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ABSTRACT OF THE DISSERTATION

A Reversible Interacting Particle System

on the Homogeneous Tree

by

Amber Lynn Puha
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1998

Professor Thomas M. Liggett, Chair

An interacting particle system is a stochastic processes in which particles live
on the vertices of some infinite graph. They are created and destroyed over time
via local probabilistic rules. One feature of the rules for the system studied here is
that if all of the particles are destroyed, then no more particles can ever be created.
This leads one to consider the notion of survival whereby the set of particles avoids
absorption into the empty set in finite time. More specifically, one wants to know
if survival occurs with positive probability.

Another feature of the rules for this system is that the creation of particles

is controlled by a growth parameter 8. In fact, it turns out to be the case that

X



the survival probability is an increasing function of 3. This has the consequence
that there is critical value 3, of the growth parameter. The process survives with

positive probability when [ is larger than 3., while the does not survive when

e
is smaller than 3. . The central objective of this work is to devise a method for
obtaining good bounds on .. Furthermore, one would like to ascertain how well
the process survives when it does so.

Interest in the local rules chosen for study here arises from the fact that they
lead to a reversible interacting particle system. Reversibility admits tools applica-
ble to studying the survival properties of the system. For example, the Dirichlet
principle can be used to express the survival probability as an infimum of a certain
variational functional over all functions in some class. Using these tools, upper
and lower bounds are obtained on the critical value 3, of the growth parameter.
The results are the sharpest on the binary tree where the bounds are sufficiently
good to completely determine the critical value. It is also shown that if the process
survives, then it survives in a fairly strong sense. Moreover, these tools are used

to obtain estimates on the rate at which the survival probability tends to zero as

the growth parameter approaches the critical value j3,.



CHAPTER 1

Introduction

Interacting particle systems are probabilistic models that are defined in terms
of local interactions. Such models are useful for modeling physical and biological
systems. Often times these systems undergo a sudden change in the long run
behavior as some parameter varies. For instance, water held at a temperature
below freezing turns to ice after a long period of time, while water held at a
temperature slightly above freezing remains liquid indefinitely. The freezing point
is what is known as a eritical value of the temperature parameter. In a biological
system, whether or not a given species survives may depend on the reproduction
rate, so that the notion of the freezing point can be replaced by the notion of the
survival threshold. These abrupt changes in the long run behavior of the system
are known as phase transitions. Understanding the nature of phase transitions
motivates much of the interacting particle systems research. A widely accept notion
called universality declares that the behavior of these systems near the critical value
is very robust: the near critical behavior should depend very little on the details of
the local interaction and should be determined by the universality class to which
the system belongs. This suggests that simple mathematical models can provide

accurate predictions about the near critical behavior of real systems.



One of the most widely studied interacting particle systems is the contact pro-
cess. Harris [14] introduced the contact process in 1974 to model the spread of
an infection through a population. The population structure is represented by a
graph with the vertices denoting individuals. Infected individuals (particles) infect
their neighbors at rate A\. Once infection sets in, recovery occurs at rate one. On
a global scale, the infection either dies out with probability one or persists forever
with positive probability. Furthermore, the probability s(A) that the infection per-
sists forever starting with a single infected individual is an increasing function of
A. Therefore, it is natural to define the critical value A, = inf{\ : s(A\) > 0}. It is
not difficult to show that 0 < A, < oo, that is that the contact process undergoes
a phase transition. An active area of research concerns findings good bounds on
A, for various graphs.

The notion of survival makes sense for the finite system, the system in which
the number of infected individual at any given time is finite. One might ask about
the long run behavior of the system when an infinite number of individuals are
infected initially. This question leads to the study of invariant measures for the
interacting particle system and their domains of attraction. In this context, the
interacting particle system undergoes a phase transition if there exist values of the
parameter A for which the the sets of extremal invariant measures have distinct
structures. In the case of the contact process on the d-dimensional integer lattice

Z4, A < A, implies that the pointmass on the state with all healthy individuals is



the only invariant measure. However, for A > A_, there exists exactly one nontrivial
extremal invariant measure. In particular, the critical values for the infinite and
finite system coincide. See [17] for more background on these these topics.

Spitzer [32] proposed a natural generalization of the contact process on the
one dimensional integer lattice Z by allowing the infection rates to depend on the
distances to the nearest infected individuals. Such systems are known as nearest
particle systems. Without making any additional assumptions on the rates, little
can be said about the behavior of these systems. However, by restricting attention
to the nearest particle systems that are reversible, tools become available that
lend themselves to the study of phase transitions. Furthermore, understanding
the behavior of the reversible class may provide insight into the nonreversible
situation. Spitzer’s definition of nearest particle systems depends on the fact that
the underlying graph is Z. This leads us to ask what a reversible nearest particle
system is in higher dimensions, or on other graphs. While there have been some
attempts to define and study reversible systems on graphs besides Z (see [5], [6],
and [19]), the theory is not well developed.

Here a reversible interacting particle system called the uniform model is intro-
duced and studied. The process evolves on the homogeneous tree T4, a graph with
no cycles in which each vertex has degree d 4+ 1. The infection rate is the same as
for the contact process, while the recovery rate is modified: infected individuals

are prevented from recovering when at least two neighbors are infected; otherwise,



infected individuals recover at rate one. It turns out that this modification leads
to a reversible interacting particle system, as we will see in Section 1.4.

Before presenting the treatment of the uniform model, we pause to make some
of the aforementioned notions more precise and to give more background on the
related processes. Section 1.1 contains the formal definition of an interacting parti-
cle system and defines much of the notation that will be used throughout. Section
1.2 summarizes some of what is known about the contact process, and in so doing,
introduces the key ideas that motivate the questions that are addressed for the
uniform model. Section 1.3 gives the formal definition of a reversible interacting
particle system and outlines much of what is known about Spitzer’s reversible near-
est particle systems. In Section 1.4, we return to the uniform model. Here, the
problems that will interest us are described. This section contains the statements
of the main theorems that will be proved in the ensuing chapters and a pointer to

where each theorem is proved.

1.1 Notation and Preliminaries

Interacting particle systems are continuous time Markov processes. Fach sys-
tem has a spin space S and an underlying graph GG = (V, E), where V denotes
the set of vertices of the graph and F denotes the set of edges. Typically, ver-

tices are referred to as sites. The process takes values in the space X = SV of all



possible labelings of vertices (or sites) of the graph with elements in S. Typically,
elements of S are called spins, or spin values. In all of the examples discussed
here S = {0,1} and the spin value 1 is associated with being infected, or being
occupied. An element n € X is referred to as a configuration. Configurations
can be viewed as functions n : V' — S with n(x) denoting the spin at site x in
configuration n. They can also be viewed as subsets of V' via the identification
n — {y € V:n(y) = 1}. For future reference, note that there is a natural partial
ordering on X that is given by n < ( if and only if n(z) < ((z) for all x € V.

The evolution is determined by a nonnegative rate function ¢(x, n) that specifies
the rate at which the spin at site x changes (or flips) from n(z) to 1 — n(z) in
configuration 7. Notice that only one spin value changes in a single transition.
Systems with this property are called spin systems. It is certainly possible to have
models in which more than one spin flips in a single transition. The discussion
here is restricted to spin systems and the rate function is often referred to as the
collection of flip rates.

Given a collection of flip rates, one can define a generator (G on a certain dense

subset D(X) of the continuous functions C'(X) on X:

Gfn) =Y ely,n) (F(n,) = F(n)) Tor all f € D(X).

y
Here the configuration 7, agrees with n except at y, where it takes the value
1 —n(y). Under appropriate assumptions on the rates, the generator G uniquely

determines a Feller Markov process with state space X. A sufficient condition is



that the rates are uniformly bounded and that for all x, ¢(z,-) depends on the
values of n within some finite distance R of x. See [17] for a more detailed account
of the construction.

We denote the semigroup and state of the process at time ¢ by S(¢) and n,
respectively. Also, P7 is the probability measure that puts mass one on sample
paths with 5, = 1. Accordingly, n;/ is the value of the process at time ¢ when
no = n almost surely. It is instructive to note that the rates are related to the

measure P7 by the equation

Pr(n(e) # n(z)) = cle,n)t +o(t)  as i\ 0.

The expected value with respect to the measure P7 is denoted by E7. For p in
the set of all probability measures P on X, pS(t) denotes the distribution of the

process at time ¢ when the initial distribution is .

1.2 The Contact Process

For the contact process, the rate function is given by

A yfla—yli=13 () i n(x) =0,
c(x,n) =

1 otherwise.

Here A > 0 is the growth parameter and ||z — y|| denotes the length of the shortest

path from = to y in the graph. The rates for the contact process satisfy a very



useful property known as attractiveness. In order to define an attractive process,
say that f € C(X) is increasing if f(n) < f(() for all n < (. An attractive (or
monotone) process obeys the following condition: if f increasing, then S(#)f is
increasing for all ¢ > 0. For spin systems, attractiveness is equivalent to the rate

function satistying

c(x,n) <e(x, () if(x)=0 and c(x,n) > c(x, () ifnlz)=1,
(1.2.1)

for all n < (. Typically, this condition is easy to verify and in particular it holds
for the contact process. One powerful consequence of attractiveness is that for any

n < ( there exists a coupling (1,, ;) of two copies of the process such that

P0O(p, < () =1 (1.2.2)

for all ¢ > 0. In Section 2.1, this coupling will be reviewed.

As a consequence of attractiveness, the process converges in distribution when
the initial measure is the pointmass 6y on the state with all sites occupied. The
limiting measure is invariant and stochastically dominates all other invariant mea-
sures for the process. To see this, note that 6y > 6,5(%) so that by attractiveness
oy S(s) > 6y S(t + s). In particular, the measures 6;,5(1) are decreasing in ¢ and
therefore converge. The limiting measure v is called the upper invariant measure.
The term invariant means that vS(¢) = v for all times . The measure v is invariant
because it is obtained as a limit: v = lim,_, . 6yS(¢) = lim,_ ., 6yS(t+s) = vS(s).

It dominates all other invariant measures because éy > g implies that 6y S(t) >



wS(t). If p is invariant, then this inequality becomes 6y S(f) > p. Letting ¢ tend
to infinity gives v > p.

The upper invariant measure is intimately connected to the behavior of the
finite system. It turns out that v is nontrivial if and only if the probability of
survival is nonzero. Moreover, the finite system often times converges in distri-
bution to a convex combination of é; and the upper invariant measure. This is
a phenomenon known as complete convergence and the constant is given by the

probability of survival:

PAS(t) — PA(n, £ 0V t)v + PA(n, = ) some t)by.

It is immediate that complete convergence holds whenever s(A) = 0. In particular,
it holds for A < A.. One of the most important results about the contact process
on Z% is that complete convergence holds for all A. Durrett [9] proved a one
dimensional version of this result that applies for A > A. in 1980. A proof can be
found in [17]. It relies on the notion of edge speeds which are only defined in one
dimension. Next came many partial results that hold in all dimensions, but only
for A sufficiently large; see [10], [30], and [1]. In 1991, Bezuidenhout and Grimmett
[4] proved that the contact process obeys complete convergence for all dimensions
and all A. Their work includes a proof that the critical contact process dies out:
s(A.) = 0.

To this point, the discussion has centered around a notion of global survival,

the event that the process is not absorbed into the empty set in finite time. There



is also a notion of local survival, the event that a given site is infected at an
unbounded collection of times. On Z¢9, global survival implies local survival as
a consequence of complete convergence; however, this is not true for all graphs.
Pemantle [25] first observed this fact by investigating the behavior of the contact
process on the homogeneous tree. He proved that on these graphs the contact
process experiences an intermediate phase, provided that the degree is sufficiently
large. This intermediate phase is characterized by nonlocal, global survival. Fix
a distinguished vertex O in the tree that will be referred to as the origin, or the

root. Let

Ay =inf{A: PO (n, #0V t) >0} and

As = inf{\: PO (O € n, for unbounded ¢ ) > 0}.

Notice that A, = A.. Global survival without local survival is called weak survival.
In particular, weak survival occurs with positive probability if A € (Ay, A3). By
obtaining upper bounds on A, and lower bounds on A;, Pemantle showed that
Ay < Ay for d > 3, leaving the case d = 2 open. This case was handled by Liggett
[21] using a similar but more sophisticated approach. Shortly after, Stacey [33]
came up with a proof that A\, < A; that did not yield explicit bounds, but worked
for all d > 2.

A central feature of these arguments involves finding a suitable function of the
state space that is a nonnegative supermartingale with respect to the evolution of

the contact process. Two supermartingales turned out to be extremely useful. In



order to define these two supermartingales, a level {(x) is assigned to each vertex
x in the tree such that ((O) = 0. The level is assigned inductively to the d + 1
neighbors of the vertex x by setting the level of one of the neighbors equal to
{(x) — 1 and the level of the other d neighbors equal to () + 1. Let 0 < p < 1

and define

f(A) = pAl and g,(A) = Z pte), (1.2.3)

z€A

for finite A € X. Notice that if f,(1;) converges to zero, then [n;| tends to infinity.
Furthermore, if g,(7,) tends to zero, then the process dies out locally. These
observations indicate why these functions would be good candidates. The game
is to determine for which A these functions are in fact supermartingales for some
p. As the degree decreases, it becomes more difficult to obtain bounds sufficiently

good to separate A, and A;. Pemantle’s original theorem was that

which is enough to prove that A, < A5 provided d > 6. He then went on to improve
the bounds enough to separate A, and A3 for d > 2. Eventually, Liggett showed
that A, < .605 and .609 < A; for d = 2 which barely separates the two. Soon after,
Stacey discovered an alternative approach involving the function g, that did not

produced bounds, but that did show the existence of an intermediate phase for all

d> 2.
1/t

Later it was observed by Liggett [20] that (EO (gp(nt))) converges to a finite

limit. He initiated a study of this limiting function ¢(A, p) which depends on both

10



A and p. One objective of this work was to describe the behavior of the function
u(n) = P9(x, € n, some t ) as n — oo,

where ||z, — O|| = n. This probability turns out to decay exponentially if ¢(A, p) <
1 for some p (which holds if and only if A < A3 ). It is even possible to determine

the critical rates of decay:
u(n)t/ l at A and u(n)t/ L at As.
d 2 \/E 3

It is immediate that there is no decay it A > A;. The critical rate of decay at A,
comes from combining an upper bound in [20] and results of Schonmann [31]. The
critical rate of decay at A5 was originally conjectured to be an upper bound by
Liggett. Lalley and Sellke [15] proved Liggett’s conjecture and ultimately, their
proof was simplified by Schonmann and Salzano [28]. A good place to read about
this work is [22].

An important property of the contact process that is essential to the afore-
mentioned analysis of ¢,(7,) is that it is additive. This means that there exists a

coupling such that
nt = U,eany forall t>0. (1.2.4)

The existence of this coupling comes from a graphical construction of the contact
process that we will not go over here. Instead the reader is referred to [22]. Suffice

it to say that additivity implies that Eg(n2) = Eg(U,c4n%) < 3,ea Eg(n?), which

11



is both a first step toward constructing a supermartingale and a first step towards
showing that (EO (gp(nt)))l/t converges to a finite limit.

In the intermediate phase complete convergence must fail. Here the infection is
‘wandering off to infinity’ so to speak and therefore the finite process is converging
in distribution to 65. This peaked interest in the set of invariant measures for
the contact process on T? in the intermediate phase. Durrett and Schinazi [11]
discovered that there are infinitely many extremal invariant measures in this phase.
These measures have the property that the density of particles tends to a nonzero
constant on some significant proportion of the boundary of the tree. Liggett [20]
also produced a spherically symmetric collection of invariant measures for which
the density of particles tends to zero near the boundary.

By this time, Zhang [35] had proved that the contact process on T? obeys com-
plete convergence for A > 3. It is not obvious from the definition of complete
convergence that survival together with complete convergence is a monotone in-
creasing property of A. Nevertheless, it turned out to be the case on both Z¢ and
Te. This interested Schonmann and Salzano ([27] and [29]) who undertook a study
of the contact process on arbitrary graphs with monotonicity of complete conver-
gence in mind. One consequence of their work was a criterion for survival together
with complete convergence on homogeneous graphs that is obviously monotone
increasing in A:

lim li{nianB(Ovn)(nt NB(O,n)#£0) =1,

n—oo

12



where B(O,n) is the ball centered at the origin of radius n. This leads to the

definition of yet another critical value

Ay = inf{X : lim liminf PR (n, N B(O,n) # §) = 1}. (1.2.5)

n—oo  t—oo

In these terms, the Zhang result states that Ay = A;. For a proof that A; = A,, the
reader is referred to [28].

Turning our attention to the near critical behavior of the contact process on
T4, if

™ log PO(n, #0 V¥ 1) _
N log(A—Ay)f

then the survival probability decays like a power law with exponent 3. This expo-
nent (3 1is said to be the critical exponent of the survival probability. For the contact
process on the homogeneous tree, Barksy and Wu [3] showed that if a condition
called the triangle condition holds, then the exponent takes its mean field value
which is one. Wu [34] verified that this condition holds for d > 5. Later Schon-
mann [31] completed the story by verifying that this condition holds for d > 2.
Another quantity that typically displays power law behavior is the expected total

space time occupation measure, or the susceptibility. It is defined as

AN =E [l

Letting 7 be the time of absorption into the empty set, we see that

EOr < X()‘)v

13



and consequently E°7 = oo implies that y(A) = co. The question then becomes

at what rate does () diverge. Let
A = inf{) : EO7 = oo},

For the contact process on T4, it is known that A; = A, and that

i eex)
A% log(A = Ay)™

for v = 1. Here again v = 1 is the mean field value. The fact that the exponent

exists and takes mean field value follows from the fact that the triangle condition

holds as verified by Wu [34] for d > 5 and Schonmann [31] for d > 2.

1.3 Reversible Nearest Particle Systems

A finite interacting particle system is said to be reversible if there exists a
measure 7 supported on the states with finitely many infected individuals such

that
m(A)e(z, A) = 7(AUx)c(x, AU x) (1.3.1)

for all states A (except possibly a single absorbing state) with finitely many infected
sites and all # € A. The equations in (1.3.1) are known as the detailed balance
equations. If there is no exceptional state, then the detailed balance equations are

equivalent to self-adjointness of the operator S(t) with respect to the measure =.

14



Given the definition of a reversible interacting particle system, the next objec-
tive is to give a more formal description of a reversible nearest particle system. As
previously mentioned, a nearest particle system on Z has a rate function of the

form

fla(n),ra(n)) it n(z) =0,
0(51?777) =

1 otherwise.
Here f: N, x N, — R, with N, ={1,2.3,...} and R, = {t e R: ¢ > 0}. Also,
I,(n) (resp. r,(n)) is the distance to the nearest particle to the left (resp. right) of
x in configuration 1. The function f satisfies some mild conditions that prevent
explosions and has the properties that f(l,00) = f(o0,l) > 0 and f(o0,00) = 0.
In particular, the empty set is an absorbing state. Requiring the detailed balance
equations to hold (except at the empty set) for some measure 7 is equivalent to

the function f taking the form

B)B(r)
fllr) = B+

for some strictly positive function (-) on N, . This function 3(-) is also assumed
to satisfy 3> B(n) < co. In case r = oo, f(l,00) = B(I). The measure 7 is given

(up to constant multiples) by m(x) =1 for all x € Z and

n—1
m(A) = ][ Bl — )
=0
for A ={xgy,...,2z,} with ; <z, for 0 <i:<n—1andn > 1.
In contrast to the contact process, critical values for both the finite and infinite

reversible nearest particle systems can be computed exactly. This is achieved by

15



taking advantage of the additional tools that become available in the reversible
setting (e.g. the Dirichlet principle for the finite system) that will be discussed at

some length in Sections 2.7 and 4.1. Let A = 3>=°  ((n).

Theorem 1.3.1 The finite process survives if and only if A > 1. Furthermore,

A—1
Mog | ~—

1
AL pogy, £0v 1) <

;| for A > 1.

Thus, not only has the critical value been computed exactly; the theorem pro-
vides estimates on the rate at which the survival probability decays as A decreases
to As.

Originally, Spitzer [32] was interested in the infinite system, the system in which
Ye<o(®) = X 50 n(x) = co. In this context, a measure is said to be reversible if
the semigroup is self-adjoint with respect to that measure for all times. Reversible
measures are also invariant measures. In order to state the simplest version of the

results about reversible measures, the function f(-) is assumed to satisfy

pn)

S Mt (1.3.2)

It turns out that the monotonicity in assumption (1.3.2) is equivalent to saying
that the system is attractive. For the infinite system, the fact that the limit in

(1.3.2) is taken to be one is not a restriction since the function 3(-) can be replaced

16



with (-)a without affecting the flip rates. Suppose that there exists a 6 such that

iﬂ(l)elzl and ilﬂ([)@l<oo. (1.3.3)

=1
In particular, this is the case whenever A > 1 and this not the case whenever
A < 1. If assumption (1.3.3) holds, then £(-)6 is a strictly positive probability
distribution on N, that determines a stationary renewal measure gz on Z with

increments that are distributed according to this measure.

Theorem 1.3.2 Assume that (1.3.2) holds. Then the upper invariant measure is
oy whenever there exists no 0 satisfying assumption (1.3.3). If assumption (1.3.3)
is satisfied for some 0, then the stationary renewal measure g is both the upper
invariant measure and the unique nontrivial reversible measure for this process. In

particular, the critical values for the finite and infinite system coincide.

In view of Theorem 1.3.2, one might like to know if there are other invariant

measures that are not reversible. Under the additional assumption that

pn)p(n)
Zn: “Aan) < 0o, (1.3.4)

Liggett [16] proved that s is the unique nontrivial translation invariant, invariant
measure. This condition turns out to hold for most 3(-) of interest. Mountford
[24] later built on this result and proved a complete convergence theorem under

assumption (1.3.4). His proof takes advantage of ideas introduced in [4].
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The subcritical approach to critical for reversible nearest particle systems is
very well understood. In fact, as a consequence of reversibility, the expected ex-
tinction time and susceptibility are exactly computable as functions of A. One

consequence of these computations is that Ay = A,.

Theorem 1.3.3 Assume that A < 1. Then

EO(r) = (1 —X)t and xA)=(1-=X)"2

The proofs of all of the theorems stated in this section can be found in [17], with
the exception of the complete convergence result. For that the reader is referred to
the original paper [24]. Theorems 1.3.1 and 1.3.3 are due to Griffeath and Liggett
[13]. Theorem 1.3.2 follows from work of both Spitzer [32] and Liggett [16].

Two important obstacles prevent a direct generalization of reversible nearest
particles to graphs other than Z. Firstly, on what quantity should the rate at
which a vacant site becomes occupied depend; that is, how should one generalize
the notion of the nearest particle to the left and right? Secondly, there is no gener-
alization of a renewal measure even to Z< for d > 2. Liggett [18] introduced what
he called the uniform model in an effort to extend the theory of reversible nearest
particle systems to T<4. It has two parameters rather than one and henceforth

will be referred to as the two parameter uniform model. Some other work in this

direction includes [5], [6], and [19].
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1.4 The Uniform Model

The flip rates for the uniform model are given by

B3 tylle—yi=1y 1(y)  if n(x) =0,

clz,n) =41 if n(z) =1 and >¢yjomy=1y 1(y) < 1,

0 otherwise.

As for the contact process, 5 > 0 is the growth parameter and ||z — y|| denotes the
length of the shortest path connecting z and y. These dynamics can be viewed
as a modification of the contact process: there the rate at which an occupied site
becomes vacant is one regardless of the spin values in the neighborhood. Notice
that these rates also satisfy (1.2.1). In particular, the uniform model is attractive.

One effect of the modification is that connected components remain connected
until absorption into the empty set. To see this, note that the rate at which a 0
flips to a 1 is zero unless there are some 1’s in the neighborhood of the 0. Thus,
new connected components cannot appear due to a birth. Also note that, if a 1
flips to 0 at a positive rate, then at most one of neighbors of the 1 is occupied.
Therefore, anything in the connected component of this 1 is connected through
this occupied neighbor. In particular, removing this 1 cannot break the connected
component into two pieces. This leads to the observation that the configuration

with all sites occupied is absorbing so that the measure 674 is the upper invariant
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for the process.

Another important distinction between the two processes is that the uniform
model is reversible. Consider the measure 7(A) = B4l for all finite, connected
A C T4, where |A| denotes the number of vertices in the set A. If A is connected

and nonempty, then ¢(z, A) = § if and only if ¢(x, AU x) = 1. Therefore,
c(x, A)m(A) = e(x, AU2)T(AU 1) for all = ¢ A.

It is easy to see that the contact process is not reversible since isolated particles
die at positive rate and cannot be reborn at positive rate until some neighboring
vertex becomes occupied.

A third fundamental difference between these two processes is that the uniform
model is not additive. In fact, it is superadditive in the sense that there exists a
coupling such that

Upearny €},
and no such coupling holds with an equality. This has the consequence that the
supermartingales that were so useful for analyzing the behavior of the contact
process on the tree are not supermartingales for the uniform model. Therefore,
the techniques used to prove results about this process will differ greatly from those
used for the contact process. The methods take advantage of reversibility and tend
to be more like those used to prove results about reversible nearest particle systems.

Liggett [18] first introduced the two parameter version of this process in 1985.

It has both an interior growth parameter A and an exterior growth parameter
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v < 1/d. Given a configuration 7, let G(n) be the minimal connected subgraph of
T containing . The rate at which a vacant site becomes occupied in configuration
n decays exponentially with the distance to G(n), while occupied sites become

vacant at rate one. The flip rates are given by

c(x,n) = M= —n()) + (),

where ||t — G(n)|]| = min{|]lz —y|| : ¥ € G(n)}. The two parameter model is
reversible with respect to the measure p(A) = yI9AWINAl for finite A C T4 Liggett
studied the survival properties of the finite system and gave bounds on the critical
value of the interior growth parameter in terms of the exterior growth parameter.
The connection between the single and double parameter models is that the single
parameter uniform model can be regarded as a limit of the double parameter
version. To see this, set the double parameter nearest neighbor birth rate Ay
constantly equal to 3 while letting the exterior growth parameter v tend to zero.
In particular, the rate at which vacant sites at a distance strictly greater than one
from G(n) become occupied tends to zero. Since the interior growth parameter
A = [3/~, the interior birth rate tends to infinity. Thus, any occupied site in the
interior of G(n) that becomes vacant is instantaneously reoccupied.

The uniform model is also closely related to another process that arises in the
computer science literature. In this arena, binary search trees are a common way
to store and retrieve data. The search process is modeled by a Markov chain that

evolves by adding a vertex at random to the current state. This vertex is chosen
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from those at distance one from the current state. The state space for the search
process is not quite subsets of T2. It is actually subsets of a subgraph B? of T2
This subgraph B? contains a distinguished vertex called the root that has degree
two. All other vertices have degree three. This distinguished vertex is the first
vertex to be occupied with probability one. Such a process can be view as a discrete
time uniform model without deaths. The main interest is the asymptotic height
of these trees which was studied independently by Pittel [26] and Devroye [7]. Let
H, be the distance to the farthest vertex from the origin that is in the current
state after n additions. Also, let h, be the distance to the nearest vertex to the
origin that is not in the current state after n additions. Both of these quantities

grow like Inn, but with different constant rates: With probability one

by o
lim =1, and lim =L,

where L; and L, are the two distinct roots of the equation Lexp ((1 — L)/L) = 2.
Barlow, Pemantle, and Perkins [2] later studied more general versions of pure
growth processes on trees.

A major objective of this work is to exploit reversibility to provide a complete
analysis like that available for reversible nearest particle systems. Motivated by
the contact process on T9, we consider the following critical values of the birth

parameter. As before, 7 denotes the time of absorption into the empty set and O
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is a distinguished vertex referred to as the origin, or the root. Let

pi(d) = inf{B : E? (1) = oo},
Po(d) = inf{B: PO (n, #0V 1) >0},
B5(d) = inf{5 : P° (O € n, for unbounded ¢ ) > 0}, and

Suld) = inf {3 : Jim i inf P(O € 5" ") =1},

It is immediate that 3,(d) < B,(d) < B3(d) < B4(d). The definition of F,(d) is
a modified version of definition (1.2.5) that defined A, for the contact process.
In Section 2.2, will we see that ,(d) is the threshold for survival and complete
convergence. For the contact process on T4 we know that \; = A\, < A3 = Ay,
provided d > 2. The process is said to be subcritical if E© (1) < oo and supercritical
if lim, . liminf, . P(O € n?@™) =1.

Theorem 1.4.1 summarizes the main results regarding critical values for the
(single parameter) uniform model. On the binary tree, all critical values are com-
puted exactly paralleling the results for reversible nearest particle systems on Z.
The analysis itself is similar in the sense that it uses certain tools associated with

reversibility. However, many new ideas are required in order to obtain these results.

The proof of this theorem is the subject of Chapter 2.

Theorem 1.4.1

a) For d > 2, 3,(d) = Bs(d).
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b) Ford>2,

)= (6%1)

Furthermore, at 3,(d) the expected extinction time is finite.
¢) Ford>2,

54(d) < m

d) Ford =2, 3,(2) = 4(2) = i'

Theorem 1.4.1a) states that in contrast to the contact process on T4 the uniform
model has no intermediate phase characterized by weak survival for all d > 2.
The key factor that will be taken advantage of in the proof of Theorem 1.4.1a)
is connectedness of the uniform model. By b), 5,(d) is asymptotically 1/ed and
the bound given in c¢) is asymptotically 1/2d. These values are close, but not
close enough to rule out an intermediate phase. Part d) states that there is in
fact no intermediate phase in d = 2 and identifies the exact location of the phase
transition.

The technique used to push the upper bound on 3,(2) down to /3,(2) may work
for general d. The remaining obstacle is to show that a certain set of equations
has a solution that is absolutely bounded by one (see Lemma 2.9.1). A limiting
version of these equations yields a partial differential equation. This PDE does in

fact have a solution that is absolutely bounded by one.
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Theorem 1.4.2 For d > 3, let o : Ri — R be defined by

af(xy,..., 1) =

Zd: (9 —2) (22 + 1022, +a2)(2y + - Fxg F 2y +-Fay) 1

i=2 did =2)(zy + -+ xg)(x +2;)? d

Then o*(xy,...,x4) is symmetric in the variables x,, ..., x4, absolutely bounded by

one, and a solution to

d

2% —_
ZO& (xivxlv'"7xi—17xi-|—17"'7xd) =1
=1

3
2 (2_:1;2»_6—:1:2»)@ (Tiy Ty ey T, Ty oy Tg) = ST

The analysis of the PDE that is presented in Chapter 3 may be of independent
interest. Firstly, the PDE relates values of the function and its derivatives at dis-
tinct (not necessarily close) points in the positive orthant. Furthermore, simple
inspection of the PDE does not suggest a particular form for a candidate solu-
tion. Therefore, some strategy must be implemented in order to find the solution
exhibited in Theorem 1.4.2.

Theorem 1.4.2 suggests that the next conjecture holds. The conjecture implies
that the uniform model undergoes exactly one phase transition on all homogeneous

trees.

d—
Conjecture 1.4.3 Ford >3, §,(d) =% (djTl) g
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In Chapter 4, our attention turns to the behavior near the critical value 3 (d)
which, as the conjecture indicates, we believe to be the only critical value for the

uniform model. We prove the following theorem.

Theorem 1.4.4 On T4,

) PO(n, £V 1)
G- O (4D

for some constant 0 < Cy < co. On the binary tree,

PO(y #0V 1)
ENYE (B —1/4)+V13/2 = 77

(1.4.2)

for some constant 0 < (5, < oco.

One might be tempted to conclude that inequality (1.4.1) implies that the
survival probability is continuous at the critical value f,(d). However, this follows
from other considerations. There is relatively elementary argument that shows that
the survival probability is right continuous that will be given in Section 4.3. Since
Theorem 1.4.1a) states that the survival probability is zero at 3;(d), this together
with right continuity implies continuity at ;(d). For d > 3, inequality (1.4.1) is
only interesting if 3,(d) = (,(d), which we believe to be true. Together the two
inequalities in the theorem give bounds on the rate at which the survival probability
tends to zero as the growth parameter tends to 3,(2) = 1/4. The theorem says that
on the binary tree the critical exponent for the survival probability of the uniform

model lies in the interval [5/2,1 + v/13/2] (if it exists). For d > 3, a similar result

26



may hold. The main obstacle is proving that the hypothesis of Lemma 2.9.1 are
satisfied. This is explained more fully at the end of in Chapter 4.

In Chapter 5, the collection of extremal reversible measures is identified. In
order to parameterize this collection of measures, we need to introduce the notion
of a backbone in T4. Say that 6 C T4 is a backbone if b is nonempty and for all

x € b, there exist at least two neighbors of x that are also in b.

Theorem 1.4.5 For g < 3,(d), {b € T?: b is a backbone} U is in one-to-one

correspondence with the collection of extremal reversible measures.

This correspondence is made precise in Chapter 5. Theorem 1.4.5 suggests
many open questions. For example, it would be interesting to determine if there
are any invariant measures that are not reversible. Another possibly more difficult
question is to determine the domain of attraction for each of these measures. A
preliminary step in that direction might be to begin with a product measure at
density p and to determine for which p the process converges in distribution to .
An easy upper bound on the critical p is the percolation threshold for independent
site percolation on T? which is 1/d. It would even be interesting to show that the
process converges in distribution to 6y for p in a sufficiently small neighborhood of
zero. This would establish that there is a phase transition for fixed 8 < 3,(d) as p

varies.
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CHAPTER 2

Critical Values

The critical values ,(d), 35(d), Bs(d), and B,(d) signify abrupt changes in
strength with which the uniform model survives. We have already observed that
Bi(d) < By(d) < Bs(d) < B4(d). This raises the question as to whether or not
any of these inequalities is strict. One approach to resolving this issue is to devise
a method for finding bounds sufficiently good to separate two critical values, or
sufficiently good to prove that they are equal. The main portion of this chapter is
is devoted to obtaining such estimates and thereby proving Theorem 1.4.1.

Before proceeding to obtain these estimates, we investigate the behavior of the
uniform model in the survival regime, {8 : P9(n, # 0 V ¢) > 0}. In Section 2.2,
qualitative differences in the nature of the survival from one phase to the next
are described. These notions apply quite generally. Section 2.3 is devoted to the
proof of part a) of Theorem 1.4.1. Here basic properties of the uniform model are
exploited to rule out weak survival. The remainder of the chapter is dedicated to
proving parts b), ¢), and d) of Theorem 1.4.1. Reversibility plays an essential role

in many of the proofs.
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2.1 Some Background on Coupling and Positive Correlations

In the introduction, it was noted that the rates for the uniform model satisfy

c(x,n) <clx,() if(x)=0 and e(a,n)>c(x,() ifnlx)=1, (2.1.1)

for n < (. An important consequence of this is that there exists a coupling of two

copies of the uniform model so that n < ¢ implies that
PO, < () =1, (2.1.2)

for all £ > 0. From this coupling, it readily follows that if f is increasing, then
S(t)f is also increasing for all ¢ > 0. Equivalently, if two probability measures on
X satisfy py < pq, then py S(t) < pyS(t) for all ¢ > 0. A process that satisfies
these two equivalent conditions is said to be attractive.

The coupled process has the following rates: For n < (, let

c(x,n) if n(z) =((z) =0,
(7,¢) = (1, ¢2) at rate

c(a, ) ifn(z) = ((x) =1,

(7,¢) = (n,¢,) at rate
c(z, () if p(z) =0,((z) =1,

co(z,n) = e(2,¢) ify(z)=((z) =1,
(7,¢) = (1., ¢) at rate

c(x,m) if n(z) =0,¢(x) =1

For n £ (, the two processes evolve independently. The fact that these rates are

nonnegative follows from condition (2.1.1). Observe that if n < ¢ and (n,() —
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(0,€) at positive rate, then ¥ < ¢ which guarantees that equation (2.1.2) holds.
Also note that n — 1, at rate ¢(x,n) and ( — (, at rate ¢(x, ) so that the marginal
processes both have the same distribution as the original spin system.

One very useful fact about attractive spin systems is that the evolution pre-
serves positive correlations. More precisely, if g has positive correlations in the

sense that

[ fhdu= [ rdpe [ hdp

for all increasing functions f and h in C'(X), then uS(¢) also has positive correla-

tions. This holds as a consequence of Harris” Theorem:

Theorem 2.1.1 Suppose that S(t) and G are respectively the semigroup and gen-
erator of an attractive Feller process on X. Assume further that G is a bounded

operator. Then the following statements are equivalent:

Gfh >fGh + hGf for all increasing f,h € C(X). (2.1.3)

wS(t) has positive correlations whenever p does. (2.1.4)

A proof Harris’ Theorem can be found in [17]. In order to see that condition

(2.1.3) holds for any spin system, note that

(f(nz) = S () (h(nz) = h(n)) = 0,
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whenever f and h are increasing. This together with the observation that

G(fh)(n) — Fm)Gh(n) — k()G f(n) (2.1.5)

=" c(x.n) (f(n.) — f(n)) (h(n,) = h(n))

zeV
implies that condition (2.1.3) holds.
Harris” Theorem has the following corollary, a proof of which can also be found

in [17]:

Corollary 2.1.2 Suppose that the assumptions of Theorem 2.1.1 are satisfied, and
that equivalent conditions (2.1.3) and (2.1.4) also hold. Let 1, be the corresponding
process, where the distribution of ny has positive correlations. Then fort; < --- <
t,, the joint distribution of (0. ...,n;, ), which is a probability measure on X7,

has positive correlations.

The state space for the coupled process X? also has a natural partial ordering:
(n,¢) < (0,&) if n < and ( < £ Therefore, the notions of attractive processes
and positive correlations apply in this context. For the coupled process (n,(,)
with 79 < (o, equation (2.1.2) implies that there are three possible spin values at
any given site: (0,0), (0,1), and (1,1). In light of this observation, one can make

the identification

(0,0) < 0, (0,1) <1, and (1,1) < 2,
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and take the spin space to be {0,1,2}. Configurations in the space {0, 1,2}V
will be distinguished from configurations in {0,1}V with an overbar as follows:
7 € {0,1,2}V. The aforementioned partial ordering can be expressed as 7 < ( if
i(x) < ((z) for all z € V. Let ¢;(x,7) be the rate at which the spin at z flips to
¢ in configuration 7. Also, let (5,() be corresponding representation of 7 in the
space X2. In particular, let n(z) = 1 if p(x) = 2; otherwise, n(x) = 0. Also, let
((x) = 0if n(x) = 0; otherwise, ((x) = 1. We have
co(@,7) = e(x, () it (z) # 0,
c(2,€) = elen) iEq(a) =0,
ey, ) = (2.1.6)
c(x,n) — ez, ) it n(r) =2,

e, ) = () if () # 2.

Here it is understood that ¢;(x,7) = 0 in the remaining cases.
The first objective is to show that the coupled process satisfies condition (2.1.3).

In this context, (2.1.5) becomes

G(fR) () = Fa)GR(n) = R G f(n) (2.1.7)

= > > cila,m) (f(12) = F(m) (h(2E) = h(n) .

whenever f and h are increasing. Therefore, (2.1.3) holds for the coupled process.
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Next, one would like to know that the coupled process is also attractive. For

7 < 1, the rates of the coupled process satisfy

col,n) 2 co(a,0) it n(x) #0,

colz, ) = co(@, V) + e1(2, 1) = ¢ (,9) if () =2,

(2, 9) + ¢y, 9) — ey(x,7) > ey, 1) if g(z) =0,

ey, ) 2 ey(x,m) il () # 2.

In a similar manner as for the original spin system, one can use these inequalities

to define a coupling (7;,9,) such that
P(ﬁ’g)(ﬁt < gt) =1, (2.1.8)

for all time ¢t > 0 whenever 7 < 9. This has the consequence that the coupled
process on {(n,() € X? :n < (} is attractive. Therefore, by Theorem 2.1.1 the
evolution of the coupled process also preserves positive correlations on this space.

One final note regarding Harris” Theorem and the coupled process. Suppose
that death at the origin is suppressed in the smaller of the two processes. Then
clearly one cannot expect to find a coupling such that n, < (, for all t > 0. However,
one can maintain this inequality until the stopping time R = inf{t : O ¢ (;}. In
particular, a modified coupling (n,,(,) is defined whereby for ¢ < R, the rates for
the coupled process are given by (2.1.6) and for ¢ > R, the two process evolve
independently. Thus,

n, C ¢ for all t < R,
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and there is no particular ordering relation that is guaranteed to hold after time
R. Tt turns out that this modified coupled process is also attractive and satisfies
(2.1.3). The fact that this modified coupled process satisfies (2.1.3) follows from
the same argument as for the original coupled process. Attractiveness is not much
harder to verify. Obey the rates that give rise to (2.1.8) until time R;, which is
the R corresponding to the smaller of the two coupled processes. In the interval
[Ry, Ry), three (nonindependent) copies of coupling (2.1.6) are used. Here R, is
the R corresponding to the larger of the two coupled processes. The primary copy
applies to the second of the two coupled processes. Then the first coordinate in
the smaller of the two coupled processes is coupled to first coordinate in the larger
of the coupled processes via coupling (2.1.6). Similarly, the second coordinates of
each coupled process are coupled using (2.1.6). After time R,, two independent
copies of (2.1.6) continue to preserve the appropriate relations between the first
coordinates of each coupled process and between the second coordinates of each
coupled process respectively. Therefore, this modified process (1, ;) in which

O € n, for all t > 0 satisfies the hypotheses of Harris” Theorem.

2.2 Characterizations of the Survival Phases

In this section, we study the model when PO(n, £ 0 V t) > 0. We begin by

asking whether or not weak survival can occur above the local survival threshold.
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Salzano and Schonmann [27] proved that weak survival does not occur for the
contact process on homogeneous graphs in the local survival phase. The properties
of the contact process that their proof uses are that it is translation invariant,
strong Markov, and attractive. Therefore, the probability of weak survival is zero
above the local survival threshold for any translation invariant, attractive, strong
Markov process on a homogeneous graph G taking values in {0,1}¢. In particular,

when P(nA #£Q V) >0,
P(nA #0 Y t) = P(O € n* for unbounded t), (2.2.1)

for any finite initial configuration A.

Here is the main idea behind their proof. Let X, be an attractive, strong Markov
process taking values in {0,1}%. They make the observation that local survival
is almost surely equivalent to the event that for every n € N there exists a finite
time T), such that the process contains a (fully occupied) ball of radius n centered
at the origin. Using this fact, they prove that P(O € XA for unbounded #) > 0,

implies that

lim P(O € XtB(O’n) for unbounded t) =1, (2.2.2)

n—oo

where B(O,n) denotes the ball of radius n centered at the origin. On the event
that the process survives, a ball of size n must become occupied somewhere. By
the strong Markov property, the process can be restarted at this random time.

Homogeneity of the graph and equation (2.2.2) imply that the probability of weak
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survival tends to zero as n tends to infinity. For a complete proof, see Salzano and
Schonmann [27] Theorem 2(i) .

Next we turn our attention to the supercritical uniform model. Here the process
converges in distribution to a measure that is a nontrivial convex combination of

0p and Ora. In fact,

PA(p, € ) — PA(n, 0V )opa+ PA(n, = () some 1)y, (2.2.3)

for all finite, connected configurations A. This behavior is known as complete
convergence. When PA(n, # 0 V t) = 0, it is immediate that complete con-
vergence holds. It turns out that survival together with complete convergence is
equivalent to supercriticality. In particular, complete convergence fails in the inter-
val (35(d), B4(d)). This equivalence has the interesting consequence that survival
together with complete convergence is a monotone increasing property of the pa-
rameter 3, a fact that is not apparent from the definition of complete convergence.

Salzano and Schonmann [27] also investigated the question of monotonicity of
the complete convergence property for the contact process on general graphs. They
determined that homogeneity of the graph, attractiveness of the process, and self
duality could be used to prove the desired result. The definition of supercritical-
ity for the uniform model is actually a modified version of the criterion given in
Theorem 2(b) of [27] for complete convergence of the contact process. Here, the
ideas used to prove Theorem 2(b) in [27] are adapted to prove the equivalence of

supercriticality and complete convergence for the uniform model.
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Lemma 2.2.1 If P(n® #0 Y t) >0, then complete convergence holds if and only
of

lim Tim inf P(O € /") = 1.

n—oo

In particular, if P(n® # 0V t) > 0 and complete convergence holds at 3%, then the

same is true for all 3> 3*.

Proof. First assume that P(n? # () V £) > 0 and that complete convergence holds.
Then lim,_. P(O € 772{3(0’”)) = P(n?(o’n) # () V t). This together with equations
(2.2.1) and (2.2.2) gives the if direction of the implication.

Assuming that lim,_ . liminf,__ P(O € nf(o’n)) = 1, it is immediate that

P(n0 # 0V t)>0. Given finite A C T, let T, = inf{t : B(O,n) CnA}. For s < 1,

P(Oen?)>POen|T,<s)P(T, <s)

> inf P(OenBOMP(T, <s),

t—s<u

where the final inequality follows from the strong Markov property and attractive-

ness. Therefore, for all s € R, and n € N,
liminf P(O € n) > liminf P(O € 7 @) P(T, < 5),
Recall the observation that was made in [27]:

lim lim P(7, <s) = P(O € n for unbounded 1).

n—od §—00
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This together with equation (2.2.1) implies that
li{nian(O en) =Pyt #0V ).

Since P(O € nf) < P(nA # 0V s < 1), it follows that limsup, ., P(O € nf) <

Pt # 0V t). Thus,
lm P(Oenl gt #£0V 1) =1

It follows that for all finite B C T? lim,_ ., P(B € n# | nA # 0 V t) = 1, which

completes the proof. =

2.3 Absence of a Weak Survival Phase

As a consequence of connectedness and attractiveness, it turns out that 3,(d) =
B5(d). Hence, the uniform model does not have an intermediate phase that is
characterized by weak survival. Combining this with the fact that weak survival
cannot happen above the local survival threshold, if the process survives, then it
survives locally.

Proof of Theorem 1.4.1a). It suffices to show that P(n® # () V ) > 0 implies that
P(O € 7© for unbounded ¢) > 0. Let BY = {z € T?: ||z — 2| < ||O —2||} UO
where z,,...,2,,, denote the d 4 1 nearest neighbors of the root 0. By rotational

symmetry,

PP A0 P2 A0V s)

P Ny2 #0) 2 d+1 - d+1
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Using the fact that the uniform model is an attractive spin system and that ¢, is

positively correlated,
P(B N 50 # 0.8 0 p0 £ 0) > P(B N £ OPBINnl £0) i #j

by Theorem 2.1.1. Since n€ is connected, P(O € 79) > P(B¢Nn? # @,B;lﬂn? £ 0).
Therefore, the assumption that P(n9 # 0 ¥V s) > 0 implies that P(O € n9) is
bounded away from zero. Hence, P(O € 9 for unbounded 5) > 0. =

Remark. A slight modification of this proof works for the double parameter uni-
form model. There connectedness of the single parameter model is replaced by

connectedness of G(n).

2.4 The Rooted Chain

In order to obtain actual estimates on the critical values, it will be convenient
to analyze the behavior of the uniform model on a single branch B? of T?. Recall
that B! = {z € T?: ||z — || < ||O — ||} UO where 2y,..., 2,4, denote the d 4 1
nearest neighbors of the root 0. Take B¢ = B¢ and consider the initial configuration
no = (T4\ B?) UO. By connectedness, i, 2 1, for all ¢t > 0. Therefore, it suffices
to keep track of the intersection with B¢, namely A, = 5, N B¢. First, note that
A, is a connected subset of B¢ since B¢ and 7, are both connected and there is
a unique path connecting any two vertices in BY. Also, O € A, for all t > 0

since O € ny. Furthermore, |A4,| is finite for all ¢ > 0, where |A| = |{z : = €
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A\ O}]. To see this consider the rate at which |A| — |A|+ 1. This is given by

pl{x € Ac:||x — A|| = 1}], where Ac =B\ A.

Proposition 2.4.1 For all finite, connected A C B¢ containing O,

o€ Ao |lx— Al = 1}] = (d — 1)|A| + 1. (2.4.1)

Proof. 1t |A| = 0, then A = {O} and |{z € Ac: ||]v — A|| = 1}| = 1. Assume that
(2.4.1) holds for all |[A] < n. Given |A| = n, choose € A such that A\ z is

connected and contains O. By induction,

Hy e (A\2)e:ly — Azl =1} = (d = )([A] = 1) + 1,

Adding x back into the set deletes one element from

lye(A\a):[ly — A\ | =1},

namely z, and adds the d neighbors of x to this set. Therefore,

{yeAs:fly—All =1} =l{y e (A\z)*: fly = ANzl =1} =1 + 4,

which proves the assertion. "

Let Y, be a pure birth process such that

n—mn+l at rate B(d—1)n+1).
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As a consequence of Proposition 2.4.1, we can couple A, and Y; such that
A <Y, for all £ > 0.

Let 7,, be the length of time that Y, spends in state n. Then 7, is exponential with

mean 1/8((d—1)n+1). Since

E (i Tn) = 00,
n=0
it follows that >>> 7, = co almost surely. Therefore, ¥, < co almost surely for
all £ > 0 and consequently, |A,| < oo almost surely for all ¢ > 0.

The Markov chain A, will be referred to as the rooted chain. As noted above, it
is irreducible with state space C; = {finite, connected A C B¢ containing O} and
rates

c(e,mUA) it B=AUzor B=A\uz,
0 otherwise,
for A, B € C;. Let m(A) = B4, where we have made the convention that the

cardinality of A is the number of vertices in A\ O. Since
m(A)g(A, AU{a}) = BT = 7(AU {a})g(AU{x}, A)

for all @ € B? such that ||@ — A|| = 1, the rooted chain is reversible with respect
to the measure 7(-). For A € Cy, say that x € Ais aleaf if + # O and |[{y € A :
|| — y]] = 1}| = 1. Denote the set of all vertices in A that are leaves by dA. The
connection between the behavior of the finite interacting particle system and the

the rooted chain is outlined in the next theorem.
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Theorem 2.4.2

a) If the rooted chain is positive recurrent, then the uniform model is subcritical,

i.e. EO(1) < 0.

b) If the rooted chain is transient, then uniform model is supercritical, i.e.

lim liminf PEO(O € y,) = 1.

n—oo  t{—oo

Proof. Let &, denote the product of d + 1 independent copies of the rooted chain
with initial state {O}. Paste together the d + 1 roots, one on top of the other, and
locate the roots at the origin of T4 By this correspondence, the product chain is
equal in distribution to a uniform model on T4 with death at O suppressed. Let
n¢ denote the uniform model on T? with initial state O. By attractiveness, we can

couple 9 and ¢, such that
0 Ce V0. (2.4.2)

=

Furthermore, for any initial configuration A containing O we can couple 74 and &,

such that
&L CSnr VO<t<R, (2.4.3)

where R = inf{t : O & nA} (see the final paragraph of Section 2.1).
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The positive recurrence of the rooted chain is equivalent to positive recurrence
of the product chain. This follows from the fact that the reversible measure for
the product chain is the product of d 4+ 1 copies of the reversible measure for

the rooted chain, which is certainly summable. Let 7, = 0. For ¢« > 1, set

Tr = inf{t > T,y : §& # {O}} and T; = inf{t > T/  : ¢ = {O}}. Thus
T, denotes the time at which the product chain makes its ith visit to {O}. Let
N =min{n : 99 = 0}. By the strong Markov property and containment (2.4.2),

N is geometric with parameter p = P(n(T)1 = (}). Therefore,

B0 (r) < E(Ty) — E (Zm - TH)) _E(NE(T),  (244)

=1
where the final equality is an application of Wald’s Lemma. Positive recurrence of
the product chain implies that E(7}) < co. Therefore, a) follows from (2.4.4).
Assume that the rooted chain is transient. As before, z; 2 =1,...,d+ 1 denote

the d + 1 nearest neighbors of the origin. Let
S=inf{s: & 2 {0, xy,..., x4} for all t > s}.

Since the rooted chain is transient, P(S < oo) = 1 and P(S < u) > 0 for all u > 0.

By containment (2.4.3),

P(O enfforallt > 0) = P(O e for all t < 5)
ZP(OenfforaHtgS|S§u)P(5§u)

:P(Oen;“foralltgu|S§u)P(5§u),
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for any initial configuration A containing O and u > 0. By the remarks in the final
paragraph of Section 2.1, (n;, ;) is also attractive and satisfies condition (2.1.3) of
Harris” Theorem. Since {O € nA for all t < u} and {5 < u} are increasing events

and 04 X 6 is positively correlated, it follows, by Corollary 2.1.2, that
P(Oen;“foralltgu|S§u)2P(O€n;“f0raHt§u).
Thus,
P(O € 77;4 forallt >0) > P(O € 77;4 for all t <wu)P(S < u). (2.4.5)
By bound (2.4.5) and Lemma 2.2.1, it suffices to show that

lim lim P(O € 772{3(0’”) forall t <wu)P(S <wu)=1

U—OO N—00

If the origin becomes vacant at some time ¢ < w, then there exists a time s < u

such that nBO») NB! = {O} for at least d indices. Since £=L is the number of

vertices in B(O,n) "B\ {0},

m_1

P(3s<uspBOM B = {0}) < (1 - k=

It follows that P(3 s < wu 3 pBOn)NB! = {O} for at least d indices) tends to zero

as n tends to infinity. Therefore,

lim P(O € nf(o’n) for all t <wu)P(S <wu)= P(S < u).

n—00 -

Letting u tend to infinity completes the proof. =
Remark. The positive recurrence of the rooted chain is in fact equivalent to finite

expected extinction time of the uniform model. In order to prove this, one would
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construct the shape chain for the uniform model, a Markov chain on the finite
subsets of T?¢ where isomorphic sets are identified and that has a transition from
the empty set to the singleton at rate 3 (see Section 4.2 for the details of the
construction). The following string of equivalences proves the assertion: positive
recurrence of the rooted chain is equivalent to positive recurrence of the product
chain, which is equivalent to positive recurrence of the shape chain, which is equiv-
alent to finite expected extinction time. The only statement that needs proof is
the equivalence of positive recurrence of the product chain and the shape chain.
Given the construction of the shape chain, verifying that the reversible measure of
the shape chain is summable if and only if the reversible measure of the product
chain is summable proves the assertion.

By Theorem 2.4.2, the behavior of the uniform model is determined except
for the values of g for which rooted chain is null recurrent. A priori, one might
be inclined to think that null recurrence can only happen for at most one value
of the parameter 3. For instance, translation invariant random walks on Z with
finite mean step size are null recurrent if and only if the mean step size is zero.
Additionally, one might be tempted to think that there are general theorems that
have been, or can be, proved in this regard. The next example is designed to show

that some chains do in fact exhibit an entire interval of null recurrent behavior.
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Example. Consider a collection of birth and death chains indexed by a parameter

A. The rates are given by
Ok k+1)=Xb(k)  and  q(k,k—1)=d(k) for k €N.

Here, both b and d are positive functions with domain N, except that d(0) = 0.

This chain is positive recurrent if and only if

=)

> 11

: A< o0,
k=1 57=0 d(] —I_ 1)

and this chain is transient if and only if

o 1
Z (k) Hk—l b(]) )\k-|—1 <0

k=10 7=0 d(j+1)

Therefore, null recurrence is equivalent to both series diverging. A sufficient con-

dition for both series to diverge is that

1 1
<A<

. k— b(7 1/k . . k— b(7 1/’“'
lim sup,_ (H],:é d(j(-]|—)1)) liminf, (b(k) H],:é d(j(-Jl—)l))

Therefore, in order to produce an interval of null recurrent behavior it suffices to
choose b and d such that that the liminf and the limsup are different. Take 6 = 1.

Fix 0 < 6 < « and set
0 if k=0,
d(k) = ak=1/6k if k> 2 and k is even

Y

ok=1/ak if k is odd.

So, for A € (4, «), this chain is null recurrent.
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This example raises a question as to when such intervals can be ruled out.
The natural context in which to ask this question seems to be attractive Markov
chains on partially ordered spaces for which the one step transitions are between
comparable states, the context of Harris” Theorem. In this setting, all of the
rates for increasing transition can be scaled by a parameter so that the model
is stochastically increasing in this parameter. The issue is to determine under
what conditions on the state space and the rates does null recurrent behavior
happen for at most one of value of the parameter. The forthcoming analysis for
the rooted chain will demonstrate that even for specific examples this question can

be challenging.

2.5 The Finite Expected Extinction Time Threshold

By Theorem 2.4.2 and the remark following its proof, the positive recurrence
threshold for the rooted chain agrees with f;(d). In this section, we compute
the positive recurrence threshold for the rooted chain and thereby compute 3,(d).
In fact, two proofs of Theorem 1.4.1b) are given. The first takes advantage of
generating function arguments, while the second is combinatorial in nature.

Proof of Theorem 1.4.1b). It suffices to show that the rooted chain is positive

d—1

d—1
y ) . Since the rooted chain is reversible with

. . 1
recurrent if and only if 8 < - (

respect to the measure w(-), positive recurrence is equivalent to the summability
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of the series

C(p) = idn)ﬁ”, (2.5.1)

where ¢(n) is the number of A € C; such that |A| = n. The unique set of cardinality

zero is {O} so that ¢y = 1. For n > 1, the following recursion holds:

cn)= > clky)...clky), (2.5.2)

where the sum is taken over all d-tuples in N* such that &y +---+k; = n—1. To see
this, note that n > 1 implies that =, the nearest neighbor of the root O, is in the
set; otherwise, the set would be disconnected from O. Given that both O and =z,
are in the set, there are n—1 additional vertices in the set. Regarding x; as the root
of d distinct copies of B, choose (ky,...,k;) in N? such that Zle k;=n—1 and
place k; 4+ 1 vertices (including @) on the ith copy of B?. The number of distinct
arrangements of k; + 1 vertices on B is ¢(k;), which proves recursion (2.5.2).
Multiplying recursion (2.5.2) by "' and taking the sum from n = 1 to oo

gives
e O (25.3)

Let p(y,3) = Byt —y + 1. If C(B) < oo, then p(C(f), ) = 0. For each g > 0,

p(-,3) is a strictly convex function on R+ with a unique minimum at (3d)*—.
There exists a y € R+ such that p(y,3) = 0 if and only if p((8d)'—4,5) < 0.
Furthermore, p((8d)'=4,3) < 0if and only if § < % (djTl)d_l, establishing the only

if part.
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Multiplying recursion (2.5.2) by 7! and taking the sum from n = 1 to NV
gives

Cn(8) -1
p

where C'y (/) denotes the partial sum to the Nth term of the series (2.5.1). Assume

< [Cx ()], (2.5.4)

that 4 < % (djTl)d_l and let y, () < y,(3) denote the two positive roots of p(-, 3).

By inequality (2.5.4), p(Cn(8), 8) > 0. Therefore, Cx(5) € (0,51(5)) U (y2(5), o0).
At 5 = é(djTl)d_l, Yo(8) > 1. As 3 decreases to 0, y,(f) increases to infinity,
while Cny(/3) tends to 1. Hence, the statement that Cn () € (y5(3), 00) for some

B < é(djTl)d_l contradicts the continuity of Cy(3) in 5. Therefore, Cn () €

(0,y:(8)) for all g < é(djTl)d_l and for all N € N. Let N tend to infinity to

obtain C(f) <y (f) <oco. =

It is well known in the Combinatorics literature that, in case d = 2, the unique

solution to recursion (2.5.2) is the Catalan numbers, i.e.

cln) = - i 1 (27:‘) (2.5.5)

Solving (2.5.3) for C'(/3), gives

1 - JT—1473
c(p= L
B
We choose the root with the negative sign since limg_, C(3) = 1. Computing the
power series for C'(/3) centered at zero shows that ¢(n) is in fact the nth Catalan

number. By Stirling’s formula,

4n

27n

e(n) ~

3/2
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which gives an alternate proof of summability up to and including 1/4 in case
d = 2. Here, ~ means that the ratio tends to one.

The technique used to compute ¢(n) in case d = 2 becomes complicated and
eventually breaks down. At d = 5, the Galois group is the entire symmetric group
and therefore the roots are no longer computable by radicals. Therefore, one does
not obtain an explicit expression for C'(3) from recursion (2.5.2). However, a simple
combinatorial argument can be used to compute ¢(n) for all d > 2. Consider the

correspondence
{AelC;:|Al=n} = {A€l;:|A|=dn+1and |0A|=(d —1)n + 1}

that is given by mapping a set A of size n to the set B of size dn 4+ 1 obtained by
adding all vertices within distance one of A. The number of A € C,; of cardinality
dn + 1 with (d — 1)n + 1 leaves is known to be (**)/((d — 1)n +1): see Lemma
2.5.1 below. Therefore,

e(n) = m (i") (2.5.6)

Again, an application of Stirling provides the desired summability. Verifying that

(2.5.6) satisfies recursion (2.5.2) directly is not easy.

Lemma 2.5.1 Let Cy(n,l) = {A : |A| = n and |0A] = (} and let ¢(n, () =

|Cq(n, 0)]. Forn €N,

cldn+1,(d=1)n+1) = m(ds)
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Proof. The first step in the proof is to show that there is a one-to-one correspon-
dence between A € Cy(dn+1,(d—1)n+1) and (dn + 1)-tuples with n entries that
are d and (d — 1)n + 1 entries that are zero such that Zle y; > kfor 1 <k <dn.
Therefore, in order to prove the assertion, it will suffice to count the number of
(dn + 1)-tuples with these properties. This is the second step in the proof.

In order to prove the one-to-one correspondence, we first need to fix an ordering
of the vertices of B¢. Associate to each @ € B? a level {(x) that is given by ||z —O]|.
Say that y is a child of & (or equivalently that « is the parent of y) if {(y) = {(x)+1
and ||y — || = 1. Without loss of generality, fix an ordering of the children of each
vertex. This induces a total ordering on the vertices of B¢ that is given by = < y

if one of the following holds:

1) () < L(y);
2) {(x) ={(y), v and y are children of a common vertex z, and x < y; or

3) {(x) = {(y) and the level of the parent of x is less than the level of the parent

of y.

For m > 1 and A € Cy(m) = {A €C;: [A| = m}, let {z;}7 be the vertices in
A\ O ordered so that ; <z, fori=1,...,m—1. Forz € A, let¢(z) ={y € A:

y is a child of x} be the children of x that are in A and let y; = |&(x;)|. Associate
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to A the m-tuple,
O(A) = (Y1) vy Ypm)-

In particular, A € C;(m) can be mapped into N™. First note that )7 y; is the
number of edges in A\ O, which is m —1. A less obvious fact about this m-tuple is
that Y% y; >k for 1 <k < m—1. To see this, let A, = {0, 2, } U{UE_ &(x,)} and
note that A, € C; is a subset of A. If Zle y; = m — 1, then the assertion clearly
holds. Otherwise, there exists ¢ > k such that y;, > 0, A is strictly contained
in A, and more vertices must be added to A, in order to obtain A. There are
at most 1 + Zle y; — k possible vertices to which these children may be added.
This follows from the observation that 1 + Zle y,; 1s the total number of vertices
in A, \ O and no more children of the vertices {z{,...,z,} can be added to the
set. Therefore, 1 + Zle y; — k > 1 as desired. If in addition m = dn 4 1 for
some n € N and |0A| = (d — 1)n + 1, then y; = 0 for exactly (d — 1)n + 1 indices.
Since Y 7'#'y, = dn and y; < d, it must be the case that the remaining n indices
satisfy y; = d. Therefore, ®(A) is a (dn + 1)-tuple with n entries that are d and
(d — 1)n + 1 entries that are zero such that Zle y, >k for 1 < k <dn.

Let (y1,- ., Ygnp1) be a (dn+1)-tuple with n entries that are d and (d—1)n+1

entries that are zero such that
k
dy; >k forall 1<k<dn. (2.5.7)
7=1

We will construct a subtree A € Cy(dn + 1,(d — 1)n + 1) from this (dn + 1)-tuple

by constructing a sequence of subsets of vertices {O,}. The set O, will be called
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the open vertices at step k. The construction begins by setting Oy = {z}, where
x, denotes the nearest neighbor of the root. For k > 1,if O,_; # (), then construct
Oy, from O;_; by deleting the smallest element and adding the y, children of the
smallest element of O, _;. Since y, = 0 or d, it is not ambiguous which y; children
to add. In particular, |O| = |O,_1|+ (y,—1). Iterating this relation and using the
fact that |Oy| = 1, gives |O,| = 1"'2?:1 (yj — 1). Assumption (2.5.7) implies that
|O| > 1 for all 0 < k < dn. The fact that Z?S"l y; = dn implies that |Oy, | = 0.

Set
\I}(ylv sy ydn-l—l) = O U{Uii-glOk}

To see that W(yy,...,¥4ut1) € Cy, let Ay = OU{UL_ O;}. In particular, Ay, =
U(yy,.. o, Yguqr)- It is immediate that Ay € C;. Since A,y is A, together with
the y,,, children of the smallest element of O, and since O, C A, it follows
by induction that Ay, € C;. In order to verify that |A,, .| = dn + 1, observe
that |Ay| = 1 and that |A, | = |A;| + ysy,. Iterating this equation gives the
result. After ordering the vertices of U(yy,...,¥yg.41), the construction implies
that |é(z;)| = y;. Therefore, |0A,, 1| = (d—1)n+1 and ® is ¥ inverse.

We have shown that there is a one-to-one correspondence between (dn + 1)-
tuples with n entries that are d and (d — 1)n + 1 entries that are zero such that
Zle y; > kfor 1 <k <dnand AcCydn+1,(d—1)n +1). Therefore, in order
to prove the assertion, it suffices to count the number of (dn + 1)-tuples with these

properties. This is accomplished by showing first that for any (dn+1)-tuple with n
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entries that are d and (d—1)n+ 1 entries that are zero there exists a unique cyclic
permutation of this (dn+1)-tuple that satisfies assumption (2.5.7). Given this, the
number of (dn + 1)-tuples with n entries that are d and (d — 1)n 4 1 entries that

are zero is ( . Given any such (dn + 1)-tuple, there are exactly dn + 1 distinct

dn:l)
cyclic permutations of this (dn + 1)-tuple; otherwise, two distinct permutations
satisfy assumption (2.5.7). Therefore, the number of (dn + 1)-tuples with n entries
that are d and (d — 1)n + 1 entries that are zero that satisfy assumption (2.5.7) is
(41)(dn + 1),

In order to show that this cyclic permutation exists, fix a (dn + 1)-tuple with n
entries that are d and (d—1)n+1 entries that are zero and assume that assumption

(2.5.7) does not hold. Let k; be the minimum k such that Zle y;, < k. Ik, <dn+

1, then proceed by letting k,,; be the minimum & > %, such that Zf < k—k;.

=k;+1 y]
Repeat this procedure until no such & exists. This determines a finite collection

of indices {ky,...,k,}. Cyclically permute the (dn + 1)-tuple so that y, ., is the

first entry:

(ykm-l—h o '7ydn-|—17y17 .. '7ykm)'

Since Zf >k —k; for k; +1 < k < k;yy, it follows that Zf:kl,-l—l Yy, =

=k;+1 y]
ki1 — k; — 1. Therefore, Z?Zl y; = k,, —m. Using the fact that Zf:i"l y; = dn,
Z;li}';l 1Yy = dn — k, + m. Thus, assumption (2.5.7) holds for the reordered

(dn+1)-tuple. In particular, there is at least one cyclic permutation of this (dn+1)-

tuple that satisfies assumption (2.5.7).
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We now proceed to show that there is exactly one such permutation. Fix
(Y1, -+ Yanqr) With n entries that are d and (d — 1)n + 1 entries that are zero.

Without loss of generality, assumption (2.5.7) holds. Consider

(ym—|—17"'7ydn-|—17y17"'7ym) 1§m§dn

By assumption, 3°  y; > m. Since Zf;"l y; = dn, it follows that

dn+1
Z Yi S dn — m,

i=m+1
which is strictly less than the number of terms that appear in that summation.

Consequently, assumption (2.5.7) does not hold for this permutation. =

2.6 The Complete Convergence Threshold: An Easy Bound

Since 3,(d) is explicitly known, this gives a lower bound on the other critical
values. Our attention now turns to obtaining upper bounds. If the total birth rate
at a leaf is greater than the death rate, the boundary of the occupied set should
have a net drift outward. Furthermore, it seems reasonable to expect this drift out
at the boundary to force the occupied set to expand in all directions resulting in
total occupation of the tree. We formalize this intuition and obtain an easy upper

bound on S4(d).

Theorem 2.6.1 Ford > 2, 3,(d) < 1/d.
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Proof. By Theorem 2.4.2, it suffices to show that the rooted chain is transient
for B > L. Modify the rates ¢(A, B) by suppressing all births at neighbors of
nonleaves. To be precise, let £, = {A € C; : A has exactly one leaf} U{O} and for
A, B € C; define

q(A,B) if A,Be L,

0 otherwise.

Let L, denote the Markov chain with state space L£; and rates {¢(A, B)}. If

AL e Ly, Ayely Ay C Ay, x € Ay, and y ¢ A,, then
QN(A17A1\$) Zq(AbAz\l') and QN(ADAIU?/) SQ(AzaAzuy)-

Therefore, we can couple L, and A, such that L, C A, for all ¢ > 0. Consequently,
if L, is transient, then so is A,. Since |L;| is a birth and death chain with birth
rate df and death rate one, L, is transient for 5 > 1/d. =

The positive recurrence and easy transience bounds of Theorems 1.4.1a) and

2.6.1 respectively are the analogs of the lower and upper bounds

given by Liggett [18] for the two parameter uniform model. To see this, multiply
by ~ and let v decrease to zero. The technique used here to compute the positive
recurrence threshold is almost the same as that used by Liggett to compute the
lower bound for the double parameter uniform model. However, Liggett used a

more sophisticated technique to obtain the upper bound that involved the Dirichlet
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principle and a notion that he called monotonicity. Essentially, he used these tools
to restrict attention to the evolution of an embedded line process. Unfortunately,
the simple coupling argument given here does not extend to the double parameter

model.

2.7 The Complete Convergence Threshold: Improved Bounds via Flows

For reversible Markov chains, there is a very nice characterization of transience
in terms of flows. A flow is a collection of real numbers corresponding to ordered
pairs of states of the chain. It turns out that the existence of a flow with certain
properties is equivalent to transience [23]. Therefore, in order to prove that 3 is in
the supercritical phase, it suffices to exhibit a flow for the rooted chain with the
desired properties.

The purpose of this section is to outline a method for constructing flows for the
rooted chain that have these special properties. We begin with the definition of
an antisymmetric, incompressible flow. Then, a method for constructing an entire
class of such flows is described. Finally, the condition for transience in terms of
flows is given. Thus the problem of transience is reduced to exploring particular

instances of the construction and determining for which values 3 this condition

holds.
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Definition 2.7.1 Given a Markov chain with state space S, an anti-symmetric,
incompressible flow on S is a collection of real numbers, or weights, {w(x,y)}

indexed by S x S that satisfy the following properties:
i) (Anti-Symmetry) For all v,y € S, w(x,y) = —w(y, x);

ii) (Fxistence of a Source) There exists a xy € S

Zw(:z;o,y) # 0; (2.7.1)

yeS

iii) (Incompressibility) For x € S\ x,

> w(z,y) =0. (2.7.2)

yeS

For the rooted chain, the following construction leads to a class of flows on C;

that satisfy i) ii), and iii) above. Given a collection of weights {w(A, B)}, let

FA) = S w(B,A)  for A {0} (2.7.3)

(BIBCA)}

be the net flow into A (from below). Given A € Cy, denote the neighbors of A that
contain A by N;(A). For A € C,, say that r(A,-) is a routing vector if the support
of r(A,-) is contained in Ny(A) and Yip.gen,a) (A, B) = 1. Note that r(A,)
is not required to be nonnegative. Given a collection of routing vectors, construct

the flow recursively:

1) Set f({O}) = 1.
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2) If f(A) is defined for all |A| < n, for each B such that |B| = n set
w(A, B) = f(A)r(A, B) (2.7.4)

for all A such that |A| < n, where it is understood that f(A)r(A,B) =0
when |A| = |B| = n. Using equation (2.7.4), f(B) is now defined by equation
(2.7.3) for each B such that |B| = n. Thus, 2) may be repeated for all

|IBl=n+1, |A| <n+1.
3) For A, B € C,; such that |A| > |B|, set w(A, B) = —w(B, A).

Denote the collection {w(A, B)} by F. Property 3) guarantees that F' satisfies
the anti-symmetry condition. By construction, 3~ 4, w({O}, A) = w({0},{0,x,}) =
1 so that F' has a source. Take B # {O} and combine equations (2.7.3) and (2.7.4)

to obtain

> w(C.B)=f(B)

{CeCq4:CCB}

:f(B) Z T(BvA)

AeN4(B)

= Y  w(B,A). (2.7.5)

AEN4(B)

Since w(B, A) = 0 for all A such that A & NV;(B) and B € N;(A), equation (2.7.5)

proves incompressibility. This proves the next proposition.

Proposition 2.7.2 Specifying a collection of routing vectors determines an anti-

symmetric, incompressible flow.
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Theorem 2.7.3 (Lyons). Given a continuous time irreducible, reversible Markov
chain X, with state space S, transition rates q(x,y), and reversible measure 7, tran-

sience of X, is equivalent to the existence of an anti-symmetric, incompressible flow

{w(z,y)} on S such that

wie,y)
%;Siw(x)q(x,yf , (2.7.6)

where, by convention, 0/0 =0 and a/0 = oo when a > 0.

The series given in condition (2.7.6) is known as the kinetic energy series, or
simply the energy series. Thus, if condition 2.7.6 holds, the flow is said to have
finite energy. We denote the energy by K(F). The existence of such a flow is
equivalent to the existence of a nonconstant bounded function on the state space
of the Markov chain that is harmonic, except at a single state x, where it attains
its minimum value. The existence of such a function is a well known criterion
for transience. The connections between these ideas will be more fully developed
in Section 4.1. For now, we investigate some applications of this theorem to the

rooted chain.

2.8 The Uniformly Routed Flow

With the general method of constructing flows on C; outlined in Section 2.7,

we attempt to a construct a flow that proves the transience of the rooted chain

60



for 3 > (d —1)4=1/d?*. Using the fact that 7(A)q(A, B) = pmax(ALIBD | the kinetic

energy series is

/C(F)zzg(%)m S Y w(AB)

A€EC4(n) BEN (A)

Recall that Cy(n) = {A € C; : |A| = n}. Since 8 appears in the denominator, it is

natural to try to maximize the radius of convergence by minimizing the coefficients.

As a first attempt, fix A € Cy(n) and

minimize Y w?(4,B) subject to f(A)= > w(A B).

BeNy(4) BeN(A)

The solution to this minimization problem is to set

fA)
Na(A)]

w(A, B) =

By Proposition 2.4.1, N;(A)| = (d — 1)|A| + 1 so that

1

r(4,B) = d—1)A] 1

V B e Ny(A).

(2.8.1)

In this case, the routing vectors are nonnegative. Let h(n) = ¥ 4cc () fH(A). I

r(A, B) is defined by equation (2.8.1), then

o h(n)

MO =2 2 o= n+ 1)

By Theorems 2.7.3 and 2.4.2,

B4(d) < limsup h(n)l/n_

n—oo

(2.8.2)

Theorem 1.4.1c) will be a consequence of obtaining bounds on the limiting behavior

of the sequence h(n)'/m.
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The first thing to note is that f can be computed exactly (see the next lemma).
However, we will not be able to compute h explicitly. Instead, using the expression
for f, h is expressed as a ratio. The goal is to prove that the sequence h(n) is
bounded above and below by sequences for which the associated power series have
the same radius of convergence. Therefore, determining the radius of convergence
of K(F) will be equivalent to determining the radius of convergence for a power
series with coefficients equal to either the upper or lower bound. The bounds are
chosen so that the numerators agree with the numerators of h(n). The reason
for choosing the bounds this way is to exploit the fact that the numerators of
h(n) satisfy a nice recursion. By choosing the denominator of the lower bound
appropriately, the numerator recursion will guarantee that the lower bound satisfies
a related recursion. The fact that the lower bound satisfies this related recursion
allows one to obtain bounds on the radius of convergence of the power series with
coefficients that agree with the lower bound.

We begin by finding an explicit expression for f. Then a combinatorial lemma
is presented. As a consequence of this lemma, the numerator recursion for the
sequence h(n) is obtained. Next, the sequences that bound h(n) are introduced.
Finally, bounds on the radius of convergence of the power series with coefficients
that agree with the lower bound are obtained for d > 2. This bound is an im-

provement over the easy transience bound of 1/d if and only if d > 4.
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Definition 2.8.1 An increasing path from {O} to A inC, is a collection {Bz'}lﬂo of
sets in Cy such that By = {O}, By = A, and By € Ny(B;) fori=0,...,[A|-1.

Let N(A) be the number of paths that increase from {O} to A.

Lemma 2.8.2 [fr(A, B) is defined by equation (2.8.1), then for A such that |A| =

n>1

N(4)
TS ((d =Dk +1)°

f(A) =

Proof. 1f |A| =1, then A = {O,z,}. Since r({0},{0,2,}) = 1, equation (2.7.3)
gives f({O,x,}) = 1 as desired. Assume that the assertion holds for |A| < n. If

|A| = n, then, by equations (2.7.3) and (2.7.4),

(A= > wBA)= > [(B)r(B, A)

{B:BCA} {B:BCA}
_ Z N(B) 1
N (B:AEN4(B)} 2 ((d—1k+1)(d=1)(n—-1)+1
1
= N(B
[ ((d =1k +1) {B:AEZNCJ(B)} W
N(A)

I EDIED)

Lemma 2.8.3 Forn > 1, there exists a one-to-one correspondence between Cy(n)

and the disjoint union U, - \Cq(j1) ¥ === X C4(jq), where the union runs over all
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d-tuples in N* with j, + -+ j; = n — 1, such that under this correspondence

N(A) = (|A1||fl‘|: TAdI) N(A;)...N(Ay). (2.8.3)

Proof. Let {y,,...,y,} denote the d nearest neighbors of z, in B?. Set Bf. = {y :

Ny —yll <lley —yll} Uy and A; = ANBY,. Since B¢, = B for 1 <1 < d,
A= (A, Ay

Equation (2.8.3) is an immediate consequence of this correspondence. =
Squaring equation (2.8.3) gives

N2(A) = (|A1||fl‘|: TM) NZ%(A))...N*(Ay) (2.8.4)

for A € C, such that [A| > 1. For n € N, let N, = 3~ 4c¢,n) N*(A). Summing
(2.8.4) over all ordered d-tuples (Ay,..., Ay) € Cy X -+ x Cq such that |A;|+---+

|Ayl =n —1 gives

~1 \?
N, = Z ( n . ) N;, ... N;, forn>1, (2.8.5)
; Jis---5Jd

where the sum runs over all d-tuples in N¢ with 5, +---4 3, = n— 1. By definition

of h(n), Lemma 2.8.2, and definition of N,,

N,
") = T k)

If we could solve recursion (2.8.5), then we would be able to compute h(n) exactly.

We pursue an alternate strategy and use recursion (2.8.5) to obtain information
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about the asymptotic behavior of h(n). For n > 1,

(d=1" -1 <J]((d=1)k+1) <(d—1)"nl

N, N,
ln) = (A= 1)t and u(n) = (= D) — 1)
Then
ln) < h(n) <u(n) forallneN. (2.8.6)

Furthermore, for n > 1, u(n) = (d — 1)?n%{(n) so that

lim sup ((n)"/" = lim sup u(n)"/". (2.8.7)

n—oo n—oo

Combining inequality (2.8.6) and equation (2.8.7) proves the next proposition.

Proposition 2.8.4 limsup,_ . ~(n)/» =limsup,_ . {(n)t/".

Proposition 2.8.5 Forn > 1,

) = s X M)+ ), (289

(J15--1dd)

where the sum runs over all d-tuples in N¢ with jy + -+ j;=n — 1.

Proof. Divide recursion (2.8.5) by (d — 1)?*n!2. =
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Finally, solving recursion (2.8.8) is equivalent to solving a modified recursion.

Suppose that Z(O) =1 and for n > 1, Z(n) satisfies

fny=— X ) 1G), (289

where the sum runs over all d-tuples in N4 with j; +--- 4+ j5;, = n — 1. Then
((n) = {(n)/(d — 1)? satisfies recursion (2.8.8). Therefore, obtaining bounds on

the solution of recursion (2.8.9) gives bounds on the solution of recursion (2.8.8).

Theorem 2.8.6 Forn > 1,

Proof of Theorem 1.4.1¢). By Theorem 2.8.6, the relationship between solutions
of recursions (2.8.8) and (2.8.9), Proposition 2.8.4, and inequality (2.8.2), #,(d) <
d/(2(d—1)?). =

Theorem 2.8.6 is proved by induction. In order to execute the induction step,
the following lemma is needed. This lemma is a special case of a well known

expansion of the binomial coefficient (HZ_I) with & = 2.

Lemma 2.8.7 For any positive integer n,

n2]‘

1
2 X =0+, (2.8.10)
]:

* el (n,j5) T Vi
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where I'(n, j) is the set of all ordered partitions of n of into j parts and ~; is the

tth element in the partition ~.

Proof. Writing —log(1 — x) as a power series centered at zero gives

" for x| < 1.

n=j WEF(n,j) il 7

(~log(1 - 2)) = (i ;) -y v

k=1

Let k € N be such that k£ > 1. For |z| < 1,

i(k+n_1)x”:<1—lx>k‘l

n=1 n

g=1 j!
RIS .
Pl n=j v€l(n,j) 11"V

Taking k£ = 2 completes the proof. =
Proof of Theorem 2.8.6. By recursion (2.8.9), 17(1) = 1 which verifies the assertion

for n = 1. Assume that the assertion holds for m < n. We have

. 1 . .
)= 3l imy)
(m1 ..... md)
1min(d,n—1) d N N
L () 3 it
n J=1 J ~€el(n—1,5)
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since Z(ml) = 1 when m; = 0. By assumption,

~ 1 min(d,n—1) d d n—1—j 1
e E ) )
~eT

n j=1 J (n—1,5) T

1 min(d,n—1) di /d n—1—j 1
<= > (5) >

n =t J ~el(n—1,j) 117" 7;

1 (d) n—1 min(d,n—1) 94 Z 1

n? \2 Jj=1 J ~€el(n—1,5) N 7

1 (d\" "=t 9 1
< (—) >

n* \2 j=1 J* qer(n-1,4) 117" 7;

By Lemma 2.8.7,
. 1 /d\""
l(n) < - (5) ) "

A simple computation provides evidence that for large d the bound given in
Theorem 1.4.1c) is close to the best that this flow achieves. Thus, not so much is
lost in the inequality in Theorem 2.8.6. Let A, be the discrete time Markov chain
on Cy with transition probabilities defined by (2.8.1) and let ¢, be the number of

leaves in the set A,. By conditioning on ¢, _,, one gets a recursion that leads to

(d—1)n+1

E(l) = 577 n >

In other words, the typical set that the uniform flow visits has a death rate that
is roughly the birth rate divided by (2d — 1)3. In d = 2, these sets are not only

typical, but rather uniform flow visits them with very high probability:

1) (5n + 7
IE(KQ):(TH_ RG0S
n 15

and therefore,

— — for d = 2.
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For small d the bound given in Theorem 1.4.1¢) is much worse than 1/(2d — 1).
However, by handling the cases d = 2 and d = 3 separately, the bound induced
on {(n) by Theorem 2.8.6 can be improved to 14(n + 1)(1/3)"+2 and (1/5)"—1
respectively. We conjecture that 1/(2d — 1) is the optimal bound for this flow.

Numerical evidence suggests that one cannot hope for much better.

2.9 The Uniformly Distributed Flow

In the previous section, the main goal became to determine the asymptotic

behavior of h(n). This resulted from the fact that

1

>, r(AB)= ma

BeN4(A)
and therefore, the presence of this factor did not affect the radius of convergence

of K(F'). If we require the routing vectors to be absolutely bounded by b, then

1
CETEE e

BeNy(A)

(A, B) < B((d — 1)n +1). (2:9.1)

Thus, under the assumption that routing vector are bounded, the asymptotic be-
havior of h(n) governs the radius of convergence of K(F).

As a consequence of the construction, 3 4cc, iy f(A) = 1. Hence, we seek
to minimize a quadratic function subject to a linear constraint. If this linear
constraint were the only constraint, then the solution would be to partition 1

into equal parts, i.e. distribute the fluid uniformly over sets of size n. However, we
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require the flow to be incompressible which introduces many additional constraints.
Notice that if a flow exists with bounded routing vectors such that f(A) = 1/¢(]A]),

then by inequality (2.9.1),

%i _1"+1 (2.9.2)

This series is summable for 3 > % (51771) ! since, except for the factor of (d—1)n+1,
each term is the exact reciprocal of the terms appearing in series (2.5.1). Due the
these observations, we attempt to construct a uniformly distributed flow with
bounded routing vectors.

Suppose that one has constructed routing vectors bounded by & such that
f(A) = 1/e(|A]) for all A € Cy such that |A| < n. Exploit the fact that Cy(n)
is in one-to-one correspondence with Uy, 1 Cq(ky) X -+ X Cy(ky) where the union
runs over all d-tuples in N¢ such that &y +- - -+ %k; = n—1 and use the routing vectors
{r(A,-)}4j<n to construct the routing vectors for C;(n). More specifically, associate
to each set a preliminary routing vector a( A, ) that determines the amount of fluid
routed to branch ¢ in set A. In particular, let a(A, ) be such that Zle a(A, ) =

Again, a(A, 1) is not required to be nonnegative. If A corresponds to (A4,..., Ay),

B corresponds to (By,...,B,;), B € N,(A), and A; # B;, then let

r(A, B) = a(A,i)r(A;, B;).

70



Since

it follows that r(A, ) is a routing vector. Furthermore, if |a(A, )| < 1, then r(A, B)
is bounded by b. Therefore, in order to specify a collection of bounded routing
vectors, it suffices to specify a collection oA, ) of preliminary routing vectors that
are absolutely bounded by one.

A priori, one might expect a(A,-) to depend on the entire structure of A.
However, it is reasonable to expect dependence only on the cardinalities of A; for
1 <35 < d. One explanation for this is that the distribution that we are trying
to achieve depends only on cardinality. A more practical reason for making this
assumption is that it simplifies the set of equations that a(A,-) must satisfy by
allowing a second application of the induction hypothesis. For & € N¢ such that
ky 4+ -+ kg =n—1,let {a;(n;k)}L, be a preliminary routing vector in a set A

when |A] = n and |A;| = k; for 1 < j <d. Thus, the function o;(n; k) must satisfy
ar(nyk)+ -+ ag(n k) =1 and la; (s k)| < 1, (2.9.3)

for all n > 1 and k£ € N7 such that &y +---+ k; = n — 1. Also, require that for
all permutations o of d objects a,(;)(n; o(k)) = a;(n; k) where o acts on a d-vector

in the usual manner by permuting the indices. This condition simply states that
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the preliminary routing vectors are invariant under automorphisms of B?. For all

A€ Cy(n)and B € Ny(A), set
r(A, B) = a;(n; k)r(4;, By) it A; # B, (2.9.4)

where |A| =n and |A;| = k; for all 1 < j < d. The goal is to choose a;(n;-) such
that the flow is distributed uniformly over sets of size n + 1.

For B € C4(n + 1), set k; = |B;|. Make the convention that ¢(—1) = 0. Since
c(0) =1, f({O}) =1/¢(0) by definition. Proceeding inductively, the net flow into

B is given by

fBy= > [f(Ar(AB)

{A:BeN (A)}

1 A
ST T ket
=1 {Ai:BiENd(Ai)}
1 d
c(n) = {AssBiEN(A:)}
J R c(k; = 1)
= a;(ny k —e) ————, 2.9.5
") ; i ) ] (2.9.5)

where ¢; is the d-vector with all entries equal 0 except the :th which is 1.

Lemma 2.9.1 [f, for each n > 1, there exists o;(n;-) satisfying (2.9.3) and

(2.9.6)

for all k € N* such that ky + -+ kg = n, then B4(d) = B,(d).
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Proof. Set r({0},{0,x,}) = 1. For |A| > 1, define r(A, ) recursively by equation
(2.9.4). By induction, |r(A,-)| < 1. By equation (2.9.3), r(A,-) makes up a
collection of routing vectors. By equations (2.9.5) and (2.9.6), f(A) = 1/¢(|A|)
for all A € C;. Therefore, inequality (2.9.2) implies finite kinetic energy for 5 >
%(djTl)d_l. By Theorems 2.4.2 and 2.7.3, 34(d) < é(djTl)d_l. Combining this
with Theorem 1.4.1b) and the fact that 3,(d) < 3,(d) completes the proof. =
Restrict attention to the case d = 2. Set p(y) = ¢(j)/c(j + 1). By the as-
sumption that «;(n;-) is invariant under automorphisms of B?, it suffices to define

ay(n; k) for all n > 1 and for all k£ € N2 such that &y +ky, =n—1. If, for all n > 1,

a;(n;+) is a solution of
L=oi(n;(jin =1 =J)) +az(n;(in —1=7))  Jou(ns (Jin =1 —=7))[ <1
p(n) = ai(n; (n —1,0))p(n — 1), (2.9.7)
p(n) = ai(n;(j — Lin—j))p(j —1) + as(n; (J;n —j —1))p(n —j — 1)

where 0 < j < n—1, then Lemma 2.9.1 implies that 3,(2) = 3,(2). By substituting
L—ay(n;(j,n—1—7)) for ay(n; (j,n—j—1)) in the final equation, solving equations

(2.9.7) is equivalent to solving

a(n;(jn—1—74))>0 for0<j<n-1,

. _pn)
ar(ni(n = 1,0)) = — s (2.9.8)
p(n) —pn—j = 1)+ ay(n; (jyn— 1= j))p(n — 1 —j)

al(n;(j_lvn_j)): p(]—l) )

forl<j<n-—1andn>1.
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Theorem 2.9.2 The unique solution of equations (2.9.8) is

" o U+ DE)+1)(8n - 2j)
a(n;(j,n—1-—7)) = st et ) (2.9.9)

In particular, $1(2) = B4(2).

Proof. Using the fact that ¢(j) = (2]])/(2j—|-1), it follows that p(j) = (14+2)/(45+2)

and therefore that
p(n)  (2n—1)(n+2)

pln—1) (n+1)(2n+1)

Take j = n — 1 in the righthand side of (2.9.9) to verify the base case. Assume

that (2.9.9) holds for all m such that j <m <n —1. Then

ay(ni(j = 1,n —j))
pn) —pn—j =1 +ai(n;(j,n—j = 1))p(n =1 —j)
p(i —1)
__M—Z( 3+ 1) U+U@j+06n—%Xn—j+U)
1 \—8n2 4 8jn +4j +2 n(n+1)(2n +1)(4n — 45 — 2)
A =250+1)Br —2( - 1))
41 4n3 + 6n + 2n
(2 —1)jBn —2(j —1))
n(2n +1)(n+1)

Y

which proves the result. =

Theorem 2.9.2 together with Theorem 1.4.1a) imply that part d) of Theorem
1.4.1 holds. For d > 3, Lemma 2.9.1 reduces proving Conjecture 1.4.3 to proving
that a solution to (2.9.3) and (2.9.6) exists. It is not hard to show that, disre-

garding the absolute bound of one requirement, there is a solution to (2.9.3) and
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(2.9.6). The difficulty is that the solution is not unique. Therefore, verifying that a
suitably bounded solution exists for all n € N becomes more challenging. Chapter
3 is devoted to providing heuristic support for the existence of a solution that is
absolutely bounded by one. We conclude this section with a proof of the existence
of solutions that are not necessarily absolutely bounded by one.

Equations (2.9.3) and (2.9.6) make up a collection of linear algebra problems
indexed by N that have the additional constraint that the solution is absolutely
bounded by one. Farkas’ Lemma provides an equivalent condition for proving that
a system of linear equations has a solution. In the context of Linear Programming,
Farkas” Lemma links dual programs. Essentially, the Duality Theorem is a trans-
lation of Farkas’ Lemma into the language of Linear Programming. Almost any
undergraduate text will discuss the connections between Farkas’” Lemma and du-
ality. See [12] Chapter 7 for example. Here the equivalent condition is verified for
all n € N. Thus, disregarding the absolutely bound of one requirement, equations

(2.9.3) and (2.9.6) have a solution for all n € N and all d > 2.

Lemma 2.9.3 (Farkas). Let A be an m x n matriz and b an m-vector. Then

Axr=0b for some x € R?

if and only if

W'y =0 forall yeR™ suchthat ATy =0.
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In our context, equations (2.9.3) and (2.9.6) determine the rows of the matrix
A. To each equation, associate the (unordered) partition from which the equation

originated. In particular,

d
Zai(n;klv '7kd) =1+« (klv 7kd)
=1
and
d e(k; — 1) c(n)
(nyky,....k,—1,....k . = ki, ... k).
;O{z(n7 1 s vy 9 9 d) C(kl) C(n—l—l) (17 9 d)

It is not hard to see that each column of A has exactly two nonzero entries. This
comes from the fact that each variable a;(n; &y, ..., k;) appears once in the collec-
tion (2.9.3) and once in the collection (2.9.6). Thus, each row of AT has exactly
two nonzero entries. The entry that corresponds to the variable o;(n;ky, ..., k;)

in ATy is given by

. c(k;)
1 ko =k + 1) ————ylky,... k+1,... k
( +|{] 7 ’L—I_ }|)C(k2—|-1)y( 1> 9 z—l_ ’ 9 d)

+ {7k =k Hy(k, ok k).
(2.9.10)
This easily implies that the dimension of the null space of AT is at most one. To
verify this, consider a graph in which the vertices correspond to the d-tuples in
N? with entries that add up to n or n — 1. There is an edge between the vertices

(kyyen s ky

e kg) and (I, ... 0, ..., ;) if and only if k; = [; for all except one

index j and |[; — k;| = 1. In particular, the edges are in one-to-one correspondence
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with the equations in the collection (2.9.10). Since this graph is connected, there

is at most one solution to equations (2.9.10). Let

ki4-+kg c(kl) i c(kd)

ki,....k;) = (-1
y( 1 ) d) ( ) Hd(k1 ..... kd)|{l . kz :5]}|l

where d(ky, ..., k;) denotes the number of distinct entries in (ky,...,k,) and ¢; is
the jth largest of these distinct entries. Then y € Null(AT) and since y # 0, y is

a basis for Null(AT). Using the fact that

d
(Hi phy =00, k= b4 kd)}|)

is the number of distinct orderings of the partition (ky,..., k), it follows that

sty = (=S k)t Y (k) el)

c(n+1) ,  Thmn b1t ka=n—1

The Catalan recursion (recursion (2.5.2)) implies that

_eln) S k) ek = Y elky) - e(ky) =0,

c(n+1) 5 4. Fhimn e
Therefore, d!bTy = 0. Farkas’ Lemma implies that equations (2.9.3) and (2.9.6)
have a solution. However, the lemma does not guarantee that there is a solution
with the desired boundedness properties.

There is a form of Farkas’ lemma that gives rise to the existence of a nonnegative
solution. This involves verifying that 67y > 0 for all vectors y such that ATy > 0.
Furthermore, the author believes that a nonnegative solution exists for d > 3.
Nevertheless, attempts to use this version of Farkas’ lemma to prove it have been

unsuccessful, except in d = 2. Since Theorem 2.9.2 provides an explicit nonnegative
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solution when d = 2, using Farkas’ Lemma to prove existence gives less information

than Theorem 2.9.2. Therefore, Theorem 2.9.2 and its proof were presented here.
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CHAPTER 3

The Continuous Problem

As previously noted, equations (2.9.3) and (2.9.6) make up a collection of linear
algebra problems indexed by N. Each problem has a distinct set of variables.
Therefore, a solution to the n = 5 problem need not relate to a solution of the
n = 6 problem. However, given the similarity of the equations it seems reasonable
to expect that there exists a collection of solutions that are consistent in some
sense. Any reasonable consistency condition will imply that the limit as n tends
to infinity of a;(n;-) exists.

We investigate the limiting version of the equations (2.9.3) and (2.9.6). Under
the limiting operation, equation (2.9.6) becomes a first order partial differential
equation. It turns out that for all d > 2, the limiting version of (2.9.3) and (2.9.6)
has a solution that is absolutely bounded by one. The existence of such a solution
provides evidence that solutions to (2.9.3) and (2.9.6) exist that are absolutely
bounded by one. Proving that such solutions exists, in turn proves Conjecture
1.4.3.

Here, a study of the limiting version of (2.9.3) and (2.9.6) is presented as
support for Conjecture 1.4.3. In Section 3.1, the continuous problem is derived. In

Section 3.2, the method used to find the solution is explained. The main idea is to
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assume that the solution can be expressed as a series and to devise a method for
computing the coefficients. As one might expect, this approach becomes excessively
complicated in general. However, the approach does provide an answer for small d
and an educated guess for the general problem. An independent proof of Theorem

1.4.2 presented in Section 3.3.

3.1 The Derivation of the Continuous Problem
Assume that {a(n,)},en is a set of solutions to the discrete problem such that
(2, ..., xg) = lim o (2y,...,24). (3.1.1)

n—oo

exists where o (xy,...,24) = ay([nay| + - + [nxg] + 15 [naq], ..., [n2y]). By

definition, a*(xy, ...,z ) is symmetric in the variables (x5, ..., z;). Furthermore,
a*(xq,...,xq) = a*(axq,...,axy) for all @ > 0. Therefore,
* L Tg
a*(xq,...,ay) =0 | ——, ..., ——————— (3.1.2)

for some symmetric function v defined on the d — 1 dimensional simplex S¢=1. The

limit of equation (2.9.3) is given by

d
S (X @y, Ty Tiggs - Tg) = L (3.1.3)
i=1
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Letting s; = a;/(xq + -+ - 4+ x4) for 1 < ¢ < d and expressing equation (3.1.3) in

terms of v,

V(Sgy. vy 8q) F o F0(S1, oy 81, Sip1s -5 Sq) o F0(Sy, ., 800) = 1.
(3.1.4)
If one simply takes the limit of equation (2.9.6), it collapses into equation
(3.1.3). Therefore, first order information must be considered. By computing the

first two coefficients of the power series centered at infinity,

e i(F) ()

Expressing equation (2.9.6) in terms of a* gives,

D i )
' K3

_clney ]+ 4 [nag))
c(lnay] + -+ [nzg) + 1)

(3.1.5)

Asymptotically, equation (3.1.5) is given by

d

* 1 3
Zan(xi_57‘%17"‘7xi—17xi-|—17"'7xd) 1—|—m

=1 Li— 5
- 3 ¥ (1)
= ol —1.
2n(xy + -+ xy) n

As previously mentioned, first order information must be retained. Therefore,

equation (3.1.6) will be multiplied by n. In order to prevent both sides from

tending to infinity, (2.9.3) is subtracted from (3.1.6) before multiplication by n.
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This gives

d
Zn (05:;(1;2 - %71;17 .. '7xi—17xi-|—17 .. '7xd) - O‘:;(xivxlv .. '7xi—17xi-|—17 .. '7xd))
=1
+§ZO‘:§($2’_%71;17'"7xi—17xi+17"'7xd): 3 —|—0(1)
2 T 2@+t 2g)

Therefore, in the limit, equation (2.9.6) becomes

> (- L) o )=y (316
£ 2x2 axZ (84 xi?‘rl?“‘7xi—17$i+17“‘7$d = Q(xl_I__I_xd) ..

On the d — 1 dimensional simplex, let

V(S1y. vy Sq-1) 24l 9
Tyv(syy ey Sqm1) = : =4 Zsia_v(slv ey Sqo1)

=5y = =540 33 5

Multiplying equation (3.1.6) by 2(x; + --- 4+ x4)/3 and expressing it in terms of

Tdv7

d
D (81, Sis1s Sig1s s 8q) = L. (3.1.7)
=1

For w: S41 — R, let Lyw : dS* — R be defined by

d
Lyw(syseooy80) = D W(S1y ey 851, 8iq1s- -+ 5q)- (3.1.8)

=1
Equations (3.1.4) and (3.1.7) can be expressed in terms of L, as

Lyv(sy,...,8q) =1 and LyTw(sy,...,85) =1 (3.1.9)

respectively. The next proposition which summarizes the statement of the contin-

uous problem has been proved.
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Proposition 3.1.1 If a* : Ri — R is symmetric in the variables v, ..., x4 and
satisfies equations (3.1.3) and (3.1.6), then v : S — R defined by equation
(3.1.2) is a symmetric solution of equations (3.1.9). Conversely, if v : S4-1 — R
is symmetric and satisfies equations (3.1.9), then a* : R — R defined by equation
(3.1.2) is symmetric in the variables x4, ..., x4 and satisfies equations (3.1.3) and

(3.1.6).

3.2 The Method for Finding a Solution

The method used to actually find the solution is presented in this section. The
strategy is to express a candidate solution as a series with unknown coefficients and
to use the partial differential equation to determine the coefficients. The approach
is demonstrated in d = 3 and only the main ideas are presented. In Section 3.3,
a complete proof of Theorem 1.4.2 is given that is independent of the approach
taken here.

The goal is to find v(s,t) such that

v(s,t)+ov(l—s—t,t)+v(l—s—ts)=1

Too(s,t) + Tso(l —s —t,t) + Thyo(l — s —t,5) = 1.
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For any such v(s,t), v(s,t) = u(s,t) + 1/3 for some u(s,t) that satisfies
u(s,t)+u(l —s—t,t)+u(l —s—1,s)=0. (3.2.1)
A collection of symmetric polynomials that satisfy equation (3.2.1) is given by
Up o (8,1) = (1 —=s =) (st)" (1 =1 = 28)t™ + (1 — s — 21)s™)
=(1—s—t)"T(st)"(s™ 4+ t™) — (1 — s —t)"(st)" T (sm™t 4 tm~1)
where m,n € N. Consider u(s,t) = >°7 3™ w, u, . (s,1) where w, . € R.

n,m “n,m

The goal is to choose w,, ,,, such that Ty(u+1/3)(s,t) —1/3 also satisfies equation
(3.2.1).
Since Tyu,, ,,(s,t) is not expressible in terms of the collection {w,, . (s,%)}, nen

some symmetric polynomials are added to the collection. Let
P8, 1) = (1 — s —1)"(st)"(s™ + ™).

The collection {u, ,,(5,1), P m(5,1)}, men spans the set of all symmetric polyno-

mials in two variables. It turns out that

2(3 1
Tty (5,1) = (3n —|—3m + )umm(s,t)

3—2n

- ( 6 ) (un—l,m-I—Z(Sv t) - un—17m+1(87 t))
41 —4n

‘I’ ( 3 ) pn,m(‘s? t)

3—2n
- ( 6 ) (pn—l,m-l—l(sv t) - 2pn—1,m+2(37 t) —I_ pn—l,m-l—S(Sv t)) .

Also,

s+t _ Po12(8,t) = poya(s,t) —u_yo(s,t)

LB =13 = 57— .
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Recall that the objective is to choose w, ,, such that Ty(u 4+ 1/3)(s,t) —1/3
satisfies equation (3.2.1). In other words, the coefficient of p, . (s,t) in Ty(u +

1/3)(s,t) — 1/3 should be zero for all m and n. If «,, , denotes the coefficient of

Prm(s,t) in Ty(u+1/3) —1/3, it follows that

b B Bl 0(0,0) — “Bif (n,m) = (<1,2),
k(n,m) =
Bw(—1,3 w(0,2 w(0,0 : _
L Bl w02 4 0,1) - 20 if (n,m) = (1, 3).
Otherwise,

ctnom) = (52 )t

., (2n3—1) (w(n+12,m—1) _w(n+17m_2)+w(n—|—12,m—3))‘

Setting x(n,m) = 0 implies that

% ifn=0and m>1,
w(n,m) = M ifn=1and m >0,
0 otherwise.

By summing the series that defines u(s,?),

(I1—t—=2s)t (1 —s—2t)s
t) = 3.2.2
D=0y T 0 (3:22)
8(1 —t—2s)st(l —s—1) N 8(1 —s—2)st(l —s—1)
3(1—1)3 3(1 —s)? '
If one generalizes this approach and repeats the procedure for d = 4, the
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solution is given by

u(r, s, t) =
(I—r—s=20)(r+s) (({—-r—t=28)(r+t) (1-—s—t—=2r)(s+1)
8(1—r—s) 8(1—r—1) 8(1—s—1)
(1—r—s—t)(l—r—s—Zt)(r—l—s)t_I_(1—r—s—t)(l—r—t—Zs)(r—l—t)s
(1—r—2s)? (1—r—1)3
N (1—7“—5—2)1(1_29_;;3— QT)(S‘H)T' (3.2.3)

Comparing the d = 3 and d = 4 solutions suggests a pattern. Since computing
the coefficients is complicated in general, it is more convenient to verify that the

candidate solution satisfies equations (3.1.9).

3.3 A Solution to the Continuous Problem

In this section, the pattern suggested by equations (3.2.2) and (3.2.3) is shown
to satisfy equations (3.1.9). The proof itself heavily exploits the structure of the
solution and thus reveals the properties of the solution that enable it to satisty

equations (3.1.9).

Definition 3.3.1 Foru :S41 — R, u is homogeneous with respect to L, if Lyju =

0. Denote the set of all symmetric functions that are homogeneous with respect to

Ld by Hd'

The next proposition is an immediate consequence of this definition.
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Proposition 3.3.2 Ifu € Hy and Tyj(u+1/d) —1/d € Hy, then v=u+1/d is a

symmetric solution of equations (3.1.9).

Let ¢ be the projection of S?=1 onto S? defined by

P(515 89,5 8q-1) = (81,82 + -+ S49). (3.3.1)

Given a function f:S2 — R, let S;f be the symmetrized extension of f to S4-1

defined by

d—1

Sdf(‘Slv o '7Sd—1) = Zf 0 99(82',81, o '73i—173i+17 o '73d—1)'

i=1
It is immediate that S, is a linear operator and that S;f is symmetric. The class of
functions that will be considered here are all symmetrized extensions. In particular,
we consider u € H,; such that u = S;f some f:S? — R. By restricting attention
to this class, we can view our solution as a sum of functions of two variables. There

is a simple criterion for functions f : 2 — R that implies that S, f € H,.

Definition 3.3.3 Given f:S? — R, we say that f is cancelative if f(s,t)+ f(1—

s—1,t) =0 for all (s,t) € S2.

Proposition 3.3.4 If f : S? — R is cancelative, then S;f € H,.
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Proof. By definition, s; +---+ s, = 1. Thus, for 1 <: < j <d,

O1(SiyS1n e a8ty SiqtsevaSj 1ySj41sen-s54) (3.3.2)
=1- 991(3j7317 s 815841 - '73j—173j+17 o '73d)
- 992(Sj7517 sy Si19 Sy e '73j—173j-|—17 s '7Sd)
OS5y S1an e v a 81y Siqts s Sj 1ySj41sen-s54) (3.3.3)

= 992(3j7317 s 815841 - '73j—173j+17 o '7Sd)'

where ¢; denotes the ith coordinate of ¢. Combining equations (3.3.2) and (3.3.3)

with the fact that f is cancelative implies that

f o 99(82',81, <o 819 Si41s - '73j—173j+17 .. '7Sd) (334)

+ f o S‘Q(S]’?Slv sy Sio1y Sig1s - - '73j—173j-|—17 . '7Sd) = 0.

By definition,

d
LySuf = Z Sdf(SD <o o981y Sl - Sd)
i=1

d
:ZZfOS‘Q(Sjv"WSj—l?Sl?'"73i—173i+17"'73d)

d—1
—I_ ZZfo S‘Q(Sjv' . '73i—173i+17' . '73173j-|—17' . '7Sd)'
=1 1i<j
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By switching the order of the second pair of summations, equation (3.3.4) implies

that

d
LS. f :ZZf 0 99(5]‘7 cee9Si15 81y Si—19 Sy - -an)

1=2 7<1
d
—I_ZZJCOS‘Q(SM"'73j—178j+17'"78173i+17"'78d)
1=2 5<1
d
:ZZ(foS‘Q(Sjv"'73j—17317'"73i—173i+17'"7Sd)
1=2 7<1
—I_fog‘o(siv"'vsj—lvsj-l—lv"'73173i+17"'73d))
:()7

completing the proof. =

Two examples of cancelative functions are
(1 —1t—2s) and s(l—s—1)(1 —1—2s).

These two examples will be the main building blocks for the solution to equations
(3.1.9). Note that if either example is multiplied by a function that depends only
on the variable ¢, then the resulting function is also cancelative. In particular, if

(1 —t—2s)t

(1—-1)

(1 —t—=2s)s(1 —s—1t)t
(1—1) ’

(3.3.5)

f(s,1) = and g(s,t) =

then S;f and S;g are elements of H,;. Furthermore, Sy(ayf + byg) is an element
of H, for any real constants a,; and b;. Our goal is to choose a; and b, such that

Td(adf—l- bdg‘l‘ 1/d) — 1/d S Hd-
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Proposition 3.3.5 Forall f:S? — R, Ty(foe(sy,..

In particular, T;S;f = S;T5f.

Proof. By the chain rule,

af

0
316—81f o 99(517 .- -de—l) = 31% (99(317 .-

sigel o si i) = sty (plone
Therefore,
-1 5
;%a—slf 0 @(S15---584-1)

af

= 991(317 .. -de—l)g (99(317 .. -de—l)) + 992(317 .-

completing the proof. =

3 Sa-1)) = (T5f)ow(s1,- - 84-1)-

9 Sd—l))

'73d—1)) Z7é L.

0
) A (51 50m1))

As a consequence of Proposition 3.3.5 and linearity of both S; and T},

TySylagf + byg) = agSqTsf 4 0,5, T5g.

Therefore, it is enough to compute T5f and T5¢. In light of Proposition 3.3.4, the

next objective is to collect all cancelative parts of T5f and Tsg.

Proposition 3.3.6 If f and g are defined by (3.5.5), then

Tyf(s,t) = 3(1“_ 51 i — § (2 + %) Fls,0) (3.3.6)
Tug(s, 1) = 3(1_71)2 + § (4 + %) g(s,1). (3.3.7)
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Proof. We have

af _ —2sl
af ot —t=2s)  —t2 (1 —t-2s)
L TA L A per i g (1 —1) (3:3.9)

The first term in equation (3.3.9) is f(s,?). By combining the second term in equa-
tion (3.3.9) with the right hand side of equation (3.3.8) and adding and subtracting
t/(1—t), another copy of f(s,?) can be obtained. The final term in equation (3.3.9)

is simply f(s,?) scaled by a function that depends only on the variable ¢. Thus,

af af t t
S (s ) 1 (s, 1) = (2 + ﬁ) fls,t) = —.
Observing that
fls,t) 2t !
l—s—t 1—t (1—s—1)
gives
2t t 2 t t
LI =T~ a—=p "3 (24 1=5) S0 1)
41 t 2
S30-0 (=s—1 +§( +ﬁ)f(5’t)’
establishing equation (3.3.6).
For g(s,1),
dg sl —t=2s)(1—s—t)t =253 (1—s—1t)t —s*1—t—2s)t
s\ 1) = (=1 -7 0=
(3.3.10)
dg C—ts(l—s—)t (1 —t—2s)st (1 —1—2s)s(l —s—1)
T e e E (-1
(L —t—2s)s(1 —s—t)t
T (3.3.11)
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In a similar manner as with f(s,?), combine the second and third terms in equation

(3.3.10) with the first and second terms in (3.3.11) respectively to obtain

dg dg _ 3t s(2 —2t —3s)t
Sa(s,t)—l—ta(s,t) = (4—|—m) g(s,t) — T
Since
g(s,t) 2s(2 -2t —3s)t  —st
l—s—1  3(1—t3  301-0)%

equation (3.3.7) holds. =
Proposition 3.3.6 decomposes T, f and T5¢ into cancelative and noncancelative

components. Denote the noncancelative terms by

44 —1 —st

e1(s,1) = £9(s,1) = [t and  e3(s, 1) = 31 —1)2

Recall our ultimate goal, to choose a,; and b, such that T;S;(a,f +byg)+T,(1/d)—

1/d is an element of H,. Since

Sy 4 S

Ty(1/d) —1/d = d(1— s — - —84_1)

and

—(d=2)(sy +- +54.1)

I e

Sd€2 == 9

it is natural to choose ay such that Sjaze, cancels Ty(1/d) — 1/d. In particular,

ag=1/((d —2)d) so that
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With only &, and &5 remaining, b; is chosen such that aze; + bse5 is cancelative.
Setting b; = 8ay gives

Ml—t—2s) 4
3112 31—

aqge1(s,t) + 8ages(s,t) = ay f(s, 1) (3.3.13)

which is cancelative.

Theorem 3.3.7 Let h(s,t) = f(s,1) +8g(s,t) where f and g are defined by equa-

tions (3.3.5). Then Syazh + 1/d is a symmetric solution to equations (3.1.9).

Proof. Since h(s,t) is cancelative, Proposition 3.3.4 implies that S;a;h € Hy. By

Proposition 3.3.6 and equation (3.3.13),

24— 1)

T3Cldh(87 t) = de

h(s,t)+ azeqy(s,1). (3.3.14)

Since h(s,t) is cancelative, Proposition 3.3.4, Proposition 3.3.5, and equation
(3.3.12) imply that T;(Szazh + 1/d) — 1/d is an element of H,;. By Proposition

3.3.2, the assertion holds. =

Theorem 3.3.8 S;a,h + 1/d is absolutely bounded by one.

Proof. We have

Oh, . BH((1=1) = 8(1 = t)s+85?)
7551 = (1—1p ‘

Therefore, the maximum and minimum occur at

(1-1(2-v2)
Smax — and Smin —

4

(1-1)(2+v2)
4
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respectively. Since

h((1—t)(2_2\/§)7t):\/§t and h(<1_t>(2+2\/§),t):—\/§t,

4 4
It follows that
lhow(sy,....s.1)| < V2 on Sd-1.
Since Syh has d — 1 terms of the form h o ¢,

I d=1)v2 1
h | <O VE LD
Saash + 1S "0

which is bounded by one provided d > 4. Since S3h(s,t) = h(s,t) + h(t,s), it is

possible to use the better bound of
his, 1) + h(t, )| < V3(s +1) £ V2.

Thus,

1 V241
|S3a3h—|—§|§ 3 )

as desired. m

Theorem 1.4.2 follows from Theorem 3.3.7, Theorem 3.3.8, and Proposition
3.1.1. Presumably, a suitably bounded solution to the discrete problem exists that
has a structure analogous to the structure of the solution to the partial differential
equation. Qur attempts to exploit this structure have failed. Nevertheless, we

believe that (2.9.3) and (2.9.6) has a solution for all n € N.
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CHAPTER 4

Critical Exponents

The focus of this chapter is the behavior of the survival probability, the expected
extinction time, and the susceptibility as functions of g. Of particular interest will
be the behavior of these functions near the critical values. In Section 4.3, the
continuity properties of the survival probability are examined. Next we turn our
attention to the problem of bounding the survival probability from above and
below. The bounds derived in Sections 4.4 and 4.5 lead to a proof of Theorem
1.4.4. In the final section of this chapter, explicit formulas are derived for the

expected extinction time and the susceptibility.

4.1 The Dirichlet and Thompson’s Principles

The Dirichlet principle and Thompson’s principle provide powerful tools for
describing the behavior of the survival probability. These principles apply in the
setting of a reversible Markov chain. The Dirichlet principle states that the prob-
ability that the Markov chain escapes from some fixed subset of the state space
before returning to the initial state is expressible as an infimum of a certain varia-

tional functional over all functions in some class. Likewise, Thompson’s principle
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expresses this same probability as a supremum of an energy functional over all
functions in some class. Furthermore, there is a unique function that optimizes
these functionals. The precise statements of these principles are as follows.

Let X, be a reversible Markov chain with state space .S, stationary measure 7,

and transition rates ¢(«,y). For any subset R of the state space S, let
r = inf{t : X, € R} and Th =inf{t > 7p. : X, € R}.
Given a function h : S — [0, 1], let ®(h) be the Dirichlet form evaluated at h:

®(h) = 52 m(@)g(e, y)(hly) = h(x))*.

Given a subset R of the state space S and x € S\ R, let

HE={h:5—1[0,1]: h(x) =0,h(y) =1 for all y € R}.

Theorem 4.1.1 (The Dirichlet Principle). Provided P*(tp < o0) =1,
(e )a(e) P < 7) = ind @),
where q(x) = 3,2, q(x,y). Furthermore,

h(y) = P¥(tp < 7,)

is the unique function that is harmonic on S\ (R U &) with the stated boundary

conditions and the infimum is attained by this function.
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Recall that a function is said to be harmonic on some subset of the state space
Uit

h(z) = q(x7y)h(y) for all x € U.

In other words, h satisfies an averaging property on U. For an irreducible subset U
of the state space, this averaging property implies that if the function h attains its
maximum or minimum value in U/, then A is constant on U. Consequently, speci-
fying the values of & on U complement and requiring harmonicity on U determines
h, provided the Markov chain hits U complement with probability one. It turns
out that ®(%) is minimal on HE if and only if & is harmonic on S\ (RU ). A
proof of the Dirichlet principle can be found in Liggett [17] .

The Dirichlet principle can be stated in a dual form known as Thompson’s
principle. Given an anti-symmetric function w : S x S — R, let K(w) denote the

kinetic energy of w:
&~ wi(z,y)

M S 8 ot

Given a subset R of the state space S and x € S\ R, let

WE={w:Sx S —R:w(y,2)=—w(zy), y,z €5

> wlx,y)=1; and > w(z,y) =0,z ¢ RUxz}.

Y

Such a function w is said to be a unit flow from z to R.
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Theorem 4.1.2 (Thompson’s Principle). Provided P*(tp < o0) =1,

S g = TP < ),

where q(x) = 3,2, q(x,y). Furthermore, the unit flow given by

w(y, z) =E* (number of one step transitions from y to z before time 1g)

— E* (number of one step transitions from z to y before time 1g) .

attains the supremum.

Not surprisingly, the optimal unit flow is related to the harmonic function that
appears in the Dirichlet principle. To see this, define a path from y € R to R to be
a sequence {y,}7 = of states in the Markov chain such that y, = ¥, ¢(¥;,¥;41) > 0,

and {y;}, N R =y,,. The optimal flow satisfies

m—1

w(x'vxi-l—l Z ymyH—l)
m(a)q(z, i) 2 ()Y Yisr)

- 3
||M|
= —

for all pairs of paths to R such that x4 = y,. Therefore, if 25 = = and z;, = y, then

the function

$i+1)
o )Q(fﬂ Tiy1)

@ ol
|
M I

is well defined. Furthermore, the incompressibility property of w(y, z) implies that
h is harmonic. After normalizing h so that it takes the value one on R, we see that
the optimal flow is related to the harmonic function from the Dirichlet principle

by the equation

Wy, 2) = T()q(y, 2)(h(z) — h(y))
’ m(2)q(x)P(rp < 7F)
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The book by Doyle and Snell [8] is the standard reference for this topic.

4.2 The Shape Chain

In order to apply the Dirichlet principle and Thompson’s principle to the uni-
form model, a related reversible Markov chain is introduced called the shape chain.
As motivation for the definition of this Markov chain, observe that the issue of
whether or not the uniform model avoids absorption into the empty set is inde-
pendent of the location of the of the occupied set. Furthermore, the evolution of
the uniform model depends only on the ‘shape’ of the occupied set. So, it seems
reasonable to identify isomorphic occupied sets and record the shape rather than
the location of the occupied set. This allows a transition from the empty set to
the singleton to be introduced while preserving reversibility.

More formally, the shape chain is defined as follows. An automorphism of a
graph G = (V| F) is a bijection ¢ : V. — V such that there is an edge ¢; € F
between the vertices = and y if and only if there is an edge e, € F between
the vertices ¢(x) and ¢(y). Let Aut(T?) be the set of all automorphisms of T<.
Configurations A and B are said to be equivalent if there exists ¢ € Aut(T9) such
that ¢(B) = A. We write A ~ B to indicate that A and B are equivalent. The

relation ~ defines an equivalence relation on the set of all configurations. Let
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A={B:B~ A} and
S=0u {A: Ais a finite connected subset of T4}.

Roughly speaking, S denotes the set of all finite connected shapes that can be
embedded into T<. It will be convenient to consider the Markov chain At induced
on S by the dynamics of the uniform model. In particular, for A +* 0
WA B) = 30 cfr,4)
(2:A.~B}

where A € A is fixed and A, is AUz if x ¢ Aand A\ x if © € A. Since
Q(A, -) depends on A only through its equivalence class, the transition rates are
well defined. We refer to At as the shape chain. In order to make the shape chain
irreducible, a transition from 0 to the singleton O is introduced at rate B.

The shape chain is reversible with respect to the measure

MUy
T(A) = ————
(A) A

Y

where M(A) = |{A € A: O € A}| and |A[ is the number of vertices in A € A. In

order to prove this, it suffices to show that the detailed balance equations hold:
HAVIA, B) = #(B)i(B, A) (12,1

for all A, B € 8. Without loss of generality, |B| > |A|. If either the left or the
right hand side of (4.2.1) is nonzero, then there exist A € A and B € B such that

AUz = B for some x € T4 Thus, proving that equation (4.2.1) holds is equivalent
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to proving that

M(A){D ~ B:D > A} _ M(B){C ~ A:C c B}
A |B]

(4.2.2)

for all finite, connected subsets A and B containing O such that AUz = B. Liggett
proves that equation (4.2.2) holds for all finite (not necessarily connected) subsets:
see equation (3.8) in [18].

By definition, the shape chain starting from the singleton Ato and the uniform
model starting from the origin 7© can be coupled such that 7 € Ato for all times
t < 75. Thus, the problem of determining the asymptotic behavior of P(n? #
() V t) as 8 decreases to f3, is equivalent to determining the asymptotic behavior
of PO(T@ = o0). Also, note that PO(T@ = o0) can be expressed as a limit of
escape probabilities. To see this, fix a sequence {gN} of subsets of & that has the
properties that hes \ Sy increases to S, 0 ¢ Sy, and Pé(TSN < 00) =1 for each

N € N. Since P@(TgN < T;') = PO(TgN < 75);

PO(15 = 00) = lim PO(TSN < 7)) = lim PQ)(TSN < TQ;")

N—co

Therefore,

PP #0V 1) = lim Plrg < 7})

Since the probabilities P®(T$N < TQ;") can be expressed in terms of the Dirichlet
principle and Thompson’s principle, this framework provides a strategy for esti-

mating the survival probability.
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4.3 Continuity of the Survival Probability

Before proceeding to estimate the survival probability, we discuss the continuity

properties of the function

s(B) = PO(n, £ DV ).

The fact that this function is right continuous is rather easy to establish as it is
upper semi-continuous and increasing. Furthermore, it is continuous on [0, 3,) as
a matter of definition. Therefore, the main issue is to establish left continuity
above ;. Generally speaking, continuity from the left at /3, is the most difficult
to prove. Since we expect that 3, = 3, for all d and s(/;) = 0, continuity from
the left at B, would follow from a proof of Conjecture 1.4.3. Since it is known that
(3, = B4 on the binary tree, it will follow from the arguments given here that s(/)
is continuous on the binary tree.

Here the continuity of s(3) for 3 sufficiently large is established. We begin by
reviewing the proof of right continuity. Then continuity for g sufficiently large is

obtained as an application of the Dirichlet principle.

Definition 4.3.1 A function [ : R — R is said to be upper semi-continuous if

{x: f(x) < a} is open for all a € R.

Proposition 4.3.2
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i) If f R — R is upper semi-continuous, then limsup, ., f(z) < f(y).

i) If f; : R — R is upper semi-continuous for each i in some index set I, then

inf; fi(x) = f(x) is upper semi-continuous.

i) If f: R — R is continuous, then f: R — R is upper semi-continuous.

Properties i), ii), and iii) in Proposition 4.3.2 are immediate consequences of

the definition of upper semi-continuity.

Lemma 4.3.3 The function s(f) is right continuous as a function of /3.

Before proving Lemma 4.3.3, consider the probability of survival until some

fixed time ¢:
s(t,B) = P°(n, #0).

Most functions that depend only on the values of the process for a finite amount

of time are continuous in # and s(t, 3) is no exception.

Proposition 4.3.4 The function s(t, ) is continuous in 3 for each fixed t > 0.

Proof. By an argument similar to the one used to prove Proposition 2.4.1,

nl —nl+1  atrate  F((d—=1)n|+2)

provided n # (). Therefore, it is possible to couple the uniform model to a pure

birth process Y; that makes a transition from n to n 4+ 1 at rate 3((d — 1)n + 2)
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such that

Usgtns S 1/25

In particular,

E (

) <o

Usgtns

for all ¢ > 0.
Given < f*, the rates for the uniform model with these two parameters

satisfy

Cﬁ(l'ﬂ?) < Cﬁ*(l‘,f) if C(l’) =0 and Cﬁ(l‘ﬂ?) > Cﬁ*(l‘,f) if 77(51/') = 17

for n < (. Therefore, it is possible to couple (1,,(,) two copies of the uniform
model with parameters § and g* respectively so that if ny = (,, then n, C (, for

all £ > 0. Let N, be a Poisson process with a random parameter (3* — 3)

Usgtns

Thus,

PO, # G | ngs <) < 1= PN, =0]n,,s < 1)

=1 —exp (—(p - Bt

).

Usgtns

Taking expected value and using Jensen’s inequality, one obtains

).

Letting / increase to 3* or 3* decrease to 3 has the consequence that P(O-O)(p, £

P(O’O)(m # Ct) <1 —exp (_(5* - 5)tEO (

Usgtns

(;) tends to zero. In particular, P(©:9)(n, = 0, (, # () tends to zero. n
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The continuity of the probability of survival until time a fixed time ¢ will be
used in order to establish right continuity of the survival probability.
Proof of Lemma 4.3.3. Since s(t, ) is continuous as a function of 3, it follows that

s(t, 3) is an upper semi-continuous function of 3. Therefore,

PO, £DV t)=s(p) = il;lfs(t,ﬂ)

is upper semi-continuous. By characterization i) of Proposition 4.3.2,

lim sup s(5) < s(f3,)- (4.3.1)
B\Sbo

Since s(t,3) is decreasing as a function of ¢ for each fixed 3, it follows that
lim,_ o, s(, 3) exists and is given by s(/). Using the fact that s(¢, #) is increasing
in 3 for each ¢ and that the limit of increasing functions is increasing, it follows
that s(3) is an increasing as a function of 3. Therefore, limg g, s(3) exists and

satisfies

Jim 5(3) = ().

Combining this with inequality (4.3.1), it follows that limg\ s, s(3) = (). .

Lemma 4.3.5 The function s(f3) is left continuous as a function of 3 on the

interval in that the rooted chain is transient.

Proof. Let

h(B,A) = PA(A, £ (v 1).
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The function A is harmonic off §§ for the shape chain and it is immediate that
h(s3, @) = 0. Furthermore, (43, O) = s(f). Fix A, C T finite and connected such

that O € A, and |A,| = n. For z, € A

., we can write A as the disjoint union
A\, = UH] Al where At are the d41 connected components of A, \ z,. Choose

x, € A, such that |A?| and [A/] tend to infinity for two distinct indices ¢z and j.

Without loss of generality, we may assume that «, = O. By inequality (2.4.5),

h(B,A,) = PA(n, #0 Y t) > P(O € p for all t > 0)

> P(O € 77;4" for all t < u)P(S < ),
where S is defined as in that section. As was noted there,
P s<u3sph B = {0}) < (1 —ev)ll,

Therefore, the probability that this event occurs for at least one of the indices z or j
tends to zero as n tends to infinity. In particular, liminf,_ . (S, An) > P(S <u)
for all v > 0. But the assumption that the rooted chain is transient implies that
P(S < u) tends to one as u tends to infinity. Therefore, lim,_ . h(ﬂ,An) =1, or
equivalently lim 4 h(s3, 121) = 1. Thus, h(3,-) is the unique harmonic function
on S such that h(@) =0 and lim 5 _ h(ﬂ,A) = 1.

Observe that h(ﬂ,A) is increasing in 3 so that limg /s« h(ﬂ,A) exists and is
bounded by h(/3*, 121) Since h(f3,-) is harmonic and since Q(A, B) > 0 for finitely

many B for any fixed 121, the limit limg »5. (83, 121) is also harmonic. Furthermore,
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limg g+ h(3, @) = 0. Using the fact that h(, 121) is increasing in /3, it follows that

A

lim lim A(3,A) =1.
AL o M)

Therefore, limg »5+ h(f3, 121) is the unique harmonic function with these boundary

A

conditions. Since h(f*, A) is also harmonic with the same boundary conditions, it

A A

follows that limg g« h(3, A) = h(B*, A). In particular, limg 5. s(3) = s(3*). .

Corollary 4.3.6 On the binary tree, s(j3) is continuous.

Proof. In the process of proving that 5,(2) = 1/4, it was shown that the rooted
chain is transient for 3 > 1/4 (see Section 2.9). Therefore, Lemma 4.3.5 implies
that s(/) is left continuous for 3 > 1/4. By Theorem 1.4.1a), s(3) is left continuous
on (0,1/4] and therefore, it is everywhere left continuous. This together with

Lemma 4.3.3 proves the assertion. "

4.4 Upper Bounds on the Survival Probability

This section is devoted to obtaining upper bounds on the survival probability

via the Dirichlet principle.

Theorem 4.4.1 [or the shape chain with 8 > (3,

ﬂ—ﬂl)m
3

PO(ry=00) < CP ( (4.4.1)
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for some constant 0 < ' < 0.

Before proving Theorem 4.4.1, we pause to explain the origins of the functions
that are used in the proof. We begin by fixing a sequence {SN} of subsets of S
that have the properties that S\S‘N increases to S, 0 ¢ Sy, and P@(TgN <o0)=1
for each N € N. Then, a function hy € HgN is selected for each N € N. By the

Dirichlet principle, ﬂPO(TgN < 75) < ®(hy). Therefore,
BPY(7; = 00) < lim inf ®(hy).

The idea is to choose hy so that the liminf is as small as possible. Here hy is
chosen to be the minimizer of the Dirichlet form over all functions in HgN that
depend only on cardinality. In spite of the fact that the functions sy take almost
none of the structure of the sets into account, this choice of hy provides a lower
bound on , that turns out to be equal to 3, on the binary tree. It would be even
more remarkable if such nondiscriminating functions provide the correct order of
magnitude for the rate of decay of the survival probability. In fact, we expect that
this is not the case and that the exponent given in bound (4.4.1) of Theorem 4.4.1
can be improved.

The next proposition is used in the proof of Theorem 4.4.1. It is an immediate
consequence of Stirling’s formula that says that n! ~ n?e="v/27n, where ~ means

that the ratio tends to one.
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Proposition 4.4.2 For each d > 2, there exist constants 0 < K, K, < oo such

that

K, (@) K,
— < | T £ ——
Vi J Vi

for each 3 > 1.
When it is necessary to emphasize which d is being considered, we write K;(d)
(resp. Ky(d)) for K (resp. K,).

Proof of Theorem 4.4.1. Let Sy = {121 es: |121| > N}. Also, let gy : {1,....,N} —

R be given by

1 it =0,
gy(k+1) =

gn (k) + W otherwise,
where ¢(k) is the number of connected subsets of T¢ of size k containing O. Also,
define

0 it A =10,

hn(A) = qaxtdd ip1 < |4 < v,

1 otherwise.
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Note that hy € H‘gN. Let N(A) = {B: §(A, B) > 0,|A| < |B|}. Using the fact

that Ygena) {B € B: A C BY| = |A|+2and ¥ 4, M(A) = t(n),

O(hy) =

+ZZ > nﬂnll{BeB ACBH(@)

N( ) n1|A| nBEN() gN(N)

6] N Li(n n—|—2) . n 2
Ry (“Z ’ (<n+2>t<n>m))

By the Dirichlet principle,

P@)(TSN §T )SgN(N)'

Since P®(T$N < TQ;I_) = PO(TSN < 75), it follows that

A . . 1 1
PO(TQA) = OO) S lim inf = ) n S 00 n
N—co gn(N) L+, (n+2)t(n)B" 20t (nt+2)t(n)B"

Recall that ¢(n), the number of connected subsets of B¢ containing the root, is
given by (ij)/((d — 1)n 4+ 1) (see equation (2.5.6)). The quantities ¢(n) and (n)
are related via the recursion

t(n) = > c(ky) - clkgyy) for n > 1. (4.4.2)
Fy 4oty =n—1
This follows from an argument similar to the one use to prove recursion (2.5.2).
By requiring k; 4+ - -- 4+ k; = k and applying recursion (2.5.2),
n—1

tn)=>_ c(k+ e(n—1—k). (4.4.3)

k=0
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Therefore, t(n) < ¢(n + 1). Combining this with the definition of ¢(j) and Propo-

sition 4.4.2 gives

Therefore,
PO(T® . K, (d)
BT GVIHT (ﬁl)

Making the transformation s = f;/3, it suffices to obtain an appropriate lower

bound on the series
D+t
]:
for 0 < s < 1. By expanding in a power series about zero,

1 2. 2k +3)(k+1) (2(k+ 1)\ |
(1_3)%_§§ Ak+1 ((k+1))8'

Using Proposition 4.4.2,

(2n+3)(n+1)(2(n+1)
4nti ( n+1

) < Ki(2)2n+3)vVn+1 < K(2)3(n+1)vVn+2

for n > 0. Therefore, it follows that

b 2K (8-
Pomy = o0) < =75 ( E )

Corollary 4.4.3 The survival probability satisfies

. P(n® #0Vt)
1m sup
NG (5 51)

for some 0 < Cy < co. In particular, the critical exponent (if it exists) is greater

<C

o

than one.
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Proof. The uniform model and the shape chain Ato maybe coupled such that
n° e Ato for all 0 <t < 7. Therefore, P(n° £V t) = PO(T® = 00) so that both

statements follow directly from Theorem 4.4.1. =

4.5 Lower Bounds on the Survival Probability in d = 2

This section is devoted to obtaining lower bounds on the survival probability via
Thompson’s principle. In order to do this, observe that a function w : SxS—R
is an anti-symmetric, incompressible flow on S according to Definition 2.7.1 if

(NS W;N for every N € N. By Thompson’s Principle,

1 1 . .
— < sup —:ﬂPQ(TAN <T:I_):ﬂPO(TAN < Ty).
b

By letting N tend to infinity,

1
K()

< ﬂPO(T@) = 00).

Therefore, in order to obtain lower bounds on the survival probability, it suffices
to construct a flow on & and estimate the energy.

The flow analyzed here was construct in Section 2.9 for the rooted chain. That
flow is lifted to the shape chain providing lower bounds on the probability of
survival and upper bounds on the critical exponent. Unfortunately, that flow was
only completely constructed for d = 2 which explains the specialization to the

binary tree in this section. The contribution here is the estimate on the energy.
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Presumably, the techniques used to estimate the energy can be executed more
generally provided that the flow can be constructed. This is discussed more fully
at the end of this section.

Before proceeding to define the lift, we review the definition of the rooted
chain and the flow that was constructed in Section 2.9. Let {xy, x4, x5} denote the
3 vertices adjacent to the root O. Let B2 = {x € T?: ||a — 24|| <[]z — O||} U O.
Consider the initial configuration n, = T2\ B? U O. By connectedness, 7, C 7,
for all t > 0. Let A, = B? N, so that A, is a Markov chain with state space
C, = {finite, connected A C B? containing O}. Recall that A, is reversible with
stationary measure 7(A) = 141, where |A| is number of vertices in A\ O. Since
O € A, for all ¢, we refer to A, as the rooted chain on B?.

The advantage of constructing flows for the rooted chain is that its state space
allows flows to be constructed recursively by taking advantage of self similarity
properties of B2: see Section 2.7. The uniformly distributed flow is defined in the

following manner. For each n > 1, let

(k4 1)(2k + 1)(3n — 2k)
n(n+1)2n + 1)

a(n, k) = (4.5.1)

for 0 < k <n — 1. Note that a(n,k) > 0 and that a(n,k) + a(n,n — 1 — k) = 1.
Given a set A € C,, let A;, = ANB2., ¢ =1,2. Here {y;,y,} are the neighbors of

127

zy in B?, neither of which is O, and B2, = {y : ||y, — y[| < [|21 —y||} U ;. For each
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A € Cy, define the map r(A,-) with domain N,(A) = {B: ¢(A, B) = 3} by

1 if (A, B) = (0,0),
r(AB) = Y a(|A], |ADr(An By if A # 0 and By € Ny(A;),

0 otherwise.

Thus, r(A,-) > 0 and Y- pgep,4) (A, B) = 1 for each A. Finally,

r(A, B)/c(n) if |A]=n and B € N,(A),
w(A, B) =9 _w(B,A) il AeNy(B),

0 otherwise.

By Lemma 2.9.2 and equation (2.9.5),

> w(B,A) =

{B:AEN>(B)} c(n)
for each A € C,y(n) and for each n € N. This implies that w satisfies the in-
compressibility property and justifies calling w the uniformly distributed flow on
C.

The next objective is to lift the uniformly distributed flow on C; to the state

space of the shape chain S. For this purpose define an anti-symmetric function on
Sx S by
(A, B) = 3 3 w(OUA,OUB) (4.5.2)
{A€A:z1€A,0¢A} {BeB:z1 €B,0¢B}

for A, B +* i Also, set w(@),é) = —@(O,@) = 1. It is immediate that @ is an
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anti-symmetric, incompressible flow. The energy of this flow is given by

zi;AZAﬁQ

2
Z{AeA:xleA,oeA} Z{BeB:xleB,OeB} w(OUA,0U B))
M(A){Be B:Ac B} '

By the Cauchy-Schwarz inequality and the fact that for each pair A and B, the

number of terms that appears in the numerator is at most M(A)|{B € B: A c B}|,

> > > w?(OU A, 0U B)

|A|=n BEN(A) {A€A:x1 €A,0¢A} {BEB:x,€B,0¢B}
1 (e0)

:5 +3 Y w*A,B). (4.5.3)

— 5”“ A€Cs(n) BENS(A)

1
}C(w) < E nZ:l 5n+1

Recall that Cy(n) = {A € C, : |A| = n}. Using the definition of w and inequality

(4.5.3),

K (i) _—+Z 6”*1 > 3 r¥A,B) (4.5.4)

A€C2 ) BGNQ )

Since the asymptotic behavior of ¢(n) is known, it would suffice to determine

the asymptotic behavior of

S > r¥A,B).

AECy(n) BEN,(A)

However, it turns out to be more manageable to determine the asymptotic behavior

of the series itself. By Proposition 4.4.2,

= ng(n) L& glnn(n+ 1)

D N e To TR ST

(4.5.5)

Making the substitution s = 1/1643, the series of interest becomes

Zg (n+1)2s" (4.5.6)
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as s increases to 1/4.

We begin by showing that g(n) satisfies a certain recursion. This recursion
implies that a series similar to series (4.5.6) is a solution of an ordinary differen-
tial equation. The ordinary differential equation takes a particularly nice form.
In fact, fairly elementary techniques allow one to exhibit the general solution of
the ordinary differential equation. This provides an alternative representation of
the series solution. This alternative representation readily reveals the asymptotic
behavior of the series solution as s increases to 1/4. Relating the series solution
of the ordinary differential equation to series (4.5.6) gives a lower bound on the

survival probability that implies inequality (1.4.2) in Theorem 1.4.4.

Proposition 4.5.1 Forn > 1,

Proof. By definition of ¢g(n) and r(A, B),

g(n): Z Z TQ(AvB)

|A|=n BEN,(A)

:Z(O‘Q(nleD Z r?(Ay, By) + a®(n, [4]) Z 7“2(142732))

|Al=n B1€N2(A1) B2€N2(A2)
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for n > 1. By conditioning on the size of A,

g(n) :ni: Z a?(n, k) Z r?(Ay, By)

k=0 {|A|:n,|A1|:k} BleNQ(Al)
n—1
+ Z Z a?(nyn—1—k) Z r2(A,, B,)
k=0 {|A|:n,|A1|:k} BQENQ(AQ)
n—1
=23 > o?(n,k) > Ay, By).
k=0 {|A|:n,|A1|:k} BleNQ(Al)

Using the fact that a2(n, k) Xp en,(a,) 72(Ay, By) is independent of A,,

g(n) :2”2—: Z c(n—1—Fk)a*(n, k) Z r?(Ay, By)

k=0 {|A;|=k} Bi1eN2 (A1)

:222:: c(n—1—=Fk)a?(n,k)g(k). u

As a consequence of Proposition 4.5.1, we obtain the next lemma.

Lemma 4.5.2 Let G(s) = 3207 g(n)(n + 1)2(2n 4+ 1)2s". Then G(0) =

converges for |s| < 1/4, and G(s) is a solution of

s(1 —48)2G"(s) + (1 — 168)(1 —4s)G"(s) — 18(1 — 25)G(s) =0

for|s| < 1/4.

Proof. By Cauchy-Schwarz,

< > r}A,B)<1 for |A| = n.
n+1 BEN,(A)

Thus,
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This together with Proposition 4.4.2 implies that the series defining G/(s) converges
for |s| < 1/4.

By Proposition 4.5.1 and equation (4.5.1),
n—1
gn)(n+122n+1)2n2 =2 c(n — 1 — k)g(k)(k + 1)(2k + 1)2(3(n — k) + k)?
k=0

for n > 1. Expanding the factor (3(n — k) 4+ k)? as 9(n — k)2 + 6(n — k)k + k2,

multiplying by s7~1, and taking the sum from n =1 to infinity, implies that

G'(s) + sG"(s) =18 (C(s) + 3sC'(s) + s2C"(s)) G(s)
+12(C(s) 4+ sC'(s)) sG'(s) + 2C(s) (sG'(s8) + s2G"(s))

where C'(s) = 32 ¢(n)s®. Multiplying recursion (2.5.2) by s"~! and taking the

n=0

sum from n = 1 to infinity gives

1 —+/1—-4
C(s) = — . > for 0 < s < 1/4.
s

Using the explicit expression for C'(s),
s(1—45)2G"(s)+ (1 —16s)(1 —4s)G"(s) —18(1 —=25)G(s) =0 G(0) = 1. u

We will show that the ordinary differential equation determines the rate at
which G/(s) tends to infinity as s increases to 1/4. Since the coefficient of G”(s)
in the ordinary differential equation has a factor of s, it follows that there are
solutions to the ordinary differential equation that also blow up as s tends to zero.

On (0, 1/4), the general solution to the ordinary differential equation is of the form

(1 —4s) 1 Hy(s) + ey(1 — 4s)2 Hy(s) (4.5.8)
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where ¢;, ¢ = 1,2, are arbitrary constants, 1y = —1 —/13/2, r, = —1 +/13/2,
and H;(s) =57  h;i(n)(1 — 4s)" with 2,(0) = 1,7 = 1,2, and

2n? 2 +4r, 5 — 2r,
hn) = ZEHC A4S 2y, (4.5.9)
2n? 4+ (4 4+ 4r;)n

for n > 1.

In order to see that expression (4.5.8) is the general solution, let
Z h(n)(1 — 4s)ntr,
where h(n) is defined as in equation (4.5.9) except with r; replaced by r. We have
Z h(n)(1 — 4s)ntr
(1 —4s)H'(s :—4211 (n+7r)(1 —4s)ntr
(1 —4s)2H"(s) = 16Zh Y4 r)(n+r—1)(1 —4s)rt.

Also, expressing the coefficients of (1 — 4s)*G(")(s) in equation (4.5.7) as linear

combinations of {(1 —4s)™}  y gives

—18(1—28) = -9 —9(1 —4s), (1 —16s) = =3+ 4(1 — 4s),

and s=1/4—(1-4s)/4.
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Therefore,
—18(1 — 2s)H(s) = — 9(0 —92 n) + h(n —1))(1 — 4s)"+7,

(1 —16s)(1 —4s)H'(s) =12h(0)r + Z(th(n)(n +r)

n=1

— 16h(n — 1)(n+r—1))(1 —4s)"*", and
s(1 —4s)2H"(s) =4h(0)r(r — 1) —|—4Z Jin+r)n+r—1)
—h(n=1)n+r—1)(n+r—2))(1—4s)"*".

Adding these three expressions and combining like terms shows that H(s) is a

solution if and only if
R(0)(—9 4 8r+4r%) =0
h(n)(4n? + (8 +8r)n) = h(n — 1)(4n? + (4 + 8r)n + 10 — 4r).

In particular, (1 — 4s)"H;(s), ¢« = 1,2, are two linearly independent solutions to
the ordinary differential equation.

Since all solutions on (0,1/4) are given by expression (4.5.8), there exists a
choice of ¢;, 2 = 1,2, such that

G(s) = cr(1 —4s)" H(s) + cy(1 — 4s)™2 Hy(s)

on (0,1/4). The fact that r, > 0 implies that ¢,(1 — 45)™2 Hy(s) tends to zero as s
increases to 1/4. Since G/(s) tends to infinity as s increases to 1/4, it follows that
¢, > 0 and

G(s) ~ e (1 —4s)n as s / 1/4.
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Equivalently,

p—1/4
&

G(1/168) ~ ¢, ( ) L s BN 1/4. (4.5.10)

Theorem 4.5.3 For the shape chain on the binary tree,

PO(r; =
Cy <liminf (73 = o0)

BN1/a (B — 1/4)14V13/2 (4.5.11)

for some constant 0 < (5, < oco.

Proof. By Thompson’s principle, inequalities (4.5.4) and (4.5.5), and the fact that
n<(2n+1)/2,

1 1
1+ =2mr (1/165) L+ 30, e —

=1 c2(n

PO(T@ = 00).

By asymptotic relation (4.5.10),

K2(2) o PO(T@ = 00)
—2 2 < liminf =,
6141+x/13/2 \1/4 (5 _ 1/4)1+\/13/2

Corollary 4.4.3 and Theorem 4.5.3 imply that if the critical exponent exists,
then on the binary tree it is lies in the interval [5/2,1 + v/13/2]. If one could
show that the hypothesis of Lemma 2.9.1 holds for d > 3, then the analog of g(n)
satisfies g(n) < ¢(n) which gives an upper bound of 7/2 on the critical exponent

on the d-ary tree. Furthermore, the analog of the recursion in Proposition 4.5.1

will hold:

W=dY S cli)ecliaad(m (ks a)o(R)

k=0 j1+-+jg_1=n—1-k
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If one provides more information about a(n;-) in proving that the hypothesis of
Lemma 2.9.1 holds, then it may be possible to improve the exponent to 1 4++/13/2.
It is unclear whether or not either of these bounds provides a sharp estimate on

the rate of decay.

4.6 The Expected Extinction Time and the Susceptibility

Sections 4.4 and 4.5 bounded the rate at which the survival probability ap-
proaches zero as [ decreases to [3;. In the subcritical regime, there are other
quantities that typically diverge as [ increases to ;. For example, the expected
extinction time is often infinite at the critical point. In the case of the uniform
model, such quantities do not diverge because the shape chain exhibits positive re-
current behavior at ;. Instead they approach some constant. Due to reversibility,
more information than simply the rate at which these quantities approach some
constant can be provided. In fact, explicit formulas for the expected extinction
time and the susceptibility are obtainable. The derivations of these formulas are

given here.

Theorem 4.6.1 For 3 < j3,

o1 0 a)— Ox) < o CHB)—=C(B)
a)E(T)—E/O ————de and HE[ pQld = ————.
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Proof. Recall that t(n) is the number of connected subsets of T? that contain O
and ¢(n) is the number of connected subsets of B¢ that contain O. The sequences

t(n) and ¢(n) are related to each other via recursion (4.4.3). Therefore,

tn) =>_ c(k)e(n — k) — c(n), (4.6.1)

for n > 1. The normalizing constant for the stationary measure of the shape chain
is given by
R >, t(n)
c =143 W
n=1 n
By recursion (4.6.1),
(4.6.2)

Since the shape chain is positive recurrent,

o [ igun = LA

for any nonnegative function 2 on S. Taking h = 1 gives

N

EY () = @

By expressing 7'5' as the sum of the time to hit O starting from ( and the time to

hit the 0 starting from O,

. 1 R
IE@(Tg') = E + EO(T@).

Combining these two expressions and using equation (4.6.2),

N

EO(TQ) _ C(ﬂ;_ 1 _ %/Oﬁ 02($); C(x)dx
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which proves a). Taking h(A) =

i / [AiJdt = Zt )prt = C1(B) = M
which proves b). m
On the binary tree,
)=t
so that
by = LB U

Integrating this expression and using the fact that C'(0) =

N

C(p) =

This implies that

EO(7) =

E [ 50l =
when d = 2. In particular,

2 —E°(7)

lim —— 2 =
sr1/a 1[4 -

|A| and using equation (4.6.2) gives

—1463+(1—4p822 1

—1 468 — 682 +

132 )

(143

IVE
—-36—(1-pB)V1-14p

233 ’

8—E (7 |n9|dt
and lim fo |nt |
B/1/4 1/4 —

= 24.
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CHAPTER 5

Reversible Invariant Measures

We now turn our attention to the infinite system and the study of invariant
measures. By now, it is not hard to see that there are exactly two invariant
measures in the supercritical regime, the pointmass on the empty configuration
and the pointmass on the completely occupied configuration. This follows from
the fact that the finite system obeys complete convergence. A more interesting
question arises when one asks about the subcritical regime. Unlike the contact
process and one dimensional reversible nearest particle systems, the uniform model
has a rather large collection of subcritical invariant measures. Here, that collection

of reversible invariant measures is described.

5.1 Some Background on Reversible Measures

A probability measure g € P is said to be invariant for the process if g = uS(t)
for all £ > 0. The set of all invariant measures is denoted by 7. Some basic
properties of invariant measures are collected in the next proposition. The proofs

of these statements can be found in Liggett [17].
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Proposition 5.1.1
a) € J if and only if
[ strdu = [ ra
for all f € C(X) and for all t > 0.
b) J is a nonempty, compact convex subset of P.

¢) Let J, be the extreme points of J. Then J is the closed convex hull of J..

d) If v=1Nm,_ S(t)du, then v € J.

Definition 5.1.2 A probability measure p € P is said to be reversible if

/fS(t)ng = /gS(t)fdﬂ, (5.1.1)
forall f, g € C(X). In other words, S(t) is self-adjoint with respect to p.

The next theorem provides a useful characterization of reversibility in the con-

text of spin systems.

Theorem 5.1.3 Let c(x,n) be the rates for a spin system and let y be probability

measure on X. The measure p is reversible if and only if

[, elemsmdutn) = [ eten) . )dutn)

for every cylinder function f and for every x € T4,
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5.2 Subcritical Reversible Measures

Say that 6 C T is a backbone if b is nonempty and has no leaves. Let 0b =
{e € T? : || — b|| = 1} be the eaterior boundary of b. Also, for = € 0b, let
x* denote the unique element of b at distance one from x. For x € db, define
By(z) ={y : ||z —y|| < [|b —y||} Ua* to be the branch of T? extending from
b into b through x. Also, let Cy(x) be the set of all finite, connected subsets of
By () containing = together with the empty set. Finally, let 7, , be the probability

measure on Cy(x) given by

_BM
BReG

Here C'(/3) is a normalizing constant that depends on d as well as 3. The assump-

ﬂ-b,x(A)

tion that g < J; implies that such a normalizing constant exists.

The measures {7, .}, induce a measure p, on X that is given by

Uy = 1{597} H Tp o
zEDb

In particular, the support of u, is the set X, = {n: b6 Cn and A’(n) € Cy(x) ¥V = €
db}, where A®(n) = n N By(x). Since p, L py for all distinct backbones b and ¥, it

follows that the mapping from backbones to probability measures is one-to-one.

Proposition 5.2.1 {y, : b is a backbone} CR,.

Proof. Fix a backbone b and let (A?’x)l,eab be a collection of independent rooted

chains such that for each @ € 9b the state space of A?’w is Cy(x) and the initial
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state Ag’“’ is (). Set

b,z
r€Ib
Thus, n? is distributed as a uniform model with initial state b such that n’N B, (x) =
AP for all t > 0. Since AY™ is converging in distribution to m, ., and since any
cylinder function depends only on the state of finitely many rooted chains, it follows

that n° converges in distribution to y,. Therefore, y,, is invariant.

Suppose that

pp = Ay A+ (1= Mgy (5.2.1)

for some measures p; € J. In this case, p;(n : b Cn) =1 for ¢ = 1,2 so that
6y, < pi;. Since the uniform model is an attractive spin system, 6,5(t) < p;S(t) = p;
and consequently p, < p;. By equation (5.2.1), p, = p;, and consequently g is
extremal.

Finally, for any pair of cylinder functions f and ¢, there exists a finite collection
{z;}, of vertices in b such that f and g are determined by the states of the

associated rooted chains {A?’wi}?zo. Without loss of generality, write
f(ﬁ) = f(A[;O(U)a cees A?gn(n))v
where Ab(n) = n N By(x) as before. By definition,

Jostn) S5y ()

= Z Z ﬂ-b,l’o(AO)PAO (A?xo = BO) o 'ﬂ-b,xn(An)PAn(A?xn = Bn) X
(AososAn) (BosnBn)

g(Ag, -, A f( By, ..., B,).
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Using the fact that 7rbm(Ai)PAi(A$’m =B,) = 7rbm(BZ»)PBi(A$’m = A;),

J o) S ) dps(n)

= Z Z ﬂ—b,xo(BO)PBO(A?xO = AO) T (Bn)PBn(A?xn = An) X

(AgssAn) (Bos...Bn) -
g(A07"'7An)f(B07"'7Bn)

= /Xf(n) S(t)g(n) duy(n).

So it follows that py, is reversible. =

Remark. Observe that there was nothing special about the fact that the initial
state was taken to be ¢, in paragraph one. In fact, 6, 5(¢) converges in distribution
to u, for all n € X,. Therefore, y,;, is the unique invariant measure on X,.

The goal is to show that the mapping from backbones to extremal reversible
measures is onto. It is here that Theorem 5.1.3 comes into play. In fact, we will see
that as a consequence of Theorem 5.1.3, reversible measures concentrate on config-
urations that are connected. Once that is established, semi-infinite configurations
(infinite configurations that do not contain a backbone) need to be excluded. It
turns out that semi-infinite configurations die out in a distributional sense (see
Lemma 5.2.3 below). Combining the connectedness together with the fact that
semi-infinite configurations die out and the fact that the state spaces X, and X,

do not communicated for b # b/, will give the desired result.

Lemma 5.2.2 [f p € R, then the support of p is contained in X' = {n € X :
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n is connected }.

Proof. Consider L; = {x,...,x;} € T be such that ||z, — 2z, 4[| =1for 1 <j <1

and zj, # x; for k # j. Let f;(7) = i, (m0)=n(ei)=1n(z;)=0,1<j<i—1}- Since c(xy,1) =0

whenever f,(n,,) =1, it follows that

[, el mbln, )dun) = 0.

By reversibility,

/X (a1, m) f2(n)dp(n) = 0.
On the other hand,
[, el n)dutn) = 28500 < nleo) = 1n() = 0,na;) = 1),

Therefore, wu(n : n(xg) = 1,n(xy) = 0,n(xy) = 1) = 0. In particular, all distinct
connected components are at least at distance three from each other p almost
surely.

Proceeding inductively, assume that all distinct connected components are at

least at distance n from each other. Thus, f,(7,,) =0 p almost surely so that

[, el ne, )antn) = 0.

By reversibility,

|, elermtmdnt) = o.

On the other hand,

/X c(xy,m) fu(m)du(n) = Bp(n :n(ze) = n(z,) =1,9(z;) =0,1 < j <n—1).

130



Therefore, pu(n : n(zy) = n(z,) = 1,9(x;) = 0,1 < j <n—1)=0. In particular,
all distinct connected components are at least at distance n + 1 from each other u
almost surely.

We have shown that the g probability that there are distinct connected com-
ponents that are at a finite distance from each other is zero. In other words,

p(n : n is connected) = 1, where n = ) is considered to be connected. m

Lemma 5.2.3 Let 0 € X be a connected configuration that does not contain a

backbone. Then 6,5(t) — &é4.

Proof. Since 8 < f3;, the assertion holds for finite connected configurations o.
Fix o infinite. Given x € T4, let y, be the unique y € o such that ||z — y,|| =
min{||z —y|| : y € o}. Also, let {y,},.en be an infinite path in o such that y; # y;
for ¢ # j and ||y; — y,4q|| = 1 for all ¢ € N. Finally, let ;"” be the uniform model
with initial state o and death at y, suppressed. By attractiveness, we can couple

ne and n,"" such that 7 C 5, for all t > 0. Therefore,
Pz en?) < Plxen™). (5.2.2)

Let X, ={z € Td: ||z —y, 4| <|lz —y.ll} Uy, and A7 = n"" N X,,. Thus A7 is

distributed as a rooted chain with A? = 0N X,,. In particular, for m = n+ ||y, — 2|,
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we have

lim P(z € n,") = lim P(x € A})
5
B3z C(ﬂ)

k1=0 k(a—1)ym+1=0 (6)

_
C(8)

= (BC(B)*=)"

ﬂlﬁ - 6k(d—1)m+1

C(g)i-tm

Consequently, SC(3)4=1 < 1. Recall equation (2.5.3) that says that C'(3) and /3

are related via the polynomial expression

peB)-=CB)+1=0

whenever § < ;. If pC(3)4-! = 1, this polynomial expression would reduce to
1 =0, a contradiction. Therefore, 3C ()41 < 1 so that lim,_ . P(z € ;") tends

to zero as n tends to infinity. By equation (5.2.2),
limsup P(z € n7) < lim lim P(x € ,"7) = 0,

f— 00 n—00 t—o00

from which the result follows. =

Together Lemmas 5.2.2 and 5.2.3 imply the following corollary:

Corollary 5.2.4 If p € R and p L by, then u(n : 3 a backbone b3 bC n)=1.
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Corollary 5.2.4 together with fact that X, and X}, do not communicate for b = &
will imply that each nontrivial extremal reversible measure is given by p, for some
backbone b. As a consequence of the fact that X, and X, do not communicate for
b# b, € J. implies that a certain zero-one law holds (see Lemma 5.2.5 below).
The reason why the desired result does not follow immediately from the corollary
and the zero-one law is that the number of backbones is uncountable. Therefore,
under the assumption that g € R,, there is no a priori guarantee that u(X,) > 0
for some b. This technical difficultly can be circumvented by considering the event
that a particular vertex x is in the backbone. Because there are a countable number
of vertices, some vertex is in the backbone with positive probability. The zero-one

law then allows a single backbone to be singled out.

Lemma 5.2.5 If p € R, and Y = Uy X, for some subset of backbones I, then

w(Y)=0 oru(Y)=1.

Proof. Fix p € R,.. Suppose that there exists a subset of backbones I such that

for Y = Uy X,, the measure g satisfies 0 < p(Y) < 1. Let py(-) = p(- | V) and

pye() = (- | ). Thus,

() = py p(Y) + pye() (1= (V).

Using the fact that X, and X; do not communicate for b # ¥, it follows that
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S(t)1y f = 0 on the event that ny € Y. Therefore,

(Af5@9@w=[!bf5®g@w=fQWf5®gi%j

dp
= [ g5ty s g |9 S fduy = [ g 500 duy.

Hence, uy is reversible. By the same argument, py. is also reversible. But this

contradicts the extremality of p. Therefore, no such I exists. m

Theorem 5.2.6 {u; : b is a backbone} = R..

Proof. Let € R. be such that p L é5. Also, let I, = {b : « € b} and let
Y, = Uy X,. By Lemma 5.2.5, either p(Y,) = 0 or p(Y,) = 1 for each x € T
Furthermore, by Lemma 5.2.4, u(U,Y,) = 1 so it follows that px(Y,) = 1 for some
x € T4 Therefore, the set r = {x : u(n : @ € n) = 1} is nonempty. In addition,
the set r is connected by Lemma 5.2.2. If r is not a backbone, then r contains a
leaf ¢ that has d neighbors ¢;, ¢ = 1,....d, that are in the complement of r. Since
¢ € r, it follows that pu(Ud_ Y, ) =1. By Lemma 5.2.5, it must be that p(Y, ) =1
for at least one index ¢. But this contradicts the fact that ¢; & r. Therefore, r is a
backbone. Furthermore, for each @ € dr, u(Y,) = 0 (otherwise & € r). Therefore,
r is the maximal backbone g almost surely so that p(X,) = 1. Since the uniform
model restricted to the space X, has a unique reversible measure, it follows that
po=p,. m

Note that Theorem 1.4.5 is less precise version of Theorem 5.2.6. As men-
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tioned in the introduction, it would be interesting to determine whether or not
there are any invariant measures that are not reversible. The crucial place where
reversibility was used in this section was to prove the connectedness property. The
remainder of the proof relies on connectedness, not reversibility. So the main issue
is to determine whether or not there are invariant measures that are supported on

collections of disconnected configurations.
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