

Introduction to Digital Circuits 2

Truth Table:

- The operations of a logic circuit can be defined by what is called a truth table.
- A truth table lists all the possible combinations of the input variables and shows the relationship between the input variables and the resulting output.
- They grow exponentially in size with the number of variables. A truth table with three input variables has eight rows, 2³ since there are eight possible valuations of these variables. For four-input variables the truth table has 16 rows, 2⁴ , and so on.

x1	x2	x1*x2	x1+x2
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Types of Logic Gates:

Boolean Algebra:

- To simplify a function and design a less costly circuit and more efficient circuit we use Boolean Algebra.

If assuming Boolean algebra only takes one of two values, 0 or 1, then the following is true:

1a)	0 *0 = 0	1b)	1 + 1 = 1
2a)	1 *1 = 1	2b)	0 + 0 = 0
3a)	0 *1 = 1 *0 = 0	3b)	1 + 0 = 0 + 1 = 1

|--|

If assuming Boolean algebra takes one or more variables, then the following terms are true:

1a)	<i>x</i> + <i>0</i> = <i>x</i>	1b)	x . 1 = x
2a)	x + x' = 1	2b)	x . x' = 0
3a)	x + x = x	3b)	<i>x</i> . <i>x</i> = <i>x</i>
4a)	<i>x</i> + 1 = 1	4b)	x.0=0
5a)	(x')' = x		

Commutative	: a)	x + y = y + x	b) xy = yx
Associative:	a)	x + (y + z) = (x + y) + z	b) x(yz) = (xy)z
Distributive:	a)	x(y+z) = xy + xz	b) x + yz = (x+y) . (x+z)
DeMorgan:	a)	$(x + y)' = x' \cdot y'$	b)(xy)' = x' + y'
Absorption:	a)	x + xy = x	b) x (x+y) = x

DeMorgan's Law:

- The *dual* of an expression is obtained by replacing all addition operators with multiplication operators, and vice versa, and by replacing all 0s with 1s, and vice versa. (DeMorgan law)
- Example:

Find the complement of the functions F1 = x'yz' + x'y'z and F2 = x(y'z'+yz) by applying DeMorgan's theorem as many times as necessarily

F1' = (x'yz' + x'y'z)'= (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z') F2' = [x(y'z'+yz)]'= x'+(y'z'+yz)' = x'+(y'z')'. (yz)' = x'+(y+z)(y'+z')

Procedures to represent a function in Sum of minterms and product of maxterms:

- To find the sum of product of a given function from truth table (*SoP*):
 - 1. Make the truth table for the function
 - 2. Look at those rows that function is 1
 - 3. Write down the corresponding product terms and sum them together to find sum of minterms
- To find the product of sums **(PoS)**:
 - 1. From the truth table for the function, **f**
 - 2. Find the SoP of the complement of the function, **f**' (use the terms whose functional values are 0)
 - 3. find out (f')' which will result in f but with product of maxterms

Example of SoP and PoS:

Given the function f= AB + A'C , find its Representation in sum of minterm and product of maxterm.

- Make the truth table for function by putting the value of function to 1 for those terms that AB=1 or A'C = 1
- 2. Finding the *sum of minterms* form of function:

f=A'B'C+A'BC+ABC'+ABC

 Find the complement of function by summing the minterms that are 0 in the function.

f'=A'B'C'+A'BC'+AB'C'+AB'C

 Complement f' one more time and the result would be f in terms of *Product of maxterm*

(f')' = f = (A+B+C)(A+B'+C)(A'+B+C)(A'+B+C)

ABC	AB	A'C	f
000	0	0	0
001	0	1	1
010	0	0	0
011	0	1	1
100	0	0	0
101	0	0	0
110	0	0	1
111	1	0	1

