

Introduction to Digital Circuits 2

Truth Table:

- The operations of a logic circuit can be defined by what is called a truth table.
- A truth table lists all the possible combinations of the input variables and shows the relationship between the input variables and the resulting output.
- They grow exponentially in size with the number of variables. A truth table with three input variables has eight rows, 2³ since there are eight possible valuations of these variables. For four-input variables the truth table has 16 rows, 2⁴, and so on.

х1	x2	x1*x2	x1+x2
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Types of Logic Gates:

Boolean Algebra:

- To simplify a function and design a less costly circuit and more efficient circuit we use Boolean Algebra.

If assuming Boolean algebra only takes one of two values, 0 or 1, then the following is true:

$$1b)$$
 $1+1=1$

$$2b) 0+0=0$$

3a)
$$0*1=1*0=0$$

$$3b)$$
 $1+0=0+1=1$

4a) If
$$x = 0$$
, then $x = 1$

4b) If
$$x = 1$$
, then $x = 0$

If assuming Boolean algebra takes one or more variables, then the following terms are true:

$$1a) x + 0 = x$$

$$2a) x + x' = 1$$

$$3a) \qquad x+x=x$$

$$4a) \qquad \qquad x+1=1$$

$$5a) \qquad (x')' = x$$

1b)
$$x \cdot 1 = x$$

2b)
$$x \cdot x' = 0$$

3b)
$$x \cdot x = x$$

4b)
$$x.0=0$$

Commutative: a)
$$x + y = y + x$$
 b) $xy = yx$

Associative: a)
$$x + (y + z) = (x + y) + z$$
 b) $x(yz) = (xy)z$

Distributive: a)
$$x (y + z) = xy + xz$$
 b) $x + yz = (x+y) \cdot (x+z)$

DeMorgan: a)
$$(x + y)' = x' \cdot y'$$
 b) $(xy)' = x' + y'$

Absorption: a)
$$x + xy = x$$
 b) $x (x+y) = x$

DeMorgan's Law:

- The *dual* of an expression is obtained by replacing all addition operators with multiplication operators, and vice versa, and by replacing all 0s with 1s, and vice versa. (DeMorgan law)
- Example:

Find the complement of the functions F1 =x'yz' + x'y'z and F2 = x(y'z'+yz) by applying DeMorgan's theorem as many times as necessarily

$$F1' = (x'yz' + x'y'z)'$$

$$= (x'yz')'(x'y'z)'$$

$$= (x+y'+z)(x+y+z')$$

$$F2' = [x(y'z'+yz)]'$$

$$= x'+(y'z'+yz)'$$

$$= x'+(y'z')'. (yz)'$$

$$= x'+(y+z)(y'+z')$$

Procedures to represent a function in Sum of minterms and product of maxterms:

- o To find the sum of product of a given function from truth table (SoP):
 - 1. Make the truth table for the function
 - 2. Look at those rows that function is 1
 - 3. Write down the corresponding product terms and sum them together to find sum of minterms
- o To find the product of sums (PoS):
 - 1. From the truth table for the function, **f**
 - 2. Find the SoP of the complement of the function, f' (use the terms whose functional values are 0)
 - 3. find out (f')' which will result in f but with product of maxterms

Example of SoP and PoS:

Given the function f= AB + A'C, find its Representation in sum of minterm and product of maxterm.

- Make the truth table for function by putting the value of function to 1 for those terms that AB=1 or A'C = 1
- Finding the *sum of minterms* form of function:

f=A'B'C+A'BC+ABC'+ABC

3. Find the complement of function by summing the minterms that are 0 in the function.

 Complement f' one more time and the result would be f in terms of Product of maxterm

$$(f')' = f =$$

(A+B+C)(A+B'+C)(A'+B+C)(A'+B+C)

ADC	A D	A/C	ſ
ABC	AB	A'C	f
000	0	0	0
001	0	1	1
010	0	0	0
011	0	1	1
100	0	0	0
101	0	0	0
110	0	0	1
111	1	0	1

