Characterization of Surfing Heart Rate and Activity Across Age Groups

Christine L. LaLanne, Michael S. Cannady, Danica L. Taylor, Jeff A. Nessler, George H. Crocker, Sean C. Newcomer

Department of Kinesiology, California State University, San Marcos, CA, 92096

Abstract

Background: The popularity of surfing has increased over the past several decades to encompass all age groups. The activity profile and heart rate (HR) responses to surfing have previously been characterized in younger but not older surfers. Purpose: The purpose of this study was to investigate the impact of aging on the activity profiles and HR responses during surfing. Methods: A total of 100 male recreational surfers (18-75 years) were observed during a single surf session. Surf session duration and average HR were measured using HR monitors (Polar FT1 and RCX5). Additionally, a more detailed analysis of HR was performed in a subset of subjects (n=79) in comparison with evaluation of activity in the wave, which was recorded using a video camera (Canon HD). HR responses from the RCX5 HR monitor and activity data from the video camera were synchronized and assessed in 5-second intervals during data analysis. One-way Analysis of Variance (ANOVA) was used to determine differences between age groups for surf duration time. Pearson’s correlation coefficient (r) determined relationships between two variables. Significance was set at an α=0.01 due to the large number of correlations tested. Results: There were no significant differences between age groups for total time spent in a single surf session (18-29: 67.8±7.4min; 30-39: 67.2±8.9min; 40-49: 63.6±7.7min; 50-59: 54.7±3.0min; 60-75: 66.3±3.6min). Similarly, percent time spent in different surfing activities was not correlated with age (paddling: r=0.205, p=0.070; stationary: r=0.210, p=0.064; wave riding: r=0.263, p=0.019; miscellaneous: r=0.013, p=0.898). Average HR intensity was increased in older subjects (r=0.263, p=0.019), with significant increases occurring during paddling (r=0.392, p=0.001), stationary (r=0.382, p=0.001), and wave riding stages (r=0.410, p=0.001). Conclusion: The results from the current investigation suggest that aging has little impact on the time spent in the various surfing activities, but does significantly increase HR responses during paddling, stationary, and wave riding stages of surfing.

Methods

Subjects:
- 160 male recreational surfers age 18-75 were recruited from beaches in Southern California.
- Subjects reported their health and surfing histories after giving informed consent.

Protocol:
- Surf session duration and average HR were measured for all subjects using HR monitors (Polar FT1 and RCX5) during a single surf session.
- A subset of subjects (n=79) was videotaped (Canon HD) and activity was later classified into one of four stages: paddling, stationary, wave riding, or miscellaneous.
- HR responses and activity data were synchronized and analyzed in 5-second intervals.

Statistical Analysis:
- One-way Analysis of Variance (ANOVA) was used to determine differences among age groups.
- Pearson’s correlation coefficient (r) determined relationships between two variables.
- Significance was set at an α=0.01 due to the large number of correlations tested.

Results

Figure 1: Percent time spent paddling vs. age.

Figure 2: Percent time spent stationary vs. age.

Figure 3: Percent time spent wave riding vs. age.

Figure 4: Percent time spent in miscellaneous activities vs. age.

Figure 5: Paddling HR (% of age-predicted max) vs. age.

Figure 6: Stationary HR (% of age-predicted max) vs. age.

Figure 7: Wave riding HR (% of age-predicted max) vs. age.

Figure 8: Miscellaneous HR (% of age-predicted max) vs. age.

Conclusions

- There were no significant differences between age groups for total time spent in a single surf session (F=0.360, p=0.817).
- Percent time spent in the different surfing activities was not correlated with age (paddling: r=0.205, p=0.070; stationary: r=0.210, p=0.064; wave riding: r=0.263, p=0.019; miscellaneous: r=0.013, p=0.898) (Figures 1-4).
- Average HR (expressed as a percent of age-predicted max) for the entire surf session increased in older subjects (r=0.263, p=0.019).
- HR (expressed as a percent of age-predicted max) significantly increased in older subjects while paddling (r=0.392, p=0.001), stationary (r=0.392, p=0.001), and wave riding (r=0.410, p=0.001) (Figures 5-8).
- The results from the current investigation suggest that aging has little impact on the time spent in the various surfing activities, but does significantly increase HR responses during paddling, stationary, and wave riding stages of surfing.

Table 1. Summary of subject characteristics expressed in mean ± SD.

<table>
<thead>
<tr>
<th>Subject Age Group</th>
<th>n</th>
<th>Age (years)</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>Surfing Experience (years)</th>
<th>Surfing Frequency (hr/wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29</td>
<td>34</td>
<td>23.3±3.6</td>
<td>1.79±0.10</td>
<td>74.5±7.6</td>
<td>9.7±5.9</td>
<td>9.3±4.4</td>
</tr>
<tr>
<td>30-39</td>
<td>37</td>
<td>34.8±3.3</td>
<td>1.80±0.08</td>
<td>80.8±10.8</td>
<td>17.0±7.9</td>
<td>9.7±7.6</td>
</tr>
<tr>
<td>40-49</td>
<td>41</td>
<td>43.6±2.7</td>
<td>1.79±0.08</td>
<td>80.6±10.9</td>
<td>21.1±8.4</td>
<td>8.2±5.9</td>
</tr>
<tr>
<td>50-59</td>
<td>29</td>
<td>54.7±3.0</td>
<td>1.75±1.0</td>
<td>84.0±20.4</td>
<td>31.7±13.4</td>
<td>8.1±4.3</td>
</tr>
<tr>
<td>60-75</td>
<td>29</td>
<td>66.3±3.6</td>
<td>1.77±0.08</td>
<td>81.7±10.4</td>
<td>36.1±17.7</td>
<td>6.8±2.9</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>43.2±15.0</td>
<td>1.78±0.09</td>
<td>80.1±12.8</td>
<td>23.0±14.7</td>
<td>8.5±5.4</td>
</tr>
</tbody>
</table>

References


Acknowledgements

We would like to acknowledge the students of the California State University, San Marcos Kinesiology 326 class for their help in data collection and the surfers who participated in our research study.