Increasing Surfboard Volume Reduces Energy Expenditure and Alters Biomechanics During Paddling

Vuk Ekmecic, Ning Jia, Thomas G. Cleveland, Maya L. Saulino, Jeff A. Nessler, George H. Crocker, Sean C. Newcomer

Department of Kinesiology, California State University, San Marcos, CA, 92096

Abstract

BACKGROUND: Surfboard shapers manipulate board volume (BV) with the notion of altering the surfer's experience. However, there is no scientific evidence on the impact of BV on a surfer's ability to paddle, catch, and ride waves. PURPOSE: The purpose of this study was to investigate how BV affects energy expenditure and biomechanics during paddling. We hypothesized that energy expenditure decreases as surfboard volume increases. METHODS: Twenty amateur surfers (18 men, 2 women, ages 18–45) paddled against a constant current in a swim flume (Endless Pool Elite) on five surfboards in random order twice. All surfboards were 60 in (178 cm) long, 19.8 in (50.9 cm) wide and varied only in thickness and, therefore, ranged in BV from 28.4 to 37.4 L. Heart rate (HR) and oxygen consumption (VO₂) were measured at 5-s intervals with a heart rate monitor (Polar RCX5) and metabolic cart (Parvo Medics TrueOne 2400), respectively. A digital camera (GoPro Hero 4) was attached to the inside lining of the swim flume to collect 2-D underwater footage of the sagittal plane in order to measure pitch angle, roll angle and paddling cadence. RESULTS: VO₂ and HR decreased on thicker boards [VO₂ = 32.2 ± 0.263*BV (p < 0.001); HR = 167 ± 0.822*BV (p = 0.001)]. Pitch and roll angles also decreased on thicker boards [Pitch = 13.1 ± 0.129*BV (p = 0.001); Roll = 36.1 ± 0.344*BV (p = 0.044)]. Cadence was independent of BV (p = 0.227). CONCLUSIONS: Results from this study suggest that thicker surfboards reduce the metabolic cost of paddling and lower pitch and roll angles, thus linking metabolic and biomechanical responses to paddling a surfboard with increased volume.

Subject characteristics

Table 1. Summary of results expressed as mean ± SE.

<table>
<thead>
<tr>
<th>Sex (# of subjects)</th>
<th>Women</th>
<th>Men</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>29.0 ± 5.7</td>
<td>30.6 ± 8.2</td>
<td>30.4 ± 7.9</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.71 ± 0.03</td>
<td>1.78 ± 0.06</td>
<td>1.77 ± 0.06</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>58.5 ± 0.6</td>
<td>77.4 ± 7.5</td>
<td>75.5 ± 9.3</td>
</tr>
<tr>
<td>BMİ (kg/m²)</td>
<td>20.1 ± 0.4</td>
<td>24.5 ± 2.5</td>
<td>24.1 ± 2.6</td>
</tr>
<tr>
<td>Experience (years)</td>
<td>11.5 ± 12.0</td>
<td>16.8 ± 10.4</td>
<td>16.3 ± 10.3</td>
</tr>
<tr>
<td>Competency (out of 10)</td>
<td>5.50 ± 2.12</td>
<td>6.67 ± 1.37</td>
<td>6.50 ± 1.40</td>
</tr>
</tbody>
</table>

Energetics

Figure 1. Mean VO₂ vs. board volume for all subjects. VO₂ = 32.2 ± 0.263*BV; p < 0.001.

Figure 2. Mean HR vs. board volume for all subjects. HR = 167 ± 0.822*BV; p < 0.001.

Biomechanics

Figure 3. Mean surfboard pitch angle vs. surfboard volume for all subjects. Pitch = 13.1 ± 0.125*BV; p < 0.001.

Figure 4. Mean surfboard roll range of motion vs. surfboard volume for all subjects. Roll = 36.1 ± 0.344*BV; p = 0.044.

Conclusions

• We observed a significant difference for VO₂ and HR across the five boards (Figs. 1&2).
• There were significant differences in pitch angle and roll angle range of motion across the five boards (Figs. 3&4).
• No differences were observed in cadence across the five boards (p = 0.227).
• These findings suggest that paddling is less metabolically costly on more voluminous boards.
• These findings also suggest that compensations on less voluminous boards may be made via increasing stroke length and depth, as opposed to rate.

References


Acknowledgements

We would like to thank Kevin Valdez, Vuk Teger, Ryan Martinez, Aaron Galatrea, Madison Silvas, Jenny Lou Cardinal, Brian Cisneros, Michael Cordain, and Lauren Palm for their help with data collection and analysis.

Table 2. Summary of subject characteristics expressed as mean ± SE.

Background

• Since the birth of the sport, changes to the material, shape, and size of surfboards have been made to alter the surfing experience (Warshaw, 2010).
• Because surfers spend a majority of their time paddling, and because average heart rate during paddling is greater than sitting or wave riding (Meir et al., 1991), paddling appears to be the most energetically costly portion of a surfing bout.
• Altering buoyancy has shown to impact body position (Pendagast et al., 1977) and improve performance (Cordain, 1991) during swimming.

Methods

Subjects:
• Twenty amateur surfers (18 men, 2 women, ages 18–45) participated in this study.
• Mean years of surfing experience for all subjects was 16.25 ± 10.3.
• Consent, health history questionnaire, and surfing history forms were filled out by subjects.

Protocol:
• All surfboards varied only in thickness and, therefore, ranged only in volume.
• Subjects completed an initial paddling proficiency test consisting of a 3-minute paddle on the lowest volume board.
• All subjects paddled against a constant current in a swim flume (Endless Pool Elite) on five surfboards in random order twice.
• HR (Polar RCX5) and VO₂ (ParvoMedics) were measured at 5-s intervals.
• 2-D underwater footage of the sagittal plane was analyzed in order to measure pitch angle, roll angle and paddling cadence.

Statistical Analysis:
• Statistical significance was set at p < 0.05. All data is presented as mean ± SE.