MATH RESEARCH AND PREPARING FOR MATH SUCCESS

Dr. Hanson Smith

Assistant Professor of Mathematics
CSUSM

THE INTEGERS

$$
\ldots-3,-2,-1,0,1,2,3, \ldots
$$

THE ADDITIVE BUILDING BLOCK IS 1

What is/are the multiplicative building blocks?
2=2
$6=2 \times 3$
$8=2 \times 2 \times 2$
$10=2 \times 5$
$105=3 \times 5 \times 7$

The Multiplicative building blocks are primes.

Primes are only divisible by themselves and 1.

How many are there?

How are they distributed? Are there lots of them close together or are they far apart?

Do they have any special shapes or properties?

There are infinitely many primes.

PROOF: Suppose there are only finitely many primes: $2,3,5,7, \ldots, p_{n}$. Let's multiply them all together: $\mathrm{P}=2 * 3 * 5 * 7 * \cdots * p_{n}$. This product P is divisible by every single prime!
Let's now consider $\mathrm{P}+1$. Every number has prime factors, so there is some prime l that divides $\mathrm{P}+1$. We listed all the primes earlier, so l must have been in our list. Thus, l divides P and $\mathrm{P}+1$. Hence l divides $(P+1)-P=1$. This is a contradiction!
We conclude that making a finite list of all the primes must not have been possible. Therefore, there are infinitely many primes. Q.E.D.

MORE QUESTIONS

How are the infinitely many primes distributed?

Can I find big primes that are close to each other? Are there bounded gaps between primes?
2 is the only even prime. (Bad Joke: Because of this 2 is the oddest of all primes.) So, after 2, the closest two primes can be is 2 apart. We call such primes twin primes. Are there infinitely many twin primes?

$$
\begin{gathered}
1^{2}+1=2, \quad 2^{2}+1=5, \quad 4^{2}+1=17, \quad 6^{2}+1=37, \ldots \\
2+1=3, \quad 2 * 3+1=7, \quad 2 * 3 * 5+1=31, \quad 2 * 3 * 5 * 7+1=211, \ldots \\
2^{2}-1=3, \quad 2^{3}-1=7, \quad 2^{5}-1=31, \quad 2^{7}-1=127, \ldots
\end{gathered}
$$

- Mathematical Literacy

- One of the biggest factors impeding student success is a lack of fluency in fundamental mathematical ideas. Students need to understand concepts like fractions, functions, and manipulating both sides of an equality with algebra.

.Mathematical Literucy

$$
\begin{aligned}
& \begin{array}{l}
1^{2}+1=2, \quad 2^{2}+1=5, \quad 4^{2}+1 \\
=17, \quad 6^{2}+1=37, \ldots \quad(2 k)^{2}+1
\end{array} \\
& \frac{1}{2}+\frac{1}{5}=? ? ? \\
& \frac{5}{10}+\frac{2}{10}=\frac{7}{10} \\
& \text { Let } \pi(x) \text { be the function that counts the } \\
& \text { number of primes up to } x \text {. How does } \\
& \pi(x) \text { behave as we vary } x \text { ? } \\
& 2^{2}-1=3, \quad 2^{3}-1=7, \quad 2^{5}-1=31, \\
& 2^{7}-1=127, \ldots \quad 2^{p}-1
\end{aligned}
$$

- Mathematical Literacy

- One of the biggest factors impeding student success is a lack of fluency in fundamental mathematical ideas. Students need to understand concepts like fractions, functions, and manipulating both sides of an equality with algebra.
- These concepts need to click. Students who have a deep understanding of these relatively basic concepts have the foundation to do very well in STEM.

Life is richer when you are mathematically literate!

The Math Options at CSUSM

Mathematics Core + General Option + Possible Electives

Mathematics Core + Education Option + Possible Electives

*In place of MATH $442 / 444$ students can substitute MATH 242: Stats and an additional 3 units of MATH electives numbering 410-499 or ≥ 505.

Mathematics Core + Algorithmic Option + Possible Electives

\dagger Electives for the algorithmic option are
Math 410-490, Math 505 and higher, and CS 440, 464, 471, 473, and 478.

Mathematics Core + Applied Option + Possible Electives

Math Department

College of STEM

Student Support

