one might expect� this approach becomes excessively

complicated in general� However� the approach does provide an answer for small d

and an educated guess for the general problem� An independent proof of Theorem

����� presented in Section ����

�	� The Derivation of the Continuous Problem

Assume that f��n� ��gn�N is a set of solutions to the discrete problem such that

�
�x�� � � � � xd� � lim
n���


n
�x�� � � � � xd�� �������

exists where �

n
�x�� � � � � xd� � ���bnx�c � � � � � bnxdc � �� bnx�c� � � � � bnxdc�� By

de�nition� �
�x�� � � � � xd� is symmetric in the variables �x�� � � � � xd�� Furthermore�

�
�x�� � � � � xd� � �
�ax�� � � � � axd� for all a � �� Therefore�

�
�x�� � � � � xd� � v

�
x�

x� � � � �� xd
� � � � �

xd
x� � � � �� xd

�
�������

for some symmetric function v de�ned on the d�� dimensional simplexSd��� The

limit of equation ������� is given by

dX
i��

�
�xi� x�� � � � � xi��� xi	�� � � � � xd� � �� �������

��



Letting si � xi��x� � � � � � xd� for � � i � d and expressing equation ������� in

terms of v�

v�s�� � � � � sd� � � � �� v�s�� � � � � si��� si	�� � � � � sd� � � � �� v�s�� � � � � sd��� � ��

�������

If one simply takes the limit of equation �������� it collapses into equation

�������� Therefore� �rst order information must be considered� By computing the

�rst two coe�cients of the power series centered at in�nity�

c�n�

c�n� ��
� �

d

�
d � �
d

�d�� �
� �

�

�n

�
�

Expressing equation ������� in terms of �

n
gives�

dX
i��

�

n
�xi � �

n
� x�� � � � � xi��� xi	�� � � � � xd�

c�bn�xi � �
n
�c�

c�bnxic�

�
c�bnx�c� � � �� bnxdc�

c�bnx�c� � � �� bnxdc� ��
� �����	�

Asymptotically� equation �����	� is given by

dX
i��

�

n
�xi � �

n
� x�� � � � � xi��� xi	�� � � � � xd�

�
� �

�

�n�xi � �
n
�

�

� � �
�

�n�x� � � � �� xd�
� o

�
�

n

�
�

As previously mentioned� �rst order information must be retained� Therefore�

equation ������� will be multiplied by n� In order to prevent both sides from

tending to in�nity� ������� is subtracted from ������� before multiplication by n�

��



This gives

dX
i��

n
�
�

n
�xi � �

n
� x�� � � � � xi��� xi	�� � � � � xd�� �


n
�xi� x�� � � � � xi��� xi	�� � � � � xd�

�

�
�

�

dX
i��

�

n
�xi � �

n
� x�� � � � � xi��� xi	�� � � � � xd�

xi � �
n

�
�

��x� � � � �� xd�
� o ��� �

Therefore� in the limit� equation ������� becomes

dX
i��

�
�

�xi
� �

�xi

�
�
�xi� x�� � � � � xi��� xi	�� � � � � xd� �

�

��x� � � � �� xd�
� �������

On the d� � dimensional simplex� let

Tdv�s�� � � � � sd��� �
v�s�� � � � � sd���

�� s� � � � � � sd��
�
�

�

d��X
i��

si
�

�si
v�s�� � � � � sd����

Multiplying equation ������� by ��x� � � � � � xd��� and expressing it in terms of

Tdv�

dX
i��

Tdv�s�� � � � � si��� si	�� � � � � sd� � �� �����
�

For w � Sd��� R� let Ldw � �Sd� R be de�ned by

Ldw�s�� � � � � sd� �
dX
i��

w�s�� � � � � si��� si	�� � � � � sd�� �������

Equations ������� and �����
� can be expressed in terms of Ld as

Ldv�s�� � � � � sd� � � and LdTdv�s�� � � � � sd� � � �������

respectively� The next proposition which summarizes the statement of the contin�

uous problem has been proved�

��



Proposition �	�	� If �
 � Rd
	
� R is symmetric in the variables x�� � � � � xd and

satis�es equations ������
 and ������
� then v � Sd�� � R de�ned by equation

�����	
 is a symmetric solution of equations ������
� Conversely� if v � Sd�� � R

is symmetric and satis�es equations ������
� then �
 � Rd
	
� R de�ned by equation

�����	
 is symmetric in the variables x�� � � � � xd and satis�es equations ������
 and

������
�

�	� The Method for Finding a Solution

The method used to actually �nd the solution is presented in this section� The

strategy is to express a candidate solution as a series with unknown coe�cients and

to use the partial di�erential equation to determine the coe�cients� The approach

is demonstrated in d � � and only the main ideas are presented� In Section ����

a complete proof of Theorem ����� is given that is independent of the approach

taken here�

The goal is to �nd v�s� t� such that

v�s� t� � v��� s� t� t� � v��� s� t� s� � �

T�v�s� t� � T�v��� s� t� t� � T�v��� s� t� s� � ��

��



For any such v�s� t�� v�s� t� � u�s� t� � ��� for some u�s� t� that satis�es

u�s� t� � u��� s� t� t� � u��� s� t� s� � �� �������

A collection of symmetric polynomials that satisfy equation ������� is given by

un�m�s� t� � �� � s� t�n�st�n ���� t� �s�tm � ��� s� �t�sm�

� �� � s� t�n	��st�n�sm � tm�� �� � s� t�n�st�n	��sm�� � tm���

where m�n � N� Consider u�s� t� �
P�

n��

P�
m��

�n�mun�m�s� t� where �n�m � R�

The goal is to choose �n�m such that T��u� �����s� t�� ��� also satis�es equation

��������

Since T�un�m�s� t� is not expressible in terms of the collection fun�m�s� t�gn�m�N�

some symmetric polynomials are added to the collection� Let

pn�m�s� t� � ��� s� t�n�st�n�sm � tm��

The collection fun�m�s� t�� pn�m�s� t�gn�m�N spans the set of all symmetric polyno�

mials in two variables� It turns out that

T�un�m�s� t� �
���n �m� ��

�
un�m�s� t�

�
�
�� �n
�

��
un���m	��s� t�� un���m	��s� t�

�

�

�
�� �n
�

�
pn�m�s� t�

�
�
�� �n
�

��
pn���m	��s� t�� �pn���m	��s� t� � pn���m	��s� t�

�
�

Also�

T�������s� t�� ��� �
s� t

��� � s� t�
�

p�����s� t�� p�����s� t�� u�����s� t�
�

�

��



Recall that the objective is to choose �n�m such that T��u � �����s� t� � ���

satis�es equation �������� In other words� the coe�cient of pn�m�s� t� in T��u �

�����s� t� � ��� should be zero for all m and n� If �m�n denotes the coe�cient of

pn�m�s� t� in T��u� ���� � ���� it follows that

��n�m� �

�������
������

�

� �������

�
� �����

�
� ���� ��� ������

�
if �n�m� � ���� ���

��

� �������

�
� �����

�
� ���� ��� �����

�
if �n�m� � ���� ���

Otherwise�

��n�m� �

�
� � �n
�

�
��n�m�

�

�
�n� �
�

��
��n� ��m� ��

�
� ��n� ��m� �� � ��n � ��m� ��

�

�
�

Setting ��n�m� � � implies that

��n�m� �

�������������
������������

�
�

if n � � and m 
 ��

��m	���m	��
� if n � � and m 
 ��

� otherwise�

By summing the series that de�nes u�s� t��

u�s� t� �
��� t� �s�t
���� t�

�
�� � s� �t�s
���� s�

�������

�
��� � t� �s�st��� s� t�

��� � t��
�
���� s� �t�st��� s� t�

���� s��
�

If one generalizes this approach and repeats the procedure for d � �� the

�	



solution is given by

u�r� s� t� �

�� � r � s� �t��r � s�

���� r � s�
�
��� r � t� �s��r � t�

���� r � t�
�
��� s� t� �r��s� t�

��� � s� t�

�
��� r � s� t���� r � s� �t��r � s�t

��� r � s��
�
��� r � s� t���� r � t� �s��r � t�s

��� r � t��

�
��� r � s� t���� s� t� �r��s� t�r

��� s� t��
� �������

Comparing the d � � and d � � solutions suggests a pattern� Since computing

the coe�cients is complicated in general� it is more convenient to verify that the

candidate solution satis�es equations ��������

�	� A Solution to the Continuous Problem

In this section� the pattern suggested by equations ������� and ������� is shown

to satisfy equations �������� The proof itself heavily exploits the structure of the

solution and thus reveals the properties of the solution that enable it to satisfy

equations ��������

De�nition �	�	� For u � Sd��� R� u is homogeneous with respect to Ld if Ldu �

�� Denote the set of all symmetric functions that are homogeneous with respect to

Ld by Hd�

The next proposition is an immediate consequence of this de�nition�

��



Proposition �	�	� If u � Hd and Td�u� ��d�� ��d � Hd� then v � u� ��d is a

symmetric solution of equations ������
�

Let � be the projection of Sd�� onto S� de�ned by

��s�� s�� � � � � sd��� � �s�� s� � � � �� sd���� �������

Given a function f � S� � R� let Sdf be the symmetrized extension of f to Sd��

de�ned by

Sdf�s�� � � � � sd��� �
d��X
i��

f � ��si� s�� � � � � si��� si	�� � � � � sd����

It is immediate that Sd is a linear operator and that Sdf is symmetric� The class of

functions that will be considered here are all symmetrized extensions� In particular�

we consider u � Hd such that u � Sdf some f � S� � R� By restricting attention

to this class� we can view our solution as a sum of functions of two variables� There

is a simple criterion for functions f � S�� R that implies that Sdf � Hd�

De�nition �	�	� Given f � S�� R� we say that f is cancelative if f�s� t��f���

s� t� t� � � for all �s� t� � S��

Proposition �	�	� If f � S�� R is cancelative� then Sdf � Hd�

�




Proof� By de�nition� s� � � � �� sd � �� Thus� for � � i � j � d�

���si� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd� �������

� � � ���sj� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd�

� ���sj� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd�

���si� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd� �������

� ���sj� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd��

where �i denotes the ith coordinate of �� Combining equations ������� and �������

with the fact that f is cancelative implies that

f � ��si� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd� �������

� f � ��sj� s�� � � � � si��� si	�� � � � � sj��� sj	�� � � � � sd� � ��

By de�nition�

LdSdf �
dX
i��

Sdf�s�� � � � � si��� si	�� � � � � sd�

�
dX
i��

X
j�i

f � ��sj� � � � � sj��� s�� � � � � si��� si	�� � � � � sd�

�
d��X
i��

X
i�j

f � ��sj� � � � � si��� si	�� � � � � s�� sj	�� � � � � sd��

��



By switching the order of the second pair of summations� equation ������� implies

that

LdSdf �
dX

i��

X
j�i

f � ��sj� � � � � sj��� s�� � � � � si��� si	�� � � � � sd�

�
dX
i��

X
j�i

f � ��si� � � � � sj��� sj	�� � � � � s�� si	�� � � � � sd�

�
dX

i��

X
j�i

�f � ��sj� � � � � sj��� s�� � � � � si��� si	�� � � � � sd�

� f � ��si� � � � � sj��� sj	�� � � � � s�� si	�� � � � � sd��

� ��

completing the proof�

Two examples of cancelative functions are

��� t� �s� and s��� s� t���� t� �s��

These two examples will be the main building blocks for the solution to equations

�������� Note that if either example is multiplied by a function that depends only

on the variable t� then the resulting function is also cancelative� In particular� if

f�s� t� �
��� t� �s�t
��� t�

and g�s� t� �
��� t� �s�s�� � s� t�t

��� t��
�

�����	�

then Sdf and Sdg are elements of Hd� Furthermore� Sd�adf � bdg� is an element

of Hd for any real constants ad and bd� Our goal is to choose ad and bd such that

Td�adf � bdg � ��d� � ��d � Hd�

��



Proposition �	�	� For all f � S�� R� Td�f���s�� � � � � sd���� � �T�f����s�� � � � � sd����

In particular� TdSdf � SdT�f �

Proof� By the chain rule�

s�
�

�s�
f � ��s�� � � � � sd��� � s�

�f

�s
���s�� � � � � sd����

si
�

�si
f � ��s�� � � � � sd��� � si

�f

�t
���s�� � � � � sd���� i �� ��

Therefore�

d��X
i��

si
�

�si
f � ��s�� � � � � sd���

� ���s�� � � � � sd���
�f

�s
���s�� � � � � sd���� � ���s�� � � � � sd���

�f

�t
���s�� � � � � sd���� �

completing the proof�

As a consequence of Proposition ����	 and linearity of both Sd and Td�

TdSd�adf � bdg� � adSdT�f � bdSdT�g�

Therefore� it is enough to compute T�f and T�g� In light of Proposition ������ the

next objective is to collect all cancelative parts of T�f and T�g�

Proposition �	�	� If f and g are de�ned by ������
� then

T�f�s� t� �
�t

��� � t�
� t

�� s� t
�
�

�



� �

t

�� t

�
f�s� t� �������

T�g�s� t� �
�st

��� � t��
�
�

�

�
� �

�t

�� t

�
g�s� t�� �����
�

��



Proof� We have

s
�f

�s
�s� t� �

��st
�� t

�������

t
�f

�t
�s� t� �

t��� t� �s�
�� t

�
�t�
� � t

�
t���� t� �s�
��� t��

�������

The �rst term in equation ������� is f�s� t�� By combining the second term in equa�

tion ������� with the right hand side of equation ������� and adding and subtracting

t����t�� another copy of f�s� t� can be obtained� The �nal term in equation �������

is simply f�s� t� scaled by a function that depends only on the variable t� Thus�

s
�f

�s
�s� t� � t

�f

�t
�s� t� �



� �

t

�� t

�
f�s� t�� t

�� t
�

Observing that

f�s� t�

�� s� t
�

�t

�� t
� t

��� s� t�

gives

T�f�s� t� �
�t

� � t
� t

��� s� t�
�
�

�




� �

t

�� t

�
f�s� t�� t

� � t

�

�
�t

��� � t�
� t

��� s� t�
�
�

�



� �

t

�� t

�
f�s� t��

establishing equation ��������

For g�s� t��

s
�g

�s
�s� t� �

s��� t� �s��� � s� t�t

��� t��
�
��s���� s� t�t

��� t��
�
�s���� t� �s�t

��� t��

��������

t
�g

�t
�s� t� �

�ts��� s� t�t

��� t��
�
�t��� t� �s�st

��� t��
�
t��� t� �s�s�� � s� t�

��� t��

�
�t��� t� �s�s��� s� t�t

��� t��
��������

��



In a similar manner as with f�s� t�� combine the second and third terms in equation

�������� with the �rst and second terms in �������� respectively to obtain

s
�g

�s
�s� t� � t

�g

�t
�s� t� �

�
� �

�t

� � t

�
g�s� t�� s��� �t� �s�t

��� t��

Since

g�s� t�

�� s� t
� �s��� �t� �s�t

��� � t��
�

�st
���� t��

�

equation �����
� holds�

Proposition ����� decomposes T�f and T�g into cancelative and noncancelative

components� Denote the noncancelative terms by

���s� t� �
�t

��� � t�
� ���s� t� �

�t
�� s� t

� and ���s� t� �
�st

��� � t��
�

Recall our ultimate goal� to choose ad and bd such that TdSd�adf�bdg��Td���d��

��d is an element of Hd� Since

Td���d� � ��d �
s� � � � �� sd��

d��� s� � � � � � sd���

and

Sd�� �
��d� ���s� � � � �� sd���
�� s� � � � � � sd��

�

it is natural to choose ad such that Sdad�� cancels Td���d� � ��d� In particular�

ad � ����d � ��d� so that

Td���d� � ��d � Sdad�� � �� ��������

��



With only �� and �� remaining� bd is chosen such that ad�� � bd�� is cancelative�

Setting bd � �ad gives

ad���s� t� � �ad���s� t� � ad
�t��� t� �s�
��� � t��

� ad
�

��� � t�
f�s� t� ��������

which is cancelative�

Theorem �	�	� Let h�s� t� � f�s� t� � �g�s� t� where f and g are de�ned by equa�

tions ������
� Then Sdadh� ��d is a symmetric solution to equations ������
�

Proof� Since h�s� t� is cancelative� Proposition ����� implies that Sdadh � Hd� By

Proposition ����� and equation ���������

T�adh�s� t� � ad
���� t�

���� t�
h�s� t� � ad���s� t�� ��������

Since h�s� t� is cancelative� Proposition ������ Proposition ����	� and equation

�������� imply that Td�Sdadh � ��d� � ��d is an element of Hd� By Proposition

������ the assertion holds�

Theorem �	�	� Sdadh� ��d is absolutely bounded by one�

Proof� We have

�h

�s
�s� t� �

�t���� t�� � ���� t�s� �s��

�� � t��
�

Therefore� the maximum and minimum occur at

smax �
��� t����p��

�
and smin �

��� t��� �
p
��

�

��



respectively� Since

h

�
��� t���� �p��

�
� t

�
�
p
�t and h

�
��� t��� � �

p
��

�
� t

�
� �

p
�t�

It follows that

jh � ��s�� � � � � sd���j �
p
� on Sd���

Since Sdh has d� � terms of the form h � ��

jSdadh�
�

d
j � �d� ��p�

�d� ��d �
�

d

which is bounded by one provided d 
 �� Since S�h�s� t� � h�s� t� � h�t� s�� it is

possible to use the better bound of

jh�s� t� � h�t� s�j �
p
��s� t� �

p
��

Thus�

jS�a�h�
�

�
j �

p
� � �

�
�

as desired�

Theorem ����� follows from Theorem ����
� Theorem ������ and Proposition

������ Presumably� a suitably bounded solution to the discrete problem exists that

has a structure analogous to the structure of the solution to the partial di�erential

equation� Our attempts to exploit this structure have failed� Nevertheless� we

believe that ������� and ������� has a solution for all n � N�

��



CHAPTER �

Critical Exponents

The focus of this chapter is the behavior of the survival probability� the expected

extinction time� and the susceptibility as functions of �� Of particular interest will

be the behavior of these functions near the critical values� In Section ���� the

continuity properties of the survival probability are examined� Next we turn our

attention to the problem of bounding the survival probability from above and

below� The bounds derived in Sections ��� and ��	 lead to a proof of Theorem

������ In the �nal section of this chapter� explicit formulas are derived for the

expected extinction time and the susceptibility�

�	� The Dirichlet and Thompson�s Principles

The Dirichlet principle and Thompsons principle provide powerful tools for

describing the behavior of the survival probability� These principles apply in the

setting of a reversible Markov chain� The Dirichlet principle states that the prob�

ability that the Markov chain escapes from some �xed subset of the state space

before returning to the initial state is expressible as an in�mum of a certain varia�

tional functional over all functions in some class� Likewise� Thompsons principle

�	



expresses this same probability as a supremum of an energy functional over all

functions in some class� Furthermore� there is a unique function that optimizes

these functionals� The precise statements of these principles are as follows�

Let Xt be a reversible Markov chain with state space S� stationary measure ��

and transition rates q�x� y�� For any subset R of the state space S� let

�R � infft � Xt � Rg and �	
R
� infft � �Rc � Xt � Rg�

Given a function h � S � ��� ��� let  �h� be the Dirichlet form evaluated at h�

 �h� �
�

�

X
x�y

��x�q�x� y��h�y�� h�x����

Given a subset R of the state space S and x � S nR� let

HR
x
� fh � S � ��� �� � h�x� � �� h�y� � � for all y � Rg�

Theorem �	�	� �The Dirichlet Principle�� Provided P x��R ��� � ��

��x�q�x�P x��R � �	
x
� � inf

h�HR
x

 �h��

where q�x� �
P

y �x q�x� y�� Furthermore�

h�y� � P y��R � �x�

is the unique function that is harmonic on S n �R � x� with the stated boundary

conditions and the in�mum is attained by this function�

��



Recall that a function is said to be harmonic on some subset of the state space

U if

h�x� �
X
y �x

q�x� y�

q�x�
h�y� for all x � U�

In other words� h satis�es an averaging property on U � For an irreducible subset U

of the state space� this averaging property implies that if the function h attains its

maximum or minimum value in U � then h is constant on U � Consequently� speci�

fying the values of h on U complement and requiring harmonicity on U determines

h� provided the Markov chain hits U complement with probability one� It turns

out that  �h� is minimal on HR
x
if and only if h is harmonic on S n �R � x�� A

proof of the Dirichlet principle can be found in Liggett ��
� �

The Dirichlet principle can be stated in a dual form known as Thompsons

principle� Given an anti�symmetric function w � S � S � R� let K�w� denote the

kinetic energy of w�

K�w� � �

�

X
x�y

w��x� y�

��x�q�x� y�
�

Given a subset R of the state space S and x � S nR� let

WR
x
�fw � S � S � R � w�y� z� � �w�z� y�� y� z � S�

X
y

w�x� y� � �� and
X
y

w�z� y� � �� z �� R � xg�

Such a function w is said to be a unit �ow from x to R�

�




Theorem �	�	� �Thompson�s Principle�� Provided P x��R ��� � ��

sup
w�WR

x

�

K�w� � ��x�q�x�P x��R � �	
x
��

where q�x� �
P

y �x q�x� y�� Furthermore� the unit �ow given by

w�y� z� �Ex �number of one step transitions from y to z before time �R�

� Ex �number of one step transitions from z to y before time �R� �

attains the supremum�

Not surprisingly� the optimal unit �ow is related to the harmonic function that

appears in the Dirichlet principle� To see this� de�ne a path from y �� R to R to be

a sequence fyigmi�� of states in the Markov chain such that y� � y� q�yi� yi	�� � ��

and fyigmi�� �R � ym� The optimal �ow satis�es

n��X
i��

w�xi� xi	��

��xi�q�xi� xi	��
�

m��X
i��

w�yi� yi	��

��yi�q�yi� yi	��
�

for all pairs of paths to R such that x� � y�� Therefore� if x� � x and xk � y� then

the function

h�y� �
k��X
i��

w�xi� xi	��

��xi�q�xi� xi	��

is well de�ned� Furthermore� the incompressibility property of w�y� z� implies that

h is harmonic� After normalizing h so that it takes the value one on R� we see that

the optimal �ow is related to the harmonic function from the Dirichlet principle

by the equation

w�y� z� �
��y�q�y� z��h�z�� h�y��

��x�q�x�P x��R � �	
x
�

��



The book by Doyle and Snell ��� is the standard reference for this topic�

�	� The Shape Chain

In order to apply the Dirichlet principle and Thompsons principle to the uni�

form model� a related reversible Markov chain is introduced called the shape chain�

As motivation for the de�nition of this Markov chain� observe that the issue of

whether or not the uniform model avoids absorption into the empty set is inde�

pendent of the location of the of the occupied set� Furthermore� the evolution of

the uniform model depends only on the �shape of the occupied set� So� it seems

reasonable to identify isomorphic occupied sets and record the shape rather than

the location of the occupied set� This allows a transition from the empty set to

the singleton to be introduced while preserving reversibility�

More formally� the shape chain is de�ned as follows� An automorphism of a

graph G � �V�E� is a bijection  � V � V such that there is an edge e� � E

between the vertices x and y if and only if there is an edge e� � E between

the vertices �x� and �y�� Let Aut�Td� be the set of all automorphisms of Td�

Con�gurations A and B are said to be equivalent if there exists  � Aut�Td� such

that �B� � A� We write A � B to indicate that A and B are equivalent� The

relation � de�nes an equivalence relation on the set of all con�gurations� Let

��



$A � fB � B � Ag and

$S � $� � f $A � A is a �nite connected subset of Tdg�

Roughly speaking� $S denotes the set of all �nite connected shapes that can be

embedded into Td� It will be convenient to consider the Markov chain $At induced

on $S by the dynamics of the uniform model� In particular� for $A �� $�

$q� $A� $B� �
X

fx�Ax�Bg
c�x�A�

where A � $A is �xed and Ax is A � x if x �� A and A n x if x � A� Since

$q� $A� �� depends on A only through its equivalence class� the transition rates are

well de�ned� We refer to $At as the shape chain� In order to make the shape chain

irreducible� a transition from $� to the singleton $O is introduced at rate ��

The shape chain is reversible with respect to the measure

$�� $A� �
M� $A��j �Aj

j $Aj �

where M� $A� � jfA � $A � O � Agj and j $Aj is the number of vertices in A � $A� In

order to prove this� it su�ces to show that the detailed balance equations hold�

$�� $A�$q� $A� $B� � $�� $B�$q� $B� $A� �������

for all $A� $B � $S� Without loss of generality� j $Bj 
 j $Aj� If either the left or the

right hand side of ������� is nonzero� then there exist A � $A and B � $B such that

A�x � B for some x � Td� Thus� proving that equation ������� holds is equivalent

���



to proving that

M� $A�jfD � B � D � Agj
j $Aj �

M� $B�jfC � A � C � Bgj
j $Bj �������

for all �nite� connected subsets A and B containing O such that A�x � B� Liggett

proves that equation ������� holds for all �nite �not necessarily connected� subsets�

see equation ����� in �����

By de�nition� the shape chain starting from the singleton $A �O
t
and the uniform

model starting from the origin �O
t
can be coupled such that �O

t
� $A �O

t
for all times

t � ���� Thus� the problem of determining the asymptotic behavior of P ��O
t
��

� � t� as � decreases to �� is equivalent to determining the asymptotic behavior

of P �O���� � ��� Also� note that P �O���� � �� can be expressed as a limit of

escape probabilities� To see this� �x a sequence f $SNg of subsets of $S that has the

properties that $� � $S n $SN increases to $S� $� �� $SN � and P ���� �SN ��� � � for each

N � N� Since P ���� �SN � �	�� � � P �O�� �SN � �����

P �O���� ��� � lim
N��

P �O�� �SN � ���� � lim
N��

P
���� �SN � �	�� ��

Therefore�

P ��O
t
�� � � t� � lim

N��
P

���� �SN � �	�� �

Since the probabilities P ���� �SN � �	�� � can be expressed in terms of the Dirichlet

principle and Thompsons principle� this framework provides a strategy for esti�

mating the survival probability�

���



�	� Continuity of the Survival Probability

Before proceeding to estimate the survival probability� we discuss the continuity

properties of the function

s��� � PO��t �� � � t��

The fact that this function is right continuous is rather easy to establish as it is

upper semi�continuous and increasing� Furthermore� it is continuous on ��� ��� as

a matter of de�nition� Therefore� the main issue is to establish left continuity

above ��� Generally speaking� continuity from the left at �� is the most di�cult

to prove� Since we expect that �� � �� for all d and s���� � �� continuity from

the left at �� would follow from a proof of Conjecture ������ Since it is known that

�� � �� on the binary tree� it will follow from the arguments given here that s���

is continuous on the binary tree�

Here the continuity of s��� for � su�ciently large is established� We begin by

reviewing the proof of right continuity� Then continuity for � su�ciently large is

obtained as an application of the Dirichlet principle�

De�nition �	�	� A function f � R � R is said to be upper semi�continuous if

fx � f�x� � ag is open for all a � R�

Proposition �	�	�

���



i
 If f � R� R is upper semi�continuous� then lim supx�y f�x� � f�y��

ii
 If fi � R � R is upper semi�continuous for each i in some index set I� then

infi fi�x� � f�x� is upper semi�continuous�

iii
 If f � R� R is continuous� then f � R� R is upper semi�continuous�

Properties i�� ii�� and iii� in Proposition ����� are immediate consequences of

the de�nition of upper semi�continuity�

Lemma �	�	� The function s��� is right continuous as a function of ��

Before proving Lemma ������ consider the probability of survival until some

�xed time t�

s�t� �� � PO��t �� ���

Most functions that depend only on the values of the process for a �nite amount

of time are continuous in � and s�t� �� is no exception�

Proposition �	�	� The function s�t� �� is continuous in � for each �xed t 
 ��

Proof� By an argument similar to the one used to prove Proposition ������

j�j � j�j� � at rate � ��d� ��j�j� ��

provided � �� �� Therefore� it is possible to couple the uniform model to a pure

birth process Yt that makes a transition from n to n � � at rate � ��d� ��n� ��

���



such that

����s�t�s��� � Yt�

In particular�

EO
�����s�t�s���� ��

for all t 
 ��

Given � � �
� the rates for the uniform model with these two parameters

satisfy

c��x� �� � c���x� �� if ��x� � � and c��x� �� 
 c���x� �� if ��x� � ��

for � � �� Therefore� it is possible to couple ��t� �t� two copies of the uniform

model with parameters � and �
 respectively so that if �� � ��� then �t � �t for

all t 
 �� Let Nu be a Poisson process with a random parameter ��
� ��
����s�t�s����

Thus�

P �O�O���t �� �t j �s� s � t� � �� P �Nt � � j �s� s � t�

� �� exp
�
���
 � ��t

����s�t�s���� �

Taking expected value and using Jensens inequality� one obtains

P �O�O���t �� �t� � � � exp
�
���
 � ��tEO

�����s�t�s����� �

Letting � increase to �
 or �
 decrease to � has the consequence that P �O�O���t ��

�t� tends to zero� In particular� P �O�O���t � �� �t �� �� tends to zero�

���



The continuity of the probability of survival until time a �xed time t will be

used in order to establish right continuity of the survival probability�

Proof of Lemma ������ Since s�t� �� is continuous as a function of �� it follows that

s�t� �� is an upper semi�continuous function of �� Therefore�

PO��t �� � � t� � s��� � inf
t
s�t� ��

is upper semi�continuous� By characterization i� of Proposition ������

lim sup
����

s��� � s����� �������

Since s�t� �� is decreasing as a function of t for each �xed �� it follows that

limt�� s�t� �� exists and is given by s���� Using the fact that s�t� �� is increasing

in � for each t and that the limit of increasing functions is increasing� it follows

that s��� is an increasing as a function of �� Therefore� lim���� s��� exists and

satis�es

lim
����

s��� 
 s�����

Combining this with inequality �������� it follows that lim���� s��� � s�����

Lemma �	�	� The function s��� is left continuous as a function of � on the

interval in that the rooted chain is transient�

Proof� Let

h��� $A� � P �A� $At �� $� � t��

��	



The function h is harmonic o� $� for the shape chain and it is immediate that

h��� $�� � �� Furthermore� h��� $O� � s���� Fix An � Td �nite and connected such

that O � An and jAnj � n� For xn � An� we can write An as the disjoint union

Annxn � td	�i��A
i
n
� where Ai

n
are the d�� connected components of Annxn� Choose

xn � An such that jAi
n
j and jAj

n
j tend to in�nity for two distinct indices i and j�

Without loss of generality� we may assume that xn � O� By inequality �����	��

h��� $An� � PAn��t �� � � t� 
 P �O � �An
t
for all t 
 ��


 P �O � �An
t
for all t � u�P �S � u��

where S is de�ned as in that section� As was noted there�

P �� s � u � �An
s
� B d

i
� fOg� � ��� e�u�jA

i
nj �

Therefore� the probability that this event occurs for at least one of the indices i or j

tends to zero as n tends to in�nity� In particular� lim infn�� h��� $An� 
 P �S � u�

for all u � �� But the assumption that the rooted chain is transient implies that

P �S � u� tends to one as u tends to in�nity� Therefore� limn�� h��� $An� � �� or

equivalently limj �Aj�� h��� $A� � �� Thus� h��� �� is the unique harmonic function

on $S such that h�$�� � � and limj �Aj�� h��� $A� � ��

Observe that h��� $A� is increasing in � so that lim���� h��� $A� exists and is

bounded by h��
� $A�� Since h��� �� is harmonic and since $q� $A� $B� � � for �nitely

many $B for any �xed $A� the limit lim���� h��� $A� is also harmonic� Furthermore�

���



lim���� h���
$�� � �� Using the fact that h��� $A� is increasing in �� it follows that

lim
j �Aj��

lim
����

h��� $A� � ��

Therefore� lim���� h��� $A� is the unique harmonic function with these boundary

conditions� Since h��
� $A� is also harmonic with the same boundary conditions� it

follows that lim���� h��� $A� � h��
� $A�� In particular� lim���� s��� � s��
��

Corollary �	�	� On the binary tree� s��� is continuous�

Proof� In the process of proving that ����� � ���� it was shown that the rooted

chain is transient for � � ��� �see Section ����� Therefore� Lemma ����	 implies

that s��� is left continuous for � � ���� By Theorem �����a�� s��� is left continuous

on ��� ���� and therefore� it is everywhere left continuous� This together with

Lemma ����� proves the assertion�

�	� Upper Bounds on the Survival Probability

This section is devoted to obtaining upper bounds on the survival probability

via the Dirichlet principle�

Theorem �	�	� For the shape chain with � � ���

P �O���� ��� � C�

�
� � ��
�

�
��

�������

��




for some constant � � C ���

Before proving Theorem ������ we pause to explain the origins of the functions

that are used in the proof� We begin by �xing a sequence f $SNg of subsets of $S

that have the properties that $S n $SN increases to $S� $� �� $SN � and P ���� �SN ��� � �

for each N � N� Then� a function hN � H �SN
�� is selected for each N � N� By the

Dirichlet principle� �P �O�� �SN � ���� �  �hN �� Therefore�

�P
������ ��� � lim infN��

 �hN ��

The idea is to choose hN so that the liminf is as small as possible� Here hN is

chosen to be the minimizer of the Dirichlet form over all functions in H �SN
�� that

depend only on cardinality� In spite of the fact that the functions hN take almost

none of the structure of the sets into account� this choice of hN provides a lower

bound on �� that turns out to be equal to �� on the binary tree� It would be even

more remarkable if such nondiscriminating functions provide the correct order of

magnitude for the rate of decay of the survival probability� In fact� we expect that

this is not the case and that the exponent given in bound ������� of Theorem �����

can be improved�

The next proposition is used in the proof of Theorem ������ It is an immediate

consequence of Stirlings formula that says that n" � nne�n
p
��n� where � means

that the ratio tends to one�

���



Proposition �	�	� For each d 
 �� there exist constants � � K��K� � � such

that

K�p
j�j�

�
�
dj

j

�
� K�p

j�j�

for each j 
 ��

When it is necessary to emphasize which d is being considered� we write K��d�

�resp� K��d�� for K� �resp� K���

Proof of Theorem ������ Let $SN � f $A � $S � j $Aj 
 Ng� Also� let gN � f�� � � � � Ng �

R be given by

gN �k � �� �

�������
������
� if k � ��

gN �k� �
k

�k	��t�k��k otherwise�

where t�k� is the number of connected subsets of Td of size k containing O� Also�

de�ne

hN� $A� �

�������������
������������

� if $A � $��

gN�j �Aj�
gN �N� if � � j $Aj � N�

� otherwise�

���



Note that hN � H �SN
�� � Let N � $A� � f $B � $q� $A� $B� � �� j $Aj � j $Bjg� Using the fact

that
P

�B�N � �A� jfB � $B � A � Bgj � jAj� � and Pj �Aj�nM� $A� � t�n��

 �hN � �
�

g�
N
�N�

�
N��X
n��

X
j �Aj�n

X
�B�N � �A�

M� $A��n	�

n
jfB � $B � A � Bgj

� n
�n	��t�n��n

gN �N�

��

�
�

g�
N
�N�

�
� � N��X

n��

t�n��n� ��

n
�n
�

n

�n� ��t�n��n

��
�
A

�
�

gN �N�
�

By the Dirichlet principle�

P
���� �SN � �	�� � �

�

gN �N�
�

Since P ���� �SN � �	�� � � P �O�� �SN � ����� it follows that

P �O���� ��� � lim infN��
�

gN �N�
�

�

� �
P�

n��
n

�n	��t�n��n

� �P�
n��

n
�n	��t�n��n

Recall that c�n�� the number of connected subsets of B d containing the root� is

given by �dn
n
����d � ��n � �� �see equation ���	����� The quantities c�n� and t�n�

are related via the recursion

t�n� �
X

k�					kd���n��
c�k�� � � � c�kd	�� for n 
 �� �������

This follows from an argument similar to the one use to prove recursion ���	����

By requiring k� � � � �� kd � k and applying recursion ���	����

t�n� �
n��X
k��

c�k � ��c�n� �� k�� �������

���



Therefore� t�n� � c�n� ��� Combining this with the de�nition of c�j� and Propo�

sition ����� gives

�j � ��t�j� � �j � ��c�j � �� �
�
d�j � ��

j � �

�
� K��d�p

j � ��j	��

�

Therefore�

P �O���� ��� �
K��d�

��
P�

j�� j
p
j � �

�
��
�

�j �
Making the transformation s � ����� it su�ces to obtain an appropriate lower

bound on the series

�X
j��

�j � ��
q
j � � sj

for � � s � �� By expanding in a power series about zero�

�

��� s�
�
�

�
�

�

�X
k��

��k � ���k � ��

�k	�

�
��k � ��

�k � ��

�
sk�

Using Proposition ������

��n � ���n � ��

�n	�

�
��n� ��

n� �

�
� K������n � ��

p
n� � � K������n � ��

p
n� �

for n 
 �� Therefore� it follows that

P �O���� ��� �
�K����K��d��

��
�

�
� � ��
�

�
��

�

Corollary �	�	� The survival probability satis�es

lim sup
����

P ��O
t
�� � � t�

�� � ���
�
�

� C�

for some � � C� � �� In particular� the critical exponent �if it exists
 is greater

than one�

���



Proof� The uniform model and the shape chain $A �O
t
maybe coupled such that

�O
t
� $A �O

t
for all � � t � ���� Therefore� P ��

O
t
�� � � t� � P �O���� ��� so that both

statements follow directly from Theorem ������

�	� Lower Bounds on the Survival Probability in d � �

This section is devoted to obtaining lower bounds on the survival probability via

Thompsons principle� In order to do this� observe that a function $w � $S � $S � R

is an anti�symmetric� incompressible �ow on $S according to De�nition ��
�� if

$w � W �SN
�� for every N � N� By Thompsons Principle�

�

K� $w� � sup
�w�W �SN

��

�

K�w� � �P
���� �SN � �	�� � � �P �O�� �SN � �����

By letting N tend to in�nity�

�

K� $w� � �P �O���� ����

Therefore� in order to obtain lower bounds on the survival probability� it su�ces

to construct a �ow on $S and estimate the energy�

The �ow analyzed here was construct in Section ��� for the rooted chain� That

�ow is lifted to the shape chain providing lower bounds on the probability of

survival and upper bounds on the critical exponent� Unfortunately� that �ow was

only completely constructed for d � � which explains the specialization to the

binary tree in this section� The contribution here is the estimate on the energy�

���



Presumably� the techniques used to estimate the energy can be executed more

generally provided that the �ow can be constructed� This is discussed more fully

at the end of this section�

Before proceeding to de�ne the lift� we review the de�nition of the rooted

chain and the �ow that was constructed in Section ���� Let fx�� x�� x�g denote the

� vertices adjacent to the root O� Let B � � fx � T� � kx � x�k � kx � Okg � O�

Consider the initial con�guration �� � T� n B � � O� By connectedness� �� � �t

for all t 
 �� Let At � B � � �t so that At is a Markov chain with state space

C� � f�nite� connected A � B � containing Og� Recall that At is reversible with

stationary measure ��A� � �jAj� where jAj is number of vertices in A n O� Since

O � At for all t� we refer to At as the rooted chain on B ��

The advantage of constructing �ows for the rooted chain is that its state space

allows �ows to be constructed recursively by taking advantage of self similarity

properties of B � � see Section ��
� The uniformly distributed �ow is de�ned in the

following manner� For each n 
 �� let

��n� k� �
�k � ����k � ����n� �k�

n�n� ����n � ��
���	���

for � � k � n � �� Note that ��n� k� 
 � and that ��n� k� � ��n� n � � � k� � ��

Given a set A � C�� let Ai � A � B ��i � i � �� �� Here fy�� y�g are the neighbors of

x� in B d � neither of which is O� and B ��i � fy � kyi � yk � kx�� ykg � x�� For each

���



A � C�� de�ne the map r�A� �� with domain N��A� � fB � q�A�B� � �g by

r�A�B� �

�������������
������������

� if �A�B� � ��� O��

��jAj� jAij�r�Ai� Bi� if A �� � and Bi � N��Ai��

� otherwise�

Thus� r�A� �� 
 � and PB�N��A� r�A�B� � � for each A� Finally�

w�A�B� �

�������������
������������

r�A�B��c�n� if jAj � n and B � N��A��

�w�B�A� if A � N��B��

� otherwise�

By Lemma ����� and equation �����	��

X
fB�A�N��B�g

w�B�A� �
�

c�n�

for each A � C��n� and for each n � N� This implies that w satis�es the in�

compressibility property and justi�es calling w the uniformly distributed �ow on

C��

The next objective is to lift the uniformly distributed �ow on C� to the state

space of the shape chain $S� For this purpose de�ne an anti�symmetric function on

$S � $S by

$w� $A� $B� �
X

fA� �A�x��A�O �Ag

X
fB� �B�x��B�O �Bg

w�O �A�O �B� ���	���

for $A� $B �� $�� Also� set $w�$�� $O� � � $w� $O� $�� � �� It is immediate that $w is an

���



anti�symmetric� incompressible �ow� The energy of this �ow is given by

K� $w� �
�X
n��

X
j �Aj�n

X
�B�N�� �A�

$w�� $A� $B�

$�� $A�$q� $A� $B�

�
�

�
�

�X
n��

n

�n	�
X
j �Aj�n

X
�B�N�� �A�

�P
fA� �A�x��A�O �Ag

P
fB� �B�x��B�O �Bgw�O �A�O �B�

��
M� $A�jfB � $B � A � Bgj �

By the Cauchy�Schwarz inequality and the fact that for each pair $A and $B� the

number of terms that appears in the numerator is at mostM� $A�jfB � $B � A � Bgj�

K� $w� � �

�
�

�X
n��

n

�n	�

X
j �Aj�n

X
�B�N�� �A�

X
fA� �A�x��A�O �Ag

X
fB� �B�x��B�O �Bg

w��O �A�O �B�

�
�

�
�

�X
n��

n

�n	�

X
A�C��n�

X
B�N��A�

w��A�B�� ���	���

Recall that C��n� � fA � C� � jAj � ng� Using the de�nition of w and inequality

���	����

K� $w� � �

�
�

�X
n��

n

c�n���n	�
X

A�C��n�

X
B�N��A�

r��A�B� ���	���

Since the asymptotic behavior of c�n� is known� it would su�ce to determine

the asymptotic behavior of

g�n� �
X

A�C��n�

X
B�N��A�

r��A�B��

However� it turns out to be more manageable to determine the asymptotic behavior

of the series itself� By Proposition ������

�X
n��

ng�n�

c�n���n	�
� �

K�
�
����

�X
n��

g�n�n��n� ���

�����n
� ���	�	�

Making the substitution s � ������ the series of interest becomes

�X
n��

g�n�n��n� ���sn ���	���

��	



as s increases to ����

We begin by showing that g�n� satis�es a certain recursion� This recursion

implies that a series similar to series ���	��� is a solution of an ordinary di�eren�

tial equation� The ordinary di�erential equation takes a particularly nice form�

In fact� fairly elementary techniques allow one to exhibit the general solution of

the ordinary di�erential equation� This provides an alternative representation of

the series solution� This alternative representation readily reveals the asymptotic

behavior of the series solution as s increases to ���� Relating the series solution

of the ordinary di�erential equation to series ���	��� gives a lower bound on the

survival probability that implies inequality ������� in Theorem ������

Proposition �	�	� For n 
 ��

g�n� � �
n��X
k��

c�n� � � k�g�k����n� k��

Proof� By de�nition of g�n� and r�A�B��

g�n� �
X
jAj�n

X
B�N��A�

r��A�B�

�
X
jAj�n

�
���n� jA�j�

X
B��N��A��

r��A�� B�� � ���n� jA�j�
X

B��N��A��

r��A�� B��

�
A

���



for n 
 �� By conditioning on the size of A��

g�n� �
n��X
k��

X
fjAj�n�jA� j�kg

���n� k�
X

B��N��A��

r��A�� B��

�
n��X
k��

X
fjAj�n�jA�j�kg

���n� n� � � k�
X

B��N��A��

r��A�� B��

��
n��X
k��

X
fjAj�n�jA� j�kg

���n� k�
X

B��N��A��

r��A�� B���

Using the fact that ���n� k�
P

B��N��A�� r
��A�� B�� is independent of A��

g�n� ��
n��X
k��

X
fjA�j�kg

c�n� �� k����n� k�
X

B��N��A��

r��A�� B��

��
n��X
k��

c�n� �� k����n� k�g�k��

As a consequence of Proposition ��	��� we obtain the next lemma�

Lemma �	�	� Let G�s� �
P�

n��
g�n��n � �����n � ���sn� Then G��� � �� G�s�

converges for jsj � ���� and G�s� is a solution of

s��� �s��G���s� � ��� ��s��� � �s�G��s�� ���� � �s�G�s� � � ���	�
�

for jsj � ����

Proof� By Cauchy�Schwarz�

�

n� �
� X

B�N��A�

r��A�B� � � for jAj � n�

Thus�

c�n�

n� �
� g�n� � c�n�

��




This together with Proposition ����� implies that the series de�ning G�s� converges

for jsj � ����

By Proposition ��	�� and equation ���	����

g�n��n� �����n� ���n� � �
n��X
k��

c�n� �� k�g�k��k � �����k � ������n� k� � k��

for n 
 �� Expanding the factor ���n � k� � k�� as ��n � k�� � ��n � k�k � k��

multiplying by sn��� and taking the sum from n � � to in�nity� implies that

G��s� � sG���s� ��� �C�s� � �sC ��s� � s�C ���s��G�s�

� �� �C�s� � sC ��s�� sG��s� � �C�s� �sG��s� � s�G���s��

where C�s� �
P�

n��
c�n�sn� Multiplying recursion ���	��� by sn�� and taking the

sum from n � � to in�nity gives

C�s� �
��p�� �s

�s
for � � s � ����

Using the explicit expression for C�s��

s����s��G���s�������s�����s�G��s��������s�G�s� � � G��� � ��

We will show that the ordinary di�erential equation determines the rate at

which G�s� tends to in�nity as s increases to ���� Since the coe�cient of G���s�

in the ordinary di�erential equation has a factor of s� it follows that there are

solutions to the ordinary di�erential equation that also blow up as s tends to zero�

On ��� ����� the general solution to the ordinary di�erential equation is of the form

c���� �s�r�H��s� � c���� �s�r�H��s� ���	���

���



where ci� i � �� �� are arbitrary constants� r� � �� � p����� r� � �� �p�����

and Hi�s� �
P�

n��
hi�n���� �s�n with hi��� � �� i � �� �� and

hi�n� �
�n� � �� � �ri�n� 	 � �ri

�n� � �� � �ri�n
hi�n� ��� ���	���

for n 
 ��

In order to see that expression ���	��� is the general solution� let

H�s� �
�X
n��

h�n���� �s�n	r�

where h�n� is de�ned as in equation ���	��� except with ri replaced by r� We have

H�s� �
�X
n��

h�n��� � �s�n	r

�� � �s�H ��s� � ��
�X
n��

h�n��n� r��� � �s�n	r

��� �s��H ���s� � ��
�X
n��

h�n��n� r��n� r � ����� �s�n	r�

Also� expressing the coe�cients of �� � �s�nG�n��s� in equation ���	�
� as linear

combinations of f��� �s�mgm�N gives

����� � �s� � ��� ��� � �s�� ��� ��s� � �� � ���� �s��

and s � ��� � ��� �s����

���



Therefore�

����� � �s�H�s� �� �h��� � �
�X
n��

�h�n� � h�n� ������ �s�n	r�

��� ��s��� � �s�H ��s� ���h���r �
�X
n��

���h�n��n � r�

� ��h�n � ���n� r � ������ �s�n	r� and

s��� �s��H ���s� ��h���r�r � �� � �
�X
n��

�h�n��n� r��n� r � ��

� h�n� ���n� r � ���n� r � ������ �s�n	r�

Adding these three expressions and combining like terms shows that H�s� is a

solution if and only if

h������ � �r � �r�� � �

h�n���n� � �� � �r�n� � h�n� ����n� � �� � �r�n� �� � �r��

In particular� �� � �s�riHi�s�� i � �� �� are two linearly independent solutions to

the ordinary di�erential equation�

Since all solutions on ��� ���� are given by expression ���	���� there exists a

choice of ci� i � �� �� such that

G�s� � c���� �s�r�H��s� � c���� �s�r�H��s�

on ��� ����� The fact that r� � � implies that c���� �s�r�H��s� tends to zero as s

increases to ���� Since G�s� tends to in�nity as s increases to ���� it follows that

c� � � and

G�s� � c���� �s�r� as s ����

���



Equivalently�

G������� � c�

�
� � ���

�

�r�
as � 	 ���� ���	����

Theorem �	�	� For the shape chain on the binary tree�

C� � lim inf
�����

P �O���� ���
�� � �����	p����

���	����

for some constant � � C� ���

Proof� By Thompsons principle� inequalities ���	��� and ���	�	�� and the fact that

n � ��n� �����

�

� � �
�K�

�����
G�������

� �

� �
P�

n��
ng�n�
c��n��n

� P �O��� ����

By asymptotic relation ���	�����

K�
�
���

c���	
p
����

� lim inf
�����

P �O���� ���
�� � �����	p����

�

Corollary ����� and Theorem ��	�� imply that if the critical exponent exists�

then on the binary tree it is lies in the interval �	��� � �
p
������ If one could

show that the hypothesis of Lemma ����� holds for d 
 �� then the analog of g�n�

satis�es g�n� � c�n� which gives an upper bound of 
�� on the critical exponent

on the d�ary tree� Furthermore� the analog of the recursion in Proposition ��	��

will hold�

g�n� � d
n��X
k��

X
j�			jd���n���k

c�j�� � � � c�jd������n� �k� j�� � � � � jd����g�k��

���



If one provides more information about ��n� �� in proving that the hypothesis of

Lemma ����� holds� then it may be possible to improve the exponent to ��
p
�����

It is unclear whether or not either of these bounds provides a sharp estimate on

the rate of decay�

�	� The Expected Extinction Time and the Susceptibility

Sections ��� and ��	 bounded the rate at which the survival probability ap�

proaches zero as � decreases to ��� In the subcritical regime� there are other

quantities that typically diverge as � increases to ��� For example� the expected

extinction time is often in�nite at the critical point� In the case of the uniform

model� such quantities do not diverge because the shape chain exhibits positive re�

current behavior at ��� Instead they approach some constant� Due to reversibility�

more information than simply the rate at which these quantities approach some

constant can be provided� In fact� explicit formulas for the expected extinction

time and the susceptibility are obtainable� The derivations of these formulas are

given here�

Theorem �	�	� For � � ���

a
 EO �� � �
�

�

Z �

�

C��x�� C�x�

x
dx and b
 E

Z �

�
j�O
t
jdt � C����� C���

�
�

���



Proof� Recall that t�n� is the number of connected subsets of Td that contain O

and c�n� is the number of connected subsets of B d that contain O� The sequences

t�n� and c�n� are related to each other via recursion �������� Therefore�

t�n� �
nX

k��

c�k�c�n� k�� c�n�� �������

for n 
 �� The normalizing constant for the stationary measure of the shape chain

is given by

$C��� � � �
�X
n��

t�n�

n
�n�

By recursion ��������

$C ���� �
C����� C���

�
� �������

Since the shape chain is positive recurrent�

E
��
Z ����

�
h� $At�dt �

P
�A h�

$A�$�� $A�

�

for any nonnegative function h on $S� Taking h � � gives

E
����	�� � �

$C���

�
�

By expressing �	�� as the sum of the time to hit $O starting from $� and the time to

hit the $� starting from $O�

E
����	�� � �

�

�
� E �O������

Combining these two expressions and using equation ��������

E
�O ����� �

$C���� �
�

�
�

�

Z �

�

C��x��C�x�

x
dx

���



which proves a�� Taking h� $A� � j $Aj and using equation ������� gives

E
��
Z ����

�
j $Atjdt �

�X
n��

t�n��n�� � $C ���� �
C����� C���

�

which proves b��

On the binary tree�

C��� �
��p�� ��

��

so that

$C ���� �
�� �� � ��� ��

p
�� ��

���
�

Integrating this expression and using the fact that C��� � ��

$C��� �
�� � �� � �� � ������

���
� �

�
�

This implies that

EO �� � �
�� � �� � ��� � ��� ������

���

E

Z �

�
j�O
t
jdt � �� �� � ��� ��

p
�� ��

���
�

when d � �� In particular�

lim
�����

�� EO �� �
��� � �

� � and lim
�����

�� E R �
�
j�O
t
jdtq

��� � �
� ���

���



CHAPTER �

Reversible Invariant Measures

We now turn our attention to the in�nite system and the study of invariant

measures� By now� it is not hard to see that there are exactly two invariant

measures in the supercritical regime� the pointmass on the empty con�guration

and the pointmass on the completely occupied con�guration� This follows from

the fact that the �nite system obeys complete convergence� A more interesting

question arises when one asks about the subcritical regime� Unlike the contact

process and one dimensional reversible nearest particle systems� the uniform model

has a rather large collection of subcritical invariant measures� Here� that collection

of reversible invariant measures is described�

�	� Some Background on Reversible Measures

A probability measure � � P is said to be invariant for the process if � � �S�t�

for all t 
 �� The set of all invariant measures is denoted by J � Some basic

properties of invariant measures are collected in the next proposition� The proofs

of these statements can be found in Liggett ��
��

��	



Proposition �	�	�

a
 � � J if and only if Z
S�t�fd� �

Z
fd�

for all f � C�X� and for all t 
 ��

b
 J is a nonempty� compact convex subset of P�

c
 Let Je be the extreme points of J � Then J is the closed convex hull of Je�

d
 If 
 � limt�� S�t�d�� then 
 � J �

De�nition �	�	� A probability measure � � P is said to be reversible if

Z
fS�t�gd� �

Z
gS�t�fd�� �	�����

for all f� g � C�X�� In other words� S�t� is self�adjoint with respect to ��

The next theorem provides a useful characterization of reversibility in the con�

text of spin systems�

Theorem �	�	� Let c�x� �� be the rates for a spin system and let � be probability

measure on X� The measure � is reversible if and only if

Z
X
c�x� ��f���d���� �

Z
X
c�x� ��f��x�d����

for every cylinder function f and for every x � Td�

���



�	� Subcritical Reversible Measures

Say that b � Td is a backbone if b is nonempty and has no leaves� Let �b �

fx � Td � kx � bk � �g be the exterior boundary of b� Also� for x � �b� let

x
 denote the unique element of b at distance one from x� For x � �b� de�ne

Bb�x� � fy � kx � yk � kb � ykg � x
 to be the branch of Td extending from

b into bc through x� Also� let Cb�x� be the set of all �nite� connected subsets of

Bb�x� containing x together with the empty set� Finally� let �b�x be the probability

measure on Cb�x� given by

�b�x�A� �
�jAj

C���
�

Here C��� is a normalizing constant that depends on d as well as �� The assump�

tion that � � �� implies that such a normalizing constant exists�

The measures f�b�xgx��b induce a measure �b on X that is given by

�b � �fb��g
Y
x��b

�b�x�

In particular� the support of �b is the set Xb � f� � b � � and Ab
x
��� � Cb�x� � x �

�bg� where Ab
x
��� � � �Bb�x�� Since �b � �b� for all distinct backbones b and b�� it

follows that the mapping from backbones to probability measures is one�to�one�

Proposition �	�	� f�b � b is a backboneg � Re�

Proof� Fix a backbone b and let �Ab�x
t �x��b be a collection of independent rooted

chains such that for each x � �b the state space of Ab�x
t is Cb�x� and the initial

��




state Ab�x
� is �� Set

�b
t
� b � f 	

x��b
Ab�x
t g�

Thus� �b
t
is distributed as a uniformmodel with initial state b such that �b

t
�Bb�x� �

Ab�x
t for all t 
 �� Since Ab�x

t is converging in distribution to �b�x� and since any

cylinder function depends only on the state of �nitely many rooted chains� it follows

that �b
t
converges in distribution to �b� Therefore� �b is invariant�

Suppose that

�b � ��� � ��� ���� �	�����

for some measures �i � J � In this case� �i�� � b � �� � � for i � �� � so that

	b � �i� Since the uniform model is an attractive spin system� 	bS�t� � �iS�t� � �i

and consequently �b � �i� By equation �	������ �b � �i� and consequently �b is

extremal�

Finally� for any pair of cylinder functions f and g� there exists a �nite collection

fxigni�� of vertices in �b such that f and g are determined by the states of the

associated rooted chains fAb�xi
t gn

i��
� Without loss of generality� write

f��� � f�Ab
x�
���� � � � � Ab

xn
�����

where Ab
x
��� � � �Bb�x� as before� By de�nition�

Z
X
g��� S�t�f��� d�b���

�
X

�A� �


�An�

X
�B��


�Bn�

�b�x��A��PA��Ab�x�
t � B�� � � ��b�xn�An�PAn�Ab�xn

t � Bn��

g�A�� � � � � An�f�B�� � � � � Bn��

���



Using the fact that �b�xi�Ai�PAi�Ab�xi
t � Bi� � �b�xi�Bi�PBi�Ab�xi

t � Ai��

Z
X
g��� S�t�f��� d�b���

�
X

�A��


�An�

X
�B��


�Bn�

�b�x��B��P
B��Ab�x�

t � A�� � � ��b�xn�Bn�P
Bn�Ab�xn

t � An��

g�A�� � � � � An�f�B�� � � � � Bn�

�
Z
X
f��� S�t�g��� d�b����

So it follows that �b is reversible�

Remark� Observe that there was nothing special about the fact that the initial

state was taken to be 	b in paragraph one� In fact� 	�S�t� converges in distribution

to �b for all � � Xb� Therefore� �b is the unique invariant measure on Xb�

The goal is to show that the mapping from backbones to extremal reversible

measures is onto� It is here that Theorem 	���� comes into play� In fact� we will see

that as a consequence of Theorem 	����� reversible measures concentrate on con�g�

urations that are connected� Once that is established� semi�in�nite con�gurations

�in�nite con�gurations that do not contain a backbone� need to be excluded� It

turns out that semi�in�nite con�gurations die out in a distributional sense �see

Lemma 	���� below�� Combining the connectedness together with the fact that

semi�in�nite con�gurations die out and the fact that the state spaces Xb and Xb�

do not communicated for b �� b�� will give the desired result�

Lemma �	�	� If � � R� then the support of � is contained in X � � f� � X �

���



� is connected g�

Proof� Consider Li � fx�� � � � � xig � Td be such that kxj � xj	�k � � for � � j � i

and xk �� xj for k �� j� Let fi��� � �f��x�����xi������xj������j�i��g� Since c�x�� �� � �

whenever f���x�� � �� it follows that

Z
X
c�x�� ��f���x��d���� � ��

By reversibility� Z
X
c�x�� ��f����d���� � ��

On the other hand�

Z
X
c�x�� ��f����d���� 
 ����� � ��x�� � �� ��x�� � �� ��x�� � ���

Therefore� ��� � ��x�� � �� ��x�� � �� ��x�� � �� � �� In particular� all distinct

connected components are at least at distance three from each other � almost

surely�

Proceeding inductively� assume that all distinct connected components are at

least at distance n from each other� Thus� fn��x�� � � � almost surely so that

Z
X
c�x�� ��fn��x��d���� � ��

By reversibility� Z
X
c�x�� ��fn���d���� � ��

On the other hand�

Z
X
c�x�� ��fn���d���� 
 ���� � ��x�� � ��xn� � �� ��xj� � �� � � j � n� ���

���



Therefore� ��� � ��x�� � ��xn� � �� ��xj� � �� � � j � n � �� � �� In particular�

all distinct connected components are at least at distance n�� from each other �

almost surely�

We have shown that the � probability that there are distinct connected com�

ponents that are at a �nite distance from each other is zero� In other words�

��� � � is connected� � �� where � � � is considered to be connected�

Lemma �	�	� Let � � X be a connected con�guration that does not contain a

backbone� Then 	�S�t�� 	��

Proof� Since � � ��� the assertion holds for �nite connected con�gurations ��

Fix � in�nite� Given x � Td� let y� be the unique y � � such that kx � y�k �

minfkx � yk � y � �g� Also� let fyngn�N be an in�nite path in � such that yi �� yj

for i �� j and kyi � yi	�k � � for all i � N� Finally� let �n��t be the uniform model

with initial state � and death at yn suppressed� By attractiveness� we can couple

��
t
and �n��t such that ��

t
� �n��t for all t 
 �� Therefore�

P �x � ��
t
� � P �x � �n��t �� �	�����

Let Xn � fz � Td � kz � yn��k � kz � ynkg � yn and An
t
� �n��t �Xn� Thus An

t
is

distributed as a rooted chain with An
� � ��Xn� In particular� for m � n�ky��xk�

���



we have

lim
t��P �x � �n��t � � lim

t��P �x � An
t
�

�
X
B�x

�jBj

C���

�
�X

k���

� � �
�X

k�d���m����

�m

C���
�k� � � ��k�d���m��

�
�m

C���
C����d���m	�

� ��C���d���m �

Consequently� �C���d�� � �� Recall equation ���	��� that says that C��� and �

are related via the polynomial expression

�C���d�C��� � � � �

whenever � � ��� If �C���d�� � �� this polynomial expression would reduce to

� � �� a contradiction� Therefore� �C���d�� � � so that limt�� P �x � �n��t � tends

to zero as n tends to in�nity� By equation �	������

lim sup
t��

P �x � ��
t
� � lim

n�� lim
t��P �x � �n��t � � ��

from which the result follows�

Together Lemmas 	���� and 	���� imply the following corollary�

Corollary �	�	� If � � R and � � 	�� then ��� � � a backbone b � b � �� � ��

���



Corollary 	���� together with fact thatXb andXb� do not communicate for b �� b�

will imply that each nontrivial extremal reversible measure is given by �b for some

backbone b� As a consequence of the fact that Xb and Xb� do not communicate for

b �� b�� � � Je implies that a certain zero�one law holds �see Lemma 	���	 below��

The reason why the desired result does not follow immediately from the corollary

and the zero�one law is that the number of backbones is uncountable� Therefore�

under the assumption that � � Re� there is no a priori guarantee that ��Xb� � �

for some b� This technical di�cultly can be circumvented by considering the event

that a particular vertex x is in the backbone� Because there are a countable number

of vertices� some vertex is in the backbone with positive probability� The zero�one

law then allows a single backbone to be singled out�

Lemma �	�	� If � � Re and Y � �b�IXb for some subset of backbones I� then

��Y � � � or ��Y � � ��

Proof� Fix � � Re� Suppose that there exists a subset of backbones I such that

for Y � �b�IXb� the measure � satis�es � � ��Y � � �� Let �Y ��� � ��� j Y � and

�Y c��� � ��� j Y c�� Thus�

���� � �Y �����Y � � �Y c��� ��� ��Y �� �

Using the fact that Xb and Xb� do not communicate for b �� b�� it follows that

���



S�t��Y f � � on the event that �� �� Y � Therefore�

Z
X
f S�t�g d�Y �

Z
X
�Y f S�t�g d�Y �

Z
X
�Y f S�t�g

d�

��Y �

�
Z
X
g S�t��Y f

d�

��Y �
�
Z
X
g S�t��Y f d�Y �

Z
X
g S�t�f d�Y �

Hence� �Y is reversible� By the same argument� �Y c is also reversible� But this

contradicts the extremality of �� Therefore� no such Iexists�

Theorem �	�	� f�b � b is a backboneg � Re�

Proof� Let � � Re be such that � � 	�� Also� let Ix � fb � x � bg and let

Yx � �b�IXb� By Lemma 	���	� either ��Yx� � � or ��Yx� � � for each x � Td�

Furthermore� by Lemma 	����� ���xYx� � � so it follows that ��Yx� � � for some

x � Td� Therefore� the set r � fx � ��� � x � �� � �g is nonempty� In addition�

the set r is connected by Lemma 	����� If r is not a backbone� then r contains a

leaf � that has d neighbors �i� i � �� � � � � d� that are in the complement of r� Since

� � r� it follows that ���d
i��

Y�i� � �� By Lemma 	���	� it must be that ��Y�i � � �

for at least one index i� But this contradicts the fact that �i �� r� Therefore� r is a

backbone� Furthermore� for each x � �r� ��Yx� � � �otherwise x � r�� Therefore�

r is the maximal backbone � almost surely so that ��Xr� � �� Since the uniform

model restricted to the space Xr has a unique reversible measure� it follows that

� � �r�

Note that Theorem ����	 is less precise version of Theorem 	����� As men�

���



tioned in the introduction� it would be interesting to determine whether or not

there are any invariant measures that are not reversible� The crucial place where

reversibility was used in this section was to prove the connectedness property� The

remainder of the proof relies on connectedness� not reversibility� So the main issue

is to determine whether or not there are invariant measures that are supported on

collections of disconnected con�gurations�

��	
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